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Abstract

Based on Beam & Warming’s Implicit Approximate Fac-
torization Algorithm this paper solves conservative Euler equa-
tions on arbitrary curvilineal coordinates. The algorithm with
diagonal form and local time step is used to obtain a faster con-
vergence rate. The ONERA M6 Wing’s C-H grid is generated
by using an algebraic method. Results in strong shock case are
obtained. By comparing the computed results with experimen-
tal data, the feasility of the algorithm has been tested and veri-
fied. This paper still used C-H grid to simulate the leading edge
and wing tip vortex flow phenomena over delta wing at sub-
sonic Mach numbers. A hybrid method in diagonal form has
been -tested for accelerating convergence rate, which saves
about 11% CPU time for each step.

Introduction

Accurate and cost-effective simulation of three dimen-
sional flows dominated by free vortex or when strong shock
waves develop, which are typical in the flight of fighter air-
craft, continues to be one of the challenging problems. The
leading-edge separated vortices are the subject of the present
investigation. They form on the leeward side of swept slender
wings at moderate to high angles of attack during low-speed
flight or transonic maneuvering. Considerable improvement in
aerodynamic performance can be obtained by careful genera-
tion and control of these vortices. Accurate, efficient and reli-
able computational methods are needed to properly simulate
such flowfields,

The main emphasis in this paper has been placed on appli-
cability of the method and on achieving accuracy. We make
some effort mentioned in following towards achieving a fast
algorithm. We make some effort mentioned in following to-
wards achieving a fast algorithm. The first application is the
simulation of the flowfield over AGARD ONERA M6 Wing in
strong shock case. The second application is that of the lead-

ing-edge separation vortex over a delta wing at moderate to

high angles of attack. These results indicate that the present
approach is capable of computing complicated three-dimension-

al flow fields.
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Governing Equations and Numerical Algorithm

Governing Equations
The basic equations under consideration here are the un-

steady Euler equations. These are specialized to a body fitted
coordinate system (E,m,¢) where the t-coordinate lines are a-
long streamwise direction and the ¢-coordinate lines are nearly
orthogonal to the body surface. The governing equations for a
coordinate system fixed in time can then be written in nondi-

mensional conservation-law form as follows:
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The contravariant velocity components are defined as
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The transformation metrics are defined as follows:
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where J is the Jacobian of transformation given by
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The pressure is related to the other flow variables for an
ideal gas by the following equation of state

p=(y—1)[e—0. bput+vi+w ] (6
Numerical Algorithm

Starting with the implicit approximate factorization
g (1]

scheme developed by Beam and Warmin,
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where A,B and € are the Jacobian matrices 9E/30,aF /30 and
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The flux Jacobians A, B and € each have real eigenval-
ues and a complete set of eigenvectors. Therefore the Jacobian
matrices can be diagonalized.
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Compared to using full block algorithm there are signifi-
cant advantages to the diagonal algorithm. First it reduced the
computational work and the second it requires less temporary
storage than the block algorithm.

We solve the above equations (10) in following steps;
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where 8 is the central difference operator, and A and V are

an

a2

forward and backward difference operators, respectively.
D, represent implicit second-order smoothing terms. D. repre-
sents explicit fouth-order smoothing terms.

Central differencing is used throughout the solution do-
main, except in the region of supersonic flow before a shock.
Upwind differencing before shocks has a stabilizing effect and

improves the accuracy of the calculations. Here we use a com-
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bined operator which has a free parameter gsuch that =10
produces the central operator and g = 1 gives the one-sided
operator. The difference scheme in the following manner is
conservative [3]
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Rewriting the above Eq. (13) as
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Mesh Generation and Boundary Conditions

Mesh Generation

A body conforming C-H mesh is generated about an arbi-
trary wing using an algebraic method.

At first the position of each C-like computational mesh in
the chordwise section should be given in the spanwise direc-
tion.

The C-like computational mesh is founded on the curvi-
lineal coordinate system £,¢,for which the line §{ = {u coin-
cides with the airfoil. One family of hyperbolas of coordinate
curves that should intersect the airfoil (£ is constant) is adopt-
ed, given in the parameter 6 by

x=B4A cosh({)cosd

z==Asinh (£)sind (14)

The origins of the hyperbolas &, {anate set by the desired
distribution of points on the airfoil. The farfield boundary is
defined as an ellipse ;
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At the leading and trailing edges the first mesh interval in
the & direction is specified and the remaining are then calculat-
ed from the spline fit interpolation according to the arclength
distribution. Also the first mesh interval in the { direction in
the leading and trailing edges is specified and the remaining are
then calculated from a quadratic relation between these two.
Subsequent intervals are prescribed by an exponential stretch-
ing function. That part of the mesh past the trailing edge is ob-
tained by translating the hyperbola at the trailing edge down-
stream to the last desired position.

Boundary Conditions

At the body surface, tangence is satisfied by V,=0. The

tangential velocity U;, V, are obtained at the body surface
through linear extrapolation. The cartesian velacities are then
formed from the inverse relation
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The pressure on the body surface is obtained from the normal
momentum equation
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Adjabatic walls are used to obtain density at the surface.

