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COMPUTATION OF A HYPERSONIC CONFIGURATION
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Abstract

Results obtained with an Euler code (Hawk, a version
of PARC3D) applied to a representative hypersonic
vehicle at transonic conditions are evaluated. This
method was found to provide good prediction of
vehicle forces, including non-linear normal forces
associated with upper-surface vortices. The creation
of vorticity and upper-surface vortex lift from the
inviscid Euler method is compared with results from
a fully-viscous solution for the forebody of the con-
figuration. The deviation between computational pre-
dictions and test results for overall forces are shown.

Introduction

Application of Euler solvers to vortex-dominated
flows has shown the ability of the inviscid Euler
equations to provide estimates of vortex structures
due to the inclusion of rotational effects. In compress-
ible flows the vorticity is generated from the entropy
gradients through curved shocks (V. Computational
studies of sharp and blunt leading-edge delta@®?
wings include characterization of the primary upper-
surface rotational feature in the Euler results having
outward displacement from the full-viscous primary
vortex. The strong overexpansion to maintain
attached flow creates higher levels of local vorticity
than shown in the viscous results Y. The secondary
separation zone that is found in viscous calculation
and experimental results from such geometries is not
present in the Euler results. Applications of Navier-
Stokes solvers on sharp tangent-ogive cylinders at
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angles of attack from 20 to 30 degrees indicated the
influence of small surface geometry perturbations in
the extreme nose region on vortex formation and
interaction ® and the significance of grid resolution
on prediction of separation line modeling ®, In vis-
cous calculations at o/d of 3 degrees, vortex structures
on blunted cones were shown to be weaker, smaller in
extent and spaced wider apart than corresponding
sharp-cone vortices ). The hypersonic vehicle class
of configurations generally exhibit large fuselages
with relatively blunt leading edges, and small wings
such that the general flow structure at transonic
speeds is similar to forebody flows. In the current
paper, the flow structure generated in the nose and
forebody region by an Euler code is compared to
Navier-Stokes results on the same geometry. Compar-
isons are also made between Euler calculations for the
full hypersonic configuration and available test data to
show the adequacy of Euler predictions for overall
inviscid forces.

FElow Solver

The code used for the study was Hawk3D, a version
of PARC3D ® developed at LFWC. This code has a
finite-difference formulation employing central differ-
ences. The Beam-Warming implicit scheme with
approximate factorization is used for the solver. The
code is shock-capturing. The governing equations are
expressed as:

9o+ 9= (1,94
a*ax!t = (g ax¥

where Q is a vector containing the conservation vari-
ables mass, momentum and energy:

P
Q= |py;
E
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the Fj vectors contain the inviscid fluxes;

pu;
Fj = puiuj+P8ij

where E is the total internal energy and P is pressure.
The viscous flux terms (G;) are put on the right-hand
side:

0
Gi=| T

The total energy per unit volume, E, is defined as:

E = p(e+ (%) (i ujxuj))

y=1

for the three dimensions. Modifications and enhance-
ments to this code have been made by LFWC to
improve application of the Baldwin-Lomax turbu-
lence model, and to incorporate two-equation turbu-
lence modeling to include turbulence quantities
(kinetic energy and length scales) for separated
regions.

Flow Solutions

The code was applied to a single-stage-to-orbit hyper-
sonic vehicle that exhibits configuration shape and
aerodynamics that are representative of these vehi-
cles. The nose cap of the vehicle is non-spherical and
the fuselage has a non-circular cross-section. The
fuselage nose leading edge bluntness of the configu-
ration is approximately 1 percent of the local body
width at the nose, but rapidly grows to 2 to 3 percent
of local body width by 10 percent of body length.
This compare to ‘blunt’ leading-edge wing calcula-
tions 9 having a nose radius of 0.7% chord over the
entire leading edge. The code was run at Mach num-
bers from 0.6 to 2.0. Full-configuration calculations
were made using a relatively coarse grid (=81,
n=30, {=165).

Additionally, at one Mach/a condition (Mach=0.6,
o=12 degrees), a portion of the forebody to approxi-

mately the 55% body length station was run using a
finer radial mesh of 74 points. Both the Euler equa-
tions and alternatively the fuli Navier-Stokes equa-
tions were solved on this grid, for comparison with
the coarse grid results in the nose and forebody
region of interest. The Reynolds number used for the
viscous calculations was 2.7 X 10° per foot. Conver-
gence histories for representative conditions are
shown in Figure 1. The effect of increased grid den-
sity in the Euler calculations was to decrease conver-
gence rate, as would be expected. The effect of
employing the viscous terms was to induce oscilla-
tions in the residual, and decrease convergence rate
for the higher iterations.

