AIRCRAFT MULTICRITERIA OPTIMIZATION USING SIMULATED EVOLUTION

ICAS-94-1.5.2

Yechiel Crispin
Department of Aerospace Engineering
Embry-Riddle Aeronautical University
Daytona Beach, FL 32114
e-mail: crispinj @db.erau.edu

ABSTRACT

The problem of constrained, nonlinear, multiple criteria op-
timal aircraft synthesis is solved using a genetic algorithm
as the optimization module. The nonlinear constraints are
incorporated into the genetic search by imposing exact pen-
alties on the objective function in the infeasible domain.
The resulting pseudo-objective function is discontinuous
and is easily handled by the algorithm. Two different crite-
ria, minimum gross weight and minimum fuel weight are
considered. Combinations of the two criteria are treated
through the use of scalarization and the set of non—inferior
Pareto optimal solutions is then obtained. The method is
used to study the sensitivity of the solutions to variations in
the required range of the aircraft, using the two criteria.

1. INTRODUCTION

Genetic algorithms (GAs) are a direct simulation of biologi-
cal evolution processes using simplified first principles of
genetics and Darwinian evolution. GAs have been used in
optimization, since they mimic adaptation processes be-
lieved to play an important role in the causes of evolution.
They have been applied to many optimization problems in
science and engineering (-2), and the number of applica-
tions continues to grow. Recently, they have also been ap-
plied to aircraft optimization -4, In this paper, a genetic al-
gorithm is used to study the problem of optimum aircraft
synthesis using multiple criteria. Specifically, we study the
effect of two contradicting criteria, minimum gross weight
and minimum fuel weight, subject to performance
constraints and requirements.

Genetic algorithms present some advantages for solving
complex constrained minimization problems in engineer-
ing. Traditional optimization methods, such as gradient and
other hill-climbing methods, make use of the properties of
continuous functions of several variables and their continu-
ous gradient functions in order to detect local extrema. Usu-
ally, the independent variables are assumed to be continu-
ous, and if the problem involves discrete variables, it would
need to be reformulated as a continuous problem, which
introduces difficulties even in the most simplified problems
. The approach in GAs is completely different. GAs belong
to the class of combinatorial optimization methods. The op-
timization problem, whether integer, discrete or continuous,
is actually formulated as a combinatorial search problem.
This capability is very tempting, since it presents the poten-
tial of solving “exotic”, practical and complex optimization
problems involving discontinuous functions with a com-
bination of integer/discrete/continuous variables, which
were otherwise intractable using traditional methods. For
example, in aircraft synthesis, integer variables such as the
number and type of engines, number of aisles and number
of seats abreast might be included as design variables rather
than kept constant. In addition to that, in GAs, the search
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is conducted from a set of initial designs, the initial popula-
tion, scattered over a domain of the variables space, which
increases the chance of finding the global optimum. Tradi-
tional methods, on the other hand, are susceptible of “fal-
ling” in local minima, such as happens often in gradient hill
climbing methods. Unlike gradient techniques, GAs use
values of the objective function and no information on the
gradients is required. Therefore, problems involving dis-
continuous objective functions, discontinuous gradients,
and non-smooth data, can still be treated. In aircraft synthe-
sis, possible origins of the discontinuities are the FAR regu-
lations, which are stated in the form of discontinuous ranges
in performance requirements, discontinuities in the proper-
ties of the standard atmosphere, especially when the flight
altitude is used as a design variable, and discontinuities in
the values of the maximum lift coefficient Cp,ax When it is
necessary to switch between various high lift devices (e.g.
double slotted versus single slotted trailing edge devices) in
order to meet stall speed criteria or takeoff and landing crite-
ria. Other discontinuities result from non—smooth data con-
tained in the knowledge base used for the aircraft synthesis.
GAs have also great potential and advantages over other
methods in treating the exact nonlinear constraints, espe-
cially when the variables are discrete or mixed discrete/con-
tinuous variables.

