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Abstract

Flows in complex engine geometries are simulated by ade-
veloped computational methodology combining overlapping
grids with multigrid methods. The flowis modeled by the three-
dimensional incompressible Navier-Stokes equations incorpo-
rating a k-e turbulence model. The governing equations are
discretized in the physical space using a finite volume method
on a semi-staggered grid. The multigrid method is used to ac-
celerate the convergence of the numerical solver. The main fea-
ture of the present method is its extended flexibility to deal with
three-dimensional complex multicomponent and time-de-
pendent geometries. The flexibility and potential of the cur-
rent method has been demonstrated by calculating several
cases which would be very difficult to be handled by other ap-
proaches.

L. Introduction

Computational fluid dynamics (CFD) is becoming an es-
sential tool in the understanding of fluid physics and in engi-
neering design. Practical and engineering problems in CFD in-
evitably involve complex geometries. In order to obtain realistic
and usable results, the flow ficlds to be computed are often com-
plex and the calculations must often be made in a complicated,
time-dependent, three-dimensional (3-D) geometry. A typical
example for such a geometry that has been discussed in this pa-
per is an internal combustion (IC) engine. Figure 1 shows a con-
ventional diagram of an IC engine configuration.

The flow motion within the cylinder is one of the most
important factor controlling the combustion process. It has also
been shown experimentally that the flow structure inside the
engine cylinder dependents strongly on the geometry of the in-
take/exhaust port system, including the seat angle and the lift of
moving valves, the location of the intake/exhaust axis with re-
spect to the cylinder centreline and the geometry of the piston
face, including the different sort of the bowel-in-piston.!
Therefore, a good understanding of fluid motion inside the en-
gine cylinder is critical in developing new engine designs with
the improved operating and emissions characteristics.
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The objective of this work is to develop a new computa-
tional methodology which inculdes a numerical technique that
can readily treat more realistic engine configurations and a nu-
merical procedure that is robust and efficient for complex en-
gine flow calculations. The main feature of this computational
methodology is the use of an overlapping grid technique, a ti-
me-~independent grid system, the finite volume approach and
multigrid methods. The overlapping grid allows the easy treat-
ment of complex geometries including the motion parts in the
domain and makes it possible to handel realistic engine config-
urations. The multigrid method is incorporated into the over-
lapping grid technique to allow the efficient solution of discrete
problems. The finite volume method and semi-staggered grid
system are used to approximate the governing equations on
complex domains. The current code using all the numerical
methods mentioned above offers great flexibility and efficiency
in treating complex engine problems.

Butterfly
valve

Fig.l Ilustration of an internal combustion engine




At this stage, the incompressible nonreacting flows are assumed.
The flow is modeled by 3—D time-dependent incompressible Navi-
er-Stokes equations incorporating a k—£ turbulence model. The
performance of the present method has been validated by compar-
ing results with those from exact solutions and those from experi-
ments. The flexibility and potential of the present code has been
demonstrated by calculating several cases which would be very dif-
ficult to be handled by others.

II. Formulation of the physical problem

A. Governing equations

For three—dimensional incompressible turbulent flows, the
dimensionless Reynolds averaged Navier-Stokes equations and
the continuity equation, in Cartesian coordinates can be written in
dimensionless, conservative form as follows:
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where U=(u,v,w) is the mean velocity in x—, y— and z—directions,
respectively; tindicates the time; P expresses the mean pressure.

For turbulence closure? the model is composed of two equa-
tions, for the non—dimensional turbulence kinetic ener gy k and its

rate of dissipation € are as follows:
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where G is the rate of generation of turbulence kinetic ener gy'’
The effective viscosity which the effective Reynolds numbers base
on are difined by
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Vi is laminar viscosity. The eddy viscosity Vi is classically given by
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This model contains five empirical constants which assume the fol-
lowing values:?

C,=009; C =144 C2.= 1.92; 03, =1.00; 0=1.30

B. Boundary conditions

There are potentially different types of boundaries, such as
solid surfaces, inlets/outlets and 'internal surfaces’. No—slip condi-
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tion is applied on solid surfaces. The velocity at the piston face is
equal to the piston velocity and the inlet velocity can be obtained
from the overall mass balance by*

Vip = Syisen@D? /4 /A, ©)
where S,i0q Is the piston speed; D the cylinder diameter and 4 the
effective intake area.