Upper-Surface Flowfield Near Nose

The effect of viscosity and grid density will be illus-
trated for three data planes in the first 10 percent of
the body length. This region is still relatively sharp.
The grid topology in the nose region is shown for
defined azimuth angles of $=0, 45 and 90 degrees in
the schematic of the upper-body region in Figure 2.
The upper flowfield above the surface from the cen-
terline to the leading edge is included. The grid
dimensions are normalized by the local ray line from
the upper centerline to the leading edge and span as:

Y = {2+

For the majority of the Euler calculations, the
‘coarse’ grid having 30 radial points was used. Cross-
plane plots at the three {-planes are shown in Figure
3. In these and the following plots, the flowfield
above the body is shown from the upper centerline to
the leading edge, with a small part of the flowfield
ahead of the leading edge (y’/bjyca>1). The geometry
presented is limited to the upper surface, but is suffi-
cient to demonstrate the flow features. The ‘fine’ grid
of 74 radial points is shown in Figure 4. The details of
the flow structure are shown for the condition
Mach=0.6, angle of attack=12 degrees in Figures 5
through 11. Isolines of the pressure coefficient (Fig-
ures 5 through 7) show the Euler data are much more
overexpanded on the nose centerline (¢=0, bottom of
figures) than the Navier-Stokes solution. In the fine
grid Euler results (Figure 6) the pressures are dis-
placed aft. At a ¢ of 45 degrees (middle of figures),
the Navier-Stokes result begins to develop the vortex
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structure. The Euler data have local pockets of large
suction. At 90 degrees (top of figures), the Euler data
have significantly higher suction than the Navier-
Stokes results. However, the isolines of the most
intense suction lie above the surface. The Navier-
Stokes results show a more modest level of suction
which reaches the surface in a broad region of the
fuselage.

The normalized entropy contours are shown in Fig-
ures 8-9. The Euler results on the centerline (bottom
of Figure 8) show the large entropy production due to
shocks. The high-entropy region follows the leading
edge to the ¢=90 position (top of Figure 8), where
substantial entropy gradients still exist near the rota-
tional core. The entropy gradients in the Navier-
Stokes solution are much more diffuse (Figure 9.)
Since static temperature gradients are greatly reduced
in the shockless viscous flow, and pressure changes
are more gradual (Figure 7), the magnitude of entropy

rise(9
(S,—-8,) T P
A U ln(_Z)-Rl,,(_z)
cp T1 P1

is reduced substantially in the viscous flow at ¢=90.

The source of the entropy rise in the Euler calcula-
tions is the large acceleration required to maintain
attached flow. The Mach number profiles for the fine
grid are shown in Figure 10, A large zone of super-
sonic flow lies close to the surface at the centerline,
with peak Mach numbers of 1.5. The viscous results
(not shown) had no evidence of supersonic flow.

The data for swirl for the three calculations aré shown
in Figure 11 at a ¢ of 90 degrees. The swirl, or helic-
ity is defined as (10),

H=V-VxV

Helicity indicates the rotational speed and down-
stream convection of the vorticity, as well as indicat-
ing the rotation sense to pick out primary and
secondary structures. The swirl is larger in the Euler
results, with ‘no’ secondary separation region. The
peak rotational feature lies closer to the leading edge
and down from the viscous result which is much
more diffuse. The fine grid provides much improve-

ment in resolution of the Euler results. A negative
swirl region at the left of the =90 view is eliminated
through grid refinement. The rotational structures in
the solutions for this relatively flat nose appear driven
by leading-edge effects, rather than the forebody
crossflow separation effects of References 5-7.

We can relate entropy gradients to vorticity through
the Second Law of Thermodynamics and the equation
of motion (11;

TVs = VxVxV
We decompose the right-hand side yielding:

V(@) -w()]
[ (@) —w ()],
(@) -v(@)]

Large entropy gradients are created in the Euler solu-
tion around the nose. Since the v-and w- velocity
components are zero on the centerline, at ¢=0 the
entropy gradients are convected only in the j-term in
which w, contains spanwise velocity gradients. As ¢
is increased to 90 degrees, contributions from v and w
increase. Therefore, the vorticity will be convected
from the centerline to the axial downstream planes.