The next section, section 2 is a brief introduction to genetic
algorithms. Section 3 describes the aircraft synthesis and
sizing method. The aircraft optimization problem is de-
scribed in section 4, where results of the optimum synthesis
of an executive jet aircraft are presented. Finally, a summary
and conclusions are presented in section 5.

G T LGOR S IN CONS

OPTIMIZATION

One of the early works on the application of simulated
evolution to optimization problems is that of Fogel and co-
workers ©) in the field of cybernetics. The problem was to
optimize the function of finite state machines using an evo-
lutionary process. The interested reader may also consult
the recent review paper of Forrest (1), Genetic algorithms are
based on the paradigm of Darwinian evolution ¢:7.8.9), They
are started with many possible points which are randomly
and uniformly distributed over the problem space to create
an initial population from which the search is started. Then,
this initial population undergoes an evolution process dur-
ing which it adapts to the minimum or maximum value (or
values) of the objective function. The search is guided by se-
lecting better adapted solutions that have higher values of
the fitness function (objective function). They are especial-
ly efficient in locating “interesting” domains within a broad
range of the search space and therefore are more suited for
finding global minima.

In GAs, since the problem is posed as a discrete combinato-
rial problem, the treatment of discrete variables is inherent

1520



in the formulation, whereas continuous variables are
approximated by discrete variables. Design variables are
coded, and in the present work, they are represented by
binary numbers of given length (bit strings). This binary
coding is a simplified simulation of the genetic information
contained in the genotype of each member of the population
. Discrete variables are represented exactly by binary num-
bers whereas continuous variables can be represented to any
required degree of approximation by discrete numbers de-
fined between lower and upper bounds. This representation
has also the advantage of taking into account side
constraints on the design variables in an easy and natural
way. The genotype of each member of the population is
formed by concatenating the binary strings representing the
set of independent variables into a single binary string.

The genetic algorithm consists of a number of relatively
simple and well documented operations (1:2), which upon
acting on a population of solutions, improve the value of the
fitmess function . Each member is assigned a fitness value
through the process of evaluation and the population of de-
signs is sorted and ranked from best to worst. The fitness of
amember can be defined as the value of the objective func-
tion whose extremum is sought, such as aircraft gross weight
or system life cycle cost. The genetic operations include
coding, evaluation, selection, crossover and muta-
tion.Members in the population are selected as parents in or-
der t0 produce the next generation. Parents are then replaced
by better fit children which are created through a process of
recombination (crossover). In the present work, the number
of members within the population is kept constant. The ge-
netic operations of this evolution process are repeated until
genetic diversity is lost, i.c. all members in the population
become identical. A measure of convergence can be ob-
tained from the behavior of the difference between the fit-
ness of the best member and the average fitness of the popu-
lation. Upon loss of diversity, the average fitness becomes
identical to the best fitness.

3. THE AIRCRAFT SYNTHESIS METHOD

The synthesis method consists of an initial sizing module,
followed by a detailed estimation of the empty weight com-
ponents of the aircraft, and an estimation of the fuel weight
from the mission profile. This module is then driven by the
genetic algorithm in order to attain an optimal aircraft con-
figuration. In order to obtain the weights and size of a new
configuration the following parameters need to be speci-
fied: the number of engines and engine type (a choice of tur-
bofans having a range of bypass ratios), the payload, the
cruise Mach number, the mission range, and the landing and
takeoff field lengths.