The turbulence kinetic energy, k, at the inlet is scaled by the
mean velocity there, while the dissipation rate € is tied to the port
diameter.’ The velocity components, k and € at the ’internal’
boundary points are computed by interpolation during the iterative
process. A three-dimensional Lagrange interpolation scheme is
used and is implemented as a sequence of three one—dimensional
interpolations. It should be noted that this kind of interpolation
scheme does not guarantee global mass conservation before con-
vergence. For incompressible flows it has been found that adding a
correction to the interpolated values could improve the conver-
gence rate without affecting the finial solution.®

The following 'wall’ functions are used for k and € to bridge
the near-wall region:?

®
®

k= Gi*U2
€,=U/(ky,)

where Ug is the wall shear velocity, computed by

Ut=y* fory* < 11.63
U = In{Ey") [k fory*> 11.63
U= Up/Ur ’ y=U Yr /vl

here the subscript p refers to the grid node next to the wall; y,is the
distance normal to the wall; k and E are the constants from the law
of the wall, with values of 0.4187 and 9.793, respectively.

C. Initial conditions

For the engine problem, the flow is time-dependent. At t=0,
the piston is stationary at the top dead center (TDC) of the cylinder
and the flow everywhere is set to be at rest. Initial turbulent kinetic
energy and the dissipationrate are scaled to the mean piston speed?
The flow inside the cylinder is driven by the motion of the piston
away from TDC, according to simple harmonic motjon, i.e.themo-
tion of the piston follows a cosine wave while its velocity follows a
sine wave. The position of the moving piston is deierminated by

L,
Z=L.+ e [1-cos(2bar)] 10
where L is the clearance height of the cylinder and it is taken as
L/L.=5; 2brt refers to the crank angle 6 where b is the engine
speed. Here the piston stroke is L/D = 1.0 and the cylinder bore is
D=10




IIl. Method of solution

A, Overlapping grids

A overlapping grid is constructed to cover the region on
which governing equations are to be solved. The basic idea of
the overlapping grid technique used here is to employ a sepa-
rate body-fitted grid for each component in a multicomponent
configuration and then to interface the grids in a manner which
allows for efficient solution of governing equations. One of the
main advantages of using overlapping grids is that it can reduce
the topological complexity of a complicated geometry, permit-
ting each component to be more easily fitted with an appropri-
ate grid. Usually, such an appropriate grid is one type of the ex-
isting structured grid. The six basic mesh types (see Fig. 2) are
now available in the present code, to be generated and com-

bined for various of 3-D complex configurations. Comparing

with the patched grids or multi-block technique, the overlap-
ping grids are more flexible for the multicomponent configura-
tion since completely differently orientated grid systems, such
as O-0 and H-O type mesh, can be mixed.
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Fig.2 Tliustration of six basic structured mesh types

RIS
B a2 NN

N VA B T ESSS —
SRS —
S SANBRENYA L
Q@g&; W e
e o,

Fig.3 A 3-D view of overlapping grid system
for a more realistric engine configuration

An example which uses all of these six basic structured
grids for an engine configure is displayed in Fig.3. In this exam-
ple, six local body-fitted grids are generated for a cylindrical
combustion chamber, an S-type intake port, a curved-duct ex-
haust port, a spherical bowl-in-piston, a butterfly valve and a
rectangle container at the exhaust. They are combined together
and overlapping where they meet. The grid points on one mesh
which lie inside the butterfly valve are flagged as unused points
which are excluded from the computation. The internal bound-
ary points are defined on the overlapping region between the
two grids for interfaces by interpolation. The data for these in-
ternal boundary points in different grids are organized to be
stored in additional one-dimensional arrays and are indepen-
dently managed by an auxiliary pointer system.