Vortex Lift Comparisons with Experiment

The integrated forebody pressure forces are shown in
Table 1 and are normalized by subsonic wind tunnel

Table 1: Normalized Integrated Forces Over
Forward 55% of Fuselage at Mach=0.6, =12

Grid &, G/ Cy/ Cp/
Solver
v n, ¢ Crref | Cmrer | Cpref
- —o— — v |
Euler 81, 30, 0.498 | 5.370 | 0.082
66
Euler 81, 74, 0.490 |4.722 | 0.011
66
Navier- | 81, 74, 0.492 | 4476 | 0.032
Stokes | 66
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test data for the full configuration. The large magni-
tude of the pitching moment terms in the normalized
data are caused by a small reference pitching moment
(caused by the nozzle afterbody influence). The pitch-
ing moment and drag show that grid refinement
brings the Euler results closer to the viscous-calcu-
lated results.

An estimate of vorticity-induced suction was made by
assigning pressure less than 92% of a nominal
attached-flow level (near the upper centerline at the
given { plane) as being vortex-induced. The amount
of affected area of the upper surface was surveyed,
and the incremental normal force due to this addi-
tional suction were calculated. The results are shown
in Table 2, normalized by the normal force produced
by the entire upper surface area. Although the area of

Table 2: Affected Area and ‘Vorticity Cy’

. % upper-
Solver éG;ldc A‘Z(;a surface Cy
> due to vorticity

Euler 81, 4.8% | 26.8%

30, 66
Euler 81, 55% | 38.8%

74, 66
Navier- | 81, 5.6% |20.6%
Stokes | 74, 66

vortex-induced pressure is similar between the Euler
results and the viscous results, the percentage of lift
from the forebody vortex is higher in the Euler
results. This is due to the more-intense vorticity near
the nose, and increased amount of local suction. As
seen in the pressure distributions in Figure 5 and 6,
the fine-grid Euler solution creates larger suction
pressures at $=90 (due to non-physical overexpansion
under the rotational structure) and thus compares
poorly to the viscous ‘vorticity Cy’ result. The Euler
predictions of total forebody pitching moment and
pressure drag (Table 1) are improved with refinement,
showing a pitfall of using only total quantities for
grid studies.

The full-vehicle forces were calculated for the coarse-
grid Euler calculations. The variation between the
Euler-predicted integrated surface pressure forces and
test data is shown in Figure 12. Overall agreement is
good for lift. The coarse grid has difficulty resolving
pitching moment. The fine-grid results from Table 1
indicate that better resolution improves the predic-
tion. The pressure drag was found to be underpre-
dicted. Flowfield integrations of x- and z- momentum
were made at the back plane of the computational
solution to check the drag results. The trend of
momentum deficit versus angle of attack at the back-
plane agreed with the trend of drag from surface pres-
sure integration. The magnitude of this wake drag
was underpredicted by a constant amount from the
surface integrated pressure drag. This indicates that
flow turning ahead of the backplane increases the
overall momentum level at the rear of the computa-
tional domain. Outer boundary integrations should
consider the size and geometry of the domain.

nclusions

For the given non-spherical nose configuration, the
predicted flowfield was more in character with wing
leading-edge separation than forebody separation.
The Euler solutions were characterized by large
amounts of vorticity generated by entropy gradients
at the centerline which appeared to be convected
around the leading edge. The upper-surface rotational
flow appeared to be generated by overexpansion as in
previous studies. By contrast, the Navier-Stokes
result showed the vortical development occurring far-
ther aft. The integrated forces from the Euler predic-
tions compared well with test data, for the relatively
fine grid. However, local flow quantities such as
cross-flow shocks, position of rotational features,
extent of overexpansion regions, and ‘vorticity-
induced’ normal force were mis-predicted and were
at times adversely affected by grid refinement. This
suggests that grid-refinement studies for Euler solvers
should survey all relevant flow parameters.
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e | EULER FULL VEHICLE 165X81X30 = 400950
------ EULER FOREBODY: 66XB1X74 = 395604
----- - INAVIER-STOKES FOREBODY|66X81X74 = 395604
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Note: Entropy has been normalized by maximum value
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