The main steps used in the synthesis process are described
below. The gross weight is given by:
Wg =W+ Wi+ W 3.1
where Wy , We , Wr and W, are the gross weight, empty
weight, fuel weight and payload, respectively. The payload
is a known design requirement, the fuel weight is estimated
from the mission profile and the empty weight is estimated
using correlations for existing aircraft of the same class. The
approach used in obtaining these correlations is to gather
statistical weights data from a variety of existing aircraft
and find best fits using regression analysis. The aircraft
empty weight is broken up into several components and sys-
tems:

We = Wy + Wit + Wyt + Wris + Winaing + Wioseg + Weng
+ Wisys + Wie + Whydr + Welec + Wavion + Wac (32)

Here Wy, Whe, Wy and Wy are the weights of the wing,
horizontal tail, vertical tail and fuselage, respectively.
Wnaing Wrosegs Weng and Wiy are the weights of the main
landing gear, nose gear, instafied engines and fuel system,
respectively.  Wee, Whydr, Welec Wavion and W, are the
weights of the flight control system, hydraulics system,
electrical system, installed avionics and air conditioning
system, respectively. There exist detailed correlations for
the weights of the various components and systems, see for
exam({ﬂe the data given by Raymer(9), Roskam(D), Toren-
beek(!2) and Nicolai!®. “For example, the correlation for
the wing weight given by Torenbeek(12) is:

Wi = 81 Winzr (14(6.3 cosA /b)) (b/cosAy )23
(nw0?4(bS / &Wmazt c08A1/2)%5

Here W,f = W — Wris the maximum zero fuel weight, nyy
is the ultimate load factor, Ay is the wing semi~chord line
sweep angle, b is the wing span, S is the wing planform ref-
erence area and t; is the maximum thickness of the wing root
chord. The values of the numerical constants a; to as are giv-
en in Torenbeek (12), It was found that Raymer’s equations
(10) for general aviation aircraft give good estimates for
executive jets in the 10 passengers class. In the above equa-
tions, the weights are in lbs, lengths are in feet, areas in sqf.
and angles in degrees. Similar correlations for the other
components and systems are given in the above references
(10-13) and are omitted here.

The empty weight given by eq.(3.2) depends on the gross
weight W, the wing reference area S, the wing span b, the
root thickness t; and the sweep angle of the semi—chord line,
which depends on the quarter—chord sweep and taper ratio.
Similarly, other components weights depend on the design
variables and the gross weight. However, these parameters
are not known a priori, i.e., €q.(3.1) is a nonlinear equation
for Wy. An initial sizing method is needed in order to obtain
estimates of Wy, S, b, t and other parameters during the op-
timization process. Several authors have addressed the
problem of initial sizin(%: a simplified and efficient method
is given by Raymer (%), and more detailed methods have
been proposed by Loftin 14 and Roskam (D, A very brief
description of the initial sizing process is given in ref.(3).
Several criteria are used in order to obtain the critical values
for the wing loading W¢/S and the thrust loading T/W: stail
speed, landing and missed approach, takeoff and second
segment climb gradient, and cruise performance criteria.
The landing field length and the stall speed criterion place
a direct constraint on the wing loading. The second segment
climb gradient and the missed approach criteria place a di-
rect constraint on thrust loading. The takeoff field length
and the cruise criteria determine two relations between the
thrust loading and the wing loading. The lowest value of
W,/S and its corresponding value of T/W are selected as
the matching point that satisfies all the performance criteria.
For a given combination of the design variables, first esti-
mates of the gross weight and aircraft size are obtained from
the relations T =W, (T/Wg) and § = W /(W,/S), which are
then followed by a detaileg calculation of the empty weight
and the fuel weight. A new value for the gross weight is ob-
tained, which is then used to refine the first estimates of the
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empty weight, the fuel weight required for the mission and
the size of the wing and engines.

4. THE OPTIMIZATION PROBLEM, RESULTS
AND DISCUSSION

The design variables considered are: the wing aspect ratio
AR, the wing quarter—chord line sweep angle A¢/4, the wing
taper ratio A, the thickness ratio t/c, the thickness taper 1, the
fuselage diameter Dy and the fuselage length Ly We seek
the vector of design variables z = (AR, A4, A, t/c, T, D, L)
that minimizes a composite function F(x,z) of the gross
weight and fuel weight defined by:

F(x,2) = x(Wg(2)/Wg0) + (1-x)(Wx(2)/Wio)

where the gross weight W (z) and the empty weight We(z)
are functions of the vector of design variables z. x is a
weighting scalar that can vary between 0 and 1, and Wgg
and Wy are typical values of the gross weight and fuel
weight used to normalize F(x,z) such that it is of order one.
The solutions are to be selected from the class of admissible
aircraft configurations having a fixed number of engines
and a fixed payload. They should satisfy prescribed range,
cruise speed, stall speed, takeoff and landing performance
contraints, and the wing cantilever ratio structural
constraint. Side constraints are imposed on the design vari-
ables, for example the aspect ratio varies between a pre-
scribed minimum value and a prescribed maximum val-
ue: ARpin SAR< AR, Similarly, the other design
variables are constrained to vary within certain bounds,
so that the genetic search is limited to a finite subset of the
design space, prescribed a priori. When x=1, the problem
is reduced to that of minimum gross weight. When x=0, the
minimum fuel weight problem is recovered. The other val-
ues of x allow the designer to place more emphasis on one
of the criteria while still taking the other criterion into ac-
count. In the example problem described below, the follow-
ing requirements were used: Ny =10, R=2700 nm, E = 45
min, M = 0.8 at best altitude. Here Ny, is the number of pas-
sengers, R is the range, E is the loiter time and M is the cruise
Mach number. The performance constraints of the problem
are given by:

@.n

@.2)
Vs=(2(Wg/S)/oCLmax)? < Vi

LFL=LFL(W/S, CLinax) € LFL;
TOFL=TOFL(Wg/S, T/W,) < TOFL,
18 <CR =b/ (2 t;cosAgs) S22

where Vj is the stall speed, g the air density and Cymay is the
aircraft maximum lift coefficient. LFL is the landing field
Iength, Wy is the design landing weight, TOFL is the takeoff
field length, T is the takeoff thrust, Cy g is the takeoff lift
coefficient, and CR is the wing cantilever ratio. The sub-
scripts 1 denote specific values of the constraints. Typical
values are: Vg = 100 knots, LFL{=2700 ft @ S.L. and
TOFL1=5000 ft @S.L.

For the results presented below, a uniform crossover was
used and the mutation probability was 5 percent. The aspect
ratio was allowed to vary between 5 and 15, the wing sweep
angle between 20 and 50 degrees, the taper ratio between 0
and 1, the fuselage diameter between 6.2 and 8 ft, and the
fuselage length between 55.5 and 70 ft. The thickness ratio

t/c was kept constant at (.14 and a thickness taper of 1 was
used throughout. In determining the size of the population,
two requirements have to be considered. Large populations
have the advantage of increasing the genetic diversity of the
designs, which helps locate the global optimum, but on the
other hand, they require a larger number of objective func-
tion evaluations. If a very small population is chosen (for
instance, 5 members) the algorithm converges prematurely
to a false result. In our simulations, it was found that a popu-
lation of 30 members provides a good compromise between
these two requirements.

The aircraft configuration that was studied in this example
is an executive jet airplane with a conventional wing and tail
arrangement in the 10 to 12 passengers class. Design and
performance specifications, as well as three view drawings
for this class of aircraft can be found in many editions of
Jane’s All the World Aircraft and in many other sources.
Figs. 1-6 describe the mechanisms of the genetic algorithm
as it applies to the specific problem at hand, such as evolu-
tion, convergence, constraint propagation and non-inferior
solutions using two criteria. Figs. 7-13 describe an example
application of the GA to an optimization study using two de-
sign criteria, minimum gross weight versus minimum fuel
weight.
Fig.1 describes the propagation of the wing cantilever ratio
constraint CR as defined in Eq.(4.2) through the population
of designs. This ratio is a measure of the bending stress at
the wing structural root. For example, increasing the wing
span while keeping the root thickness and wing sweep
constant, would increase CR, or equivalently the stress at
the wing root. Usually, executive jets and transport aircraft
have values of CR between 18 and 22.