The interpolation is implemented in the transformed
space (1,5, t). ANewton method’ isused to locate the interpo-
lated point on the transformed space. The Newton method
used here is to set up an iteration matrix derived from the Taylor
series expansion around the point of interpolation. The dis-
tance between the interpolated point and its nearest neighbour-
ing grid point on the transformed space are computed by the
iteration. The Lagrange interpolation formulation is then used
in the three spatial directions
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where ¢jq, is the function value of interpolated point and ¢ st
are the function values of selected points for interpolation; n is
the interpolating order which is taken to be 1, 3, 5, ...., etc.

Compared with the single grid approach, the storage of
numerical data for the overlapping grid system is more compli-
cated. The data structure that we employ here is an extension of
the multigrid data structure®. All the dependent variables and
the grid parameters are stored in one-dimensional arrays. A
pointer system is defined so that each sub-grid can be accessed
directly by a pointer. The position of the first variable entry of
each sub-grid is stored and can be easily retrived. The data is
organized by grid levels as in the case of the multigrid scheme.
The data for internal boundary points in different sub-grids are
also stored in additional shorter one-dimensional arrays and
are independently managed by an auxiliary pointer system. Our
numerical experience shows that this type of data structure al-
lows access to each sub-grid independently and it is easy to deal
with the interfaces among the different grids. This grid system
allows also addition/deletion of locally refined sub-grids.’
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It should be noted that a moving boundary (e.g. a moving
piston in an IC engine) has been specially treated in the present
overlapping grid system. The moving piston is artificially
treated as a variable solid body in the computational domain.
Anoverlapping grid system is first generated for the piston lying
at the bottom dead center (BDC) where the size of body disap-
pears. When the piston moves towards TDC or from TDC to
BDC, the size of the body will vary with the motion of piston.
Figure 4 shows two different positions of the piston and their
corresponding overlapping grid system. It can be seen that dur-
ing the solution the grid system doesn’t change with the motion
of the piston. Only those grid points lying in the piston body will
be flagged as unused points which are excluded from the calcu-
lation. When the piston face does not exactly lie on a grid plane,
a local computational region, i.e. a thinner cell layer as illus-
trated in Fig.4, is allowed to attach to the piston. The main ad-
vantage of this grid system is that no mesh regeneration is re-
quired even when different parts move relatively to each other.

Fig4 A 3-Dviewof time-independent grid system for moving piston
(a) at a crank angle of 6 = 90 deg (b) at a crank angle of § = 180 deg
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B, Numerical procedure

A second order accurate finite volume (FV) method is
used to discretize the partial differential equations using carte-
sian velocity components. By this approach one avoids the need
for transformation of coordinates and it makes the information
exchange procedure among different grids simpler. We adopt a
semi-staggered grid system in which all velocity components
are defined at the cell vertex while other scalar quantities, such
as, pressure, turbulent kinetic energy and dissipation rate are
defined at the cell centre. The main advantage of using a semi-
staggered grid system is that one does not have to specify
boundary conditions on the pressure. The control volume for
the continuity equation (2) and the turbulent scalar transport
equations (3) and (4) is the cell element itself. For the momen-
tum equations, the control volume is formed by joining the cell
centres surrounding the point of calculation. Wedged-shaped
control volumes are used in cases of degeneration (as near the
axis of cylindrical coordinates). For details of the discretization
by using FV approximations see e.g. reference 10.

It is well known that non-staggered and semi-staggered
arrangements of variables (such as, using FV approximations)
experience odd/even decoupling for both linear and nonlinear
problems. These high frequency oscillations can be damped by
a fourth order difference operator which is similar to the
scheme proposed by Jameson'!.

The discrete formulation of the governing equations is im-
plicit in time and the MG procedure is used to accelerate the
convergence of the solution in each time step. The algorithm of
the MG technique is to construct a hierarchy of grids with dif-
ferent mesh sizes. An appropriate relaxationscheme is used asa
’smoother’ on each level to quickly reduce the amplitude of
high-frequency error components which cannot be approxi-
mated on the next coarser grid. The ’smoothed’ solution is then
transferred to the next coarser grid to further eliminate error
components with longer wavelengths. By employing several
levels of grids, one is able to solve for the high-frequency com-
ponents on a fine grid and for the low-frequency components
on a coarse grid. As a result, the overall convergence rate is
greatly accelerated. A volume averaging restriction operator is
empolyed for the residuals and the dependent variables are ac-
cording to FAS model.!? The corrections on the coarse grids are
interpolated trilinearly to fine grids. The iterations are carried
out by a V-cycle MG process until a converged solution is ob-
tained.