Farfield boundary conditions are given as far-field inflow
conditions, At the outflow boundary, variables are all calcu-
lated from inside the computational domain except that pres-
sure is specified as p. at the subsonic outflow. Symmetry con-

ditions are used at the root section for a finite wing.

Convergence Acceleration and Scheme Improvement

Convergence has been improved significantly by use of
local maximum time step and by using a diagonal form of AF
scheme.

Here we also adopt a hybrid method similar to which was
developed by L. N. Sankar, etc[4]. For the egs. (1), the

spanwise derivative — was written as a combination of the n

an

and n—+1 time levels. During the odd time steps, calculations
were done on span station at a time, from the wing root to the
outboard span station, using the latest values of the flow vec-
tor at the (n+1) time level as soon as available. Thus
F /= (Fi,—F}31) /2 (18a)
During the even time steps the calculations started at the last
span station outboard and progressed until the root station was
reached. Then the term
3F/an= (Fif} —F}-1) /2 (18b)
Removing the term JF /an from lefthand side of the egs.
(1) to the right and adopting diagonal AF scheme results in the
following equation ;
Tt(ﬁi‘*_h&/\g‘“Di/;)p€I+h6kA;“Di/;)TZIAU=
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Where P=T{ T,

The advantage of the hybrid scheme as above is that it re-

as

quires less CPU time for each time step and also it requires less

computer memory,

Results and Discussion

In this section, results are presented for two cases; strong
shock flow over M6 wing, and vortex flow over a 56° cropped
delta wing. For each case, the entire domain is initialized to
freestream conditions. All calculations have been done on a
super-microcomputer with 16MB Memory. The processing

time required is approximately 0. 0019 secs/grid point/time
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step, and 1000 - 1500 iterations wete necessary to obtain
steady state solutions.
Strong Shock Flow over M6 Wing

As a standard test configuration having a great deal of ex-
perimental data avaiable!®], AGARD ONERA M6 wing (Fig.
1) is usually used as a typical example to evaluate computer
code. The M6 wing’s C-H grid (151X 20X 20) is shown in
Fig. 2. Computed results for the strong shock case (M
0. 84, a=3. 06°) are presented in Fig. 3 through Fig. 5. In

this case appear the well known triple shock waves. The merg-

ing of the two shocks into one toward the wing tip forming a
typical A-type pattern is clearly evident in Fig. 4 and Fig. 5.
The agreement with experiment is reasonably good at most
span stations. (Fig. 3) The results of the computation on 103
X 16 X 20 mesh for this case exhibited poor agreement with
test data. Only one strong shock was captured. It is anticipated
that to resolve this flow field, a higher grid density is needed.
Free Vortex Flow over a 57° Cropped Delta Wing

The 57° cropped delta wing with a taper ratio of 0. 078,

and an aspect ratio of 2. 223 is shown in Fig. 6. A comparison
of the computed and measured aerodynamic parameters is
shown in Fig, 7 for three angles of attack (8°, 16°, 24°) ata
free stream of Mach number 0. 6. For these computations a 83
X256 X 20 C-H mesh is used. The agreement between the
computations and measurements is quite good, The corelations
indicate that the computed results include the nonlinear part of
the vortex lift. Computed results for the angles of attack of
24° are presented in Fig. 8 through Fig. 10. Fig. 8 shows the
spanwise station plane velocity fields. The particle path traces
are shown in Fig. 9. The leading edge vortex flow phenomena
is very clear. The negative pressure distribution on the upper
surface of the wing is shown in Fig. 10. The same computa-
tion also be made on a 65X 20X 15 mesh, it is found that grid
refinement does not significantly alter the results. And also
magnifying the numerical dissipation has no effect on the re-

sults.

Conclusion

Use of Euler codes appears to be an attractive alternative
to using the Navier-Stokes codes that require greater computa-
tional resources. The Euler equations, which cannot describe
flow separation mathematicaly as we know, appear to give
reasonable results because flow separates at the leading edge
owning to the numerical dissipations. The results above indi-
cate that the present approach is capable of computing compli-

cated three-dimensional flow fields.
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Fig. 1 AGAGD ONERA M6 Wing
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(a)C-like Computational Mesh in the Chordwise Direction
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(®) H- like Computational Mesh in the Spanwise

Direction

Fig. 2 C-H mesh
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Euler solution
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Fig. 3 Chordwise C, Distribution on ONERA M6 Wing
Mo.=0. 84, a=3. 06°
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Fig. 5 Negative Pressure Distribution on Upper Surface of M6

Wing

Fig. 4 Pressure Contours on Upper Surface of M§ Wing
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Fig. 8 Computed Spanwise Station Plane Velocity Fields
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Fig. 6 57° Cropped Delta Wing



(a) Top View

(b) Side View

Fig. 9 Particle Path Traces (Meo=0. 6, a=24°)

Fig. 10 Negative Pressure Distribution on Upper Surface of the
Cropped Wing
Me=0. 6 a=24°

1966