80

CR = b/ (t cos( p)) ¥

Generation 3 /

: 1\/\%2\ K?""(l
N

25 ]
—W‘W
20...._.....- .

e S A
k

15
GenaatioMH

10—+
1

Cantilever Ratio CR
8

Population Members

Fig.1: Constraint Propagation Through the Population.

Generation 0 shown in the figure is composed of 32 mem-
bers, all having an aspect ratio of 5 and values of the wing
sweep randomly and uniformly distributed between 20 and
50 degrees. All members in this zeroth generation have a
value of CR below the lower limit of 18, and therefore do
not satisfy the CR constraint. The zeroth generation is used
as a seed for starting the algorithm. These infeasible designs
are gradually removed from the population as the genetic
search proceeds and new feasible designs are found and
introduced into the population. For example it can be seen
from the figure, that the first 13 members in the third genera-
tion are feasible whereas the rest 19 members are infeasible,
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In generation 10, on the other hand all the members are fea-
sible. The designs are sorted from best to worst so that the
first member has the minimum value of the objective func-
tion (in this case, the gross weight) and the 32nd has the
highest value.
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Fig.2: Evolution of the Takeoff Gross Weight.

The evolution of the takeoff gross weight over 20 genera-
tions is presented in Fig. 2. For each generation, the value
of the best design and the average value taken over all the
members in the population are shown. The objective func-
tion in this case is given by Eq.(4.1), with x=0.6. Since the
GA is started with a low aspect ratio value of 5, the initial
weight is much higher (26000 1bs) than the optimal con-
verged value of less than 22000 Ibs. After generation 9, the
average value approaches the best value and they become
eventually identical when the diversity of the population is
lost after some 14 generations. Another insight into the
propagation of the constraint through the population of de-
signs can be obtained from Fig. 3, which shows the evolu-
tion of the CR constraint over 20 generations. The best solu-
tion satisfies the CR constraint as early as generation 2
whereas the average value is lagging and becomes feasible
starting at generation 5.
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Fig.3: Evolution of the CR Constraint.

The evolution of one of the design variables, the wing quar-
ter chord sweep angle is given in Fig.4 for the same com-

pound objective function F with the scalar x=0.6. Strong
fluctuations are obtained during the first 8 generations, and
the best solution settles on a value of 30° starting at genera-
tion 11.

\ F = x(Wg/Wg0) + (1-x)(Wi/WI0)
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Fig.4: Evolution of the Quarter—Chord Sweep Angle.

The fluctuations are probably due to the present approxi-
mate model used in estimating the wave drag when the
cruise Mach number is higher than the drag divergence
Mach number Mpp. This model is based on a USAF DAT-
COM method. Apparently, some noise is introduced into the
calculation of the wave drag coefficient Cp,, due to the in-
terpolation of unsmooth empirical data. The evolution of
another design variable, the wing aspect ratio, is shown in
Fig.5. The fluctuations here are smaller, probably because
the wing CR structural constraint forces the wing span and
aspect ratio to stay within reasonable bounds.
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Fig.5: Evolution of the Wing Aspect Ratio.

A more global picture of the multiple criteria optimization
using scalarization is presented in Fig.6. The weighting fac-
tor x is varied between ( and 1 so that a set of non-inferior
solutions, also known as the Pareto optimal set, is obtained.
When x=0, the single criterion problem of minimum fuel
weight Wr is recovered, and when x=1 the problem is re-
duced to that of obtaining the minimum gross weight W,.
For x=0 the fuel weight is minimum and the gross weight 1s
maximum and vice versa, when x=1, the gross weight is
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minimum and the fuel weight is maximum, because of the
contradictory nature of the two criteria.