It should be noted that by using the basic Schwarz algo-
rithm the discrete equations in each zone are solved before up-
dating all the internal boundaries and the procedure is repeated
until convergence is achieved. Previous numerical experi-
ences™ indicate that such an iterative process results in slow
convergence and is sensitive to the extent of the overlap. Here,
the use of the smoothed approximation for the interzonal ex-
change is an integral part of the MG cycle.
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IV, Result and di sion

A. An engine-like geemetry

In order to validate the current code for multicomponent
geometries, a case is chosen where there are four componets,
which are a cylindrical combustion chamber, an S-type intake
port, a curved-duct exhaust port and a bowl-like sphere, re-
spectively. The overlapping grid system for this case is similar to
that shown in Fig.3. We solve two coupled partial differential
equations ( i.e. simulating a two equation model of turbulent
flows) with a given shape of test functions, k and e:

k = 1.5 + cos(2mx) cos(2ny) cos(2nz) cos(2nt)

I

i

1.5 + sin(2mx) sin(2ny) sin(2nz) cos(2st)

The velocity field, needed in the convective terms is as-
sumed to be given. The system of equations is coupled through
the forcing terms on the right hand-sides and the diffusion co-
efficient as in the k~e model:

Sk = —Q€+ Sk
€ ,
Se = —Cl‘I;‘+ Se
1 1 K’
——=————=C——-
Rk RE 2(‘:

where C; and C; are constant, S, and S’¢ are the balancing
terms of the two equations obtained by substituting the test
functions for k and €, respectively.

A steady solution for k field is shown in Fig. 5 (a). A steady
liminar flow in this type of geometry is also simulated by solving
Navier-Stokes equations and computed flow field in a symmet-
rical plane is displayed in Fig. 5 (b). In this calculation, the uni-
form flow profiles are set at all the inlets and outlets by balanc-
ing the global mass flux. The Reynolds number (based on the
inlet characteristic parameters) is 50.

B. A case with an S-type intake port and a fixed valve

A second example is chosen to demonstrate the capability
and potential of the present method for predicting flows in a
complex domain where a global single grid is too difficult to cov-
er it. The engine configuration consists of a cylindrical combus-
tion chamber with a moving piston, an S-type intake portand a
fixed valve. Each part is fitted by a local body-fitted mesh and its
overlapping grid system has been illustrated in Fig. 4. The Re-
ynolds number, based on the maximum piston velocity and the
chamber diameter, is taken to be Re =5200. The finest grids
used are 13x26x29 for the chamber, 9x22x33 for the intake port
and 13x26x21 for the valve, respectively. In the numerical calcu-
lation, it is assumed that the valve is fully opened during the en-
tire intake process.
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Fig.5 Computational fields in a symmetrical plane
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Fig.6 A 3-D view of velocity field in a symmetrical plane
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Figure 6 shows a three-dim=nsional velocity vector plot of
the intake stroke flow at an equivalent crank angle 6 = 90 deg.
The interaction of the intake jet with the valve and then with
the wall produces large scale rotating flow patterns within the
cylinder volume. It is interesting to see that an unsymmetrical
rotating flowis formed due to the directed intake port. This fea-
ture is strongly similar to that observed experimentally by Sana-
tian.!® The recirculation flow with the twin counter-rotating
vortices in the middle of the intake port and the inlet flow with a
tangential momentum are also depicted in Fig. 6.

Y_Concluding remar

The flow field in complex engine geometries has been in-
vestigated numerically. The flow is governed by three-dimen-
sional, time~dependent, incompressible Navier-Stokes equa-
tions incorporating a k-e turbulence model. The use of a nu-
merical scheme combining an overlapping grid technique with
amultigrid method and the use of a time-independent grid sys-
tem for the moving piston in IC engines are emphasized. The
validity of the current code is sucessfully demonstrated by com-
paring the computed results with the available experimental
data and exact numerical solution. Two cases which are geomet-
rically close to the realistric engine configurations are chosen to
demonstrate the capability and potential of the currently devel-
oped method.
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