24 7.35

Fobj = x (Wg/WgO) +(1-x)(WHWI0)
\ L7.8
\.\ M 1000 Ibs)
—>
2

+7.15

mum fuel has a higher gross weight than the configuration
designed for minimum gross weight. A similar result is ob-
tained for the empty weight as displayed in Fig.8. A com-
parison between the fuel weight required for the same mis-
sion profile is given in Fig.9. It can be seen that the
difference in fuel weight between the two configurations in-
creases with the required cruise range. For larger aircraft
this difference might become substantial and might be a ma-
jor driver of the aircraft synthesis.
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Fig.6: Pareto Optimal Set of Non—Inferior Solutions.

Minimizing the fuel weight is equivalent to minimizing the
wave drag coefficient Cpy, which requires a higher sweep
angle and a lower aspect ratio, but not necessarily a lower
gross weight. Increasing wing sweep, for example, means
an increased wing weight. Also, when the other constraints
are taken into account, such as the stall speed constraint, an
increased wing reference area is required to maintain the
same stall speed Vg because of the adverse effect of in-
creased sweep on Cypmax. When the gross weight is mini-
mized, the present results show that the wave drag coeffi-
cient Cpw is approximately equal to the parasite drag
coefficient Cpy, the fuel weight required is higher, but the
combination of design variables gives a lower gross weight.
A set of compromised solutions are obtained when the value
of the weighting factor x is greater than zero but less than
one.
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Fig.7: Takeoff Gross Weight Versus Range Using Two Opti-
mization Criteria.

In Fig. 7, a comparison is made between the gross weight of
two configurations, one designed for minimum gross weight
and the other for minimum fuel weight for various range re-
quirements (the range varies between 2000 and 3500 nm).
The main result is that the configuration designed for mini-

2000

2500

3000

3500

Range (nm)
Fig.9: Fuel Weight Versus Range for the Two Criteria.

Figs. 10, 11,12 and 13 show that other penalties can be in-
curred when the criterion is fuel weight rather than gross
weight. Excessive wing weight, wing span, wing area and
thrust are required if the criterion of minimum fuel is chosen
instead of minimum gross weight. When the gross weight is
chosen as the objective function, the wing structural
constraint imposed on the cantilever ratio drives the feasible
designs to moderate values of the wing aspect ratio and
sweep angle. The optimum solution is a compromise be-
tween aerodynamic efficiency on one hand, which requires
a high AR, and on the other hand, wing structural feasibility
which requires lower wing spans. High sweep increases the
wing weight and decreases the value of Cyax required for
takeoff and landing (which in turn forces the synthesis algo-
rithm to select a low wing loading and therefore a higher
wing planform and higher parasite drag ). Low wing sweep
causes an increase in wave drag which in turn increases fuel
consumption and weights. On the other hand, when the
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minimum fuel weight criterion is used for this class of
executive jet aircraft, a higher gross weight is obtained, with
little savings in fuel weight, especially for moderate cruise
ranges.
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Fig.10: Wing Weight Versus Range for the Two Criteria.
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Fig.13: Maximum Thrust Versus Range for the Two Opti-
mization Criteria.

5. SUMMARY AND CONCLUSIONS
The problem of constrained, nonlinear, multiple criteria op-
timal aircraft synthesis is solved using a genetic algorithm
as the optimization module and a conceptual refined sizing
and weight estimation method as the analysis module. The
nonlinear constraints are incorporated into the genetic
search by imposing exact penalties on the objective function
in the infeasible domain, i.e. if the constraints are violated,
the fitness function is assigned a (problem—specific) low
and unfavorable value, so that the infeasible solutions are
eliminated by the selection process. The resulting pseudo-
objective function is discontinuous and is easily handled by
the algorithm since a genetic search is used rather than a gra-
dient technique. Two different criteria, minimum gross
weight and minimum fuel weight are considered. Combina-
tions of the two criteria are treated through the use of scala-
rization, and the set of non-inferior Pareto optimal solutions
is then obtained.
Other methods for obtaining the Pareto—optimal set of non—
inferior solutions, such as the min-max method and the
breeding of separately evolved populations are currently
under investigation. The treatment of problems that involve
mixed continuous and discrete variables are also being stu-
died.
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