ICAS-92-7.4.4

Calculation of Transonic Flow Over Bodies of Varying Complexity
Using Singular Perturbation Method

Fu Qiang

Northwestern Polytechnical University

Department of Aircraft Engincering
Shaan Xi Province, Xi‘an , 710072, P.R. China

Abstract

This paps r is devoted to examples of the usc of Singular
Perturbation Method (SPM),which was
Whitecomb and Oswatitch et.al,in transonic flow, the starting

proposed by

point is the full potential equation. At the assumption of small
angle of attack and slender bodies, the asymptotic expansion
can be used. The rule shows that the originalthrec dimensional
problem is devided into two simpler component problems, the
near field and the far field ® . The near ficld is described by a
crossflow Laplace equation’s boundary value problem and can
be solved by Panel Method; the far field is described by a
nonlinear transonic small disturbance equation over a body of
revolution having the same longitudinal arca distribution as the
asymmetric body, which can be solved by AF2 scheme(Approx-
imate Fractoiization). The two component solutions arc
combinated to obtain the complete solution.

The calculations predicted the pressure results with good
accuracy and the computing speed withAF2 scheme is faster
than SLOR method.

I. Introduction

The transonic flow problem is important, since most mili-
tary airplane and most civil aircraft mancuer in this ficld; it is
also mixed and nonlinear flow, so it is complex; the body’s drag

,in this ficld, is senstive to the change of bodies” shape @

,80 it
is necessary to dcsign the shape of aircraft with low drag. With
the advent of computational fluid dynamic procedures, the
transonic proBlcm can be handled by Full Potential Equation
and Euler Equation, and higher accurate solution have bcen
obtained, but the computing time is longer , so it is also ¢xpen-
sive, especially in the optimization procedurc. So it is esscntial
to develop qi..cker, simpler and rcliable mcthod to treat the
transonic flow problem and to sct a basc for the optimization
design.

At the assumption of small angle of attack and slender
bodies, the limit process asymptotic expansion mecthod (also

called Slender Body Theory) can be used in transonic flow o
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J.D.Cole etal. use this mcthod to have handled some complex

flows ¥

. In his method, as a first step to achive the simplifica-
tion, the vclocity potential is expanded asymptotic in both the
near and far ficld from the body. Substituting thesc expansions
into potential equation gives two boundary value problems, the
near ficld is an imcompressible cross flow, is Laplace’s cquation
and is subkct to a flow tangency boundary condition on body,
the far ficld is the flow over a body of revolution with the same
axial arca distribution as the origi—nal body. The near field
problem can be handled by Panel Mcthod, the far field problem

can be handled by AF2 scheme.
11. Basic Equation

Referring to the configuration defined in Fig.1, with the
indicated coordinate systcm and the X axis aligned with the
freestream  direction, the full potential cquation in these

coordinate is )

@ —0Nb,_ +(@ — Db, +a b, /R
@ =, /Ry /R =20, 0,0,
—20 0,0, /R —20,d,d,/R =0

Bwhere the subscripts denote partial differentiation.
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FIG, 1

Inner cxpansion

The appropriatc asymptotic cxpansion for ¢ in the inner

region for the case of zero sideslipe 7 :

b =U_ Cx+(5"n6)25(x)

inner

+8%0 Gor 0k, AB)+ 0B o)




which hold in an “inner limit”
x=X/Cpr =R/ (C\k=0—-M.)/5
A=a/8B=b/0

fixed as § >0

where Mwis the freestteam Mach number, § is a maximum
thickness ratio, ¢ is a dimensional chord such as the wing root
chord, and s is a source strength determined from asymptotic

matching.
Referring to Fig.2 the equation of the cross scctional shape

in a plane X = constant is
R =0CF(x,0) [€))

FIG. 2

then, the cross sectional area A(x) is
AX)=0.5¢F (4)
Upon substitution of Eq.(1) into the full potential cquation
and retaining only terms of order 1, a boundary valuc problem

for the Mach number indepen—dent part of &( denoted as (b; )
is obtained. The theory shows that ncar the body, the cross flow

described by the perturbation velocity potential, cbz' , is
incompressible in the sence that it satisfies Laplace’s equation

Oprpr F by /17 by =0 S ®

The condition of tangency of the flow to the body surface

gives the normal (Ncumamn) derivative boundary condition™

b, =FF /JF +F, 0¢x (1 (6)
then,
£, ds=4 (x) ™

where s is the arc length along the cross sectional boundary.

The far ficld of (b; is asymptotically a source flow in the scnce

that

b, =4 (x)/ @m)Lnr as r’ o 8)
thercfore, the source strength,
S(x)=A4 (x)/ (2n) %

Equation (8) is the crucial link that dctermines the
nonlincar compressible part of the near ficld which is defined as

the function g(x,k). Thercefore, ¢ ’ , can be considercd to consist
of two parts, ie.

o =d, +glxk) (10)
Outer Expansic i

To obtain g(x,k), the outer (far ficld) flow has to be
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trecated. In this zone, the approximate representation for the
perturbation potential is an asymptotic expansion of diffcrent
form than Eq.(2). Thisis (1)
b, =U, Ux+8 7k + 036" an
where, ¥ = 6R / Cis a straincd coordinated.
Substitution of Eq.(11) into Eq.(1) and retention of the
dominant terms gives

Ce—(+1d,J b, +(Fd,),/F=0 (2)

auter

By matching with the inner solution, the behavior of the solu-

tion to Bq.(12) as ¥ — 0is nceded, it can be written as
lim (Fd )= S(x) 13

70

g(x,K) = lim (& — S(x) Inr) (14)

and the pressure cocfficient can be given as Ref. [1].
Once ¢ is determined, g(x,k) can be evaluated from Eq.(14)
and the cvalution of Cp over the body can be completed.

III. Numerical Analysis

Near—Field Problem

The Pancl Mcthod can be used to solve the problem des-
cribed by Egs.(5) and (6) D Accordingly, the body is repre-
sented as the cumulative cffect of constant strength source pan-
cl. Since the potential of cach of these pancls is a solution of
Eq.(5). It is only nccessary to adjust the strength of all of them
so that their cumulative effect at any point along their bounda-
ry is such that the boundary condition (6) is satisficd.

Assumping thc total pancl number is N, the potential at a
point duc to one of the line source can be evaluated by integra-
tion of the effcct of point sources along the line

This cffccthan be written as

d, = le/(2n)fllnrijdsj (j=1,2,++,N) (15

IS

wherer, =+ (x, —xj)z +(y, - yl,)l then
N

b, =24,/ @0 (nr),ds, (16)
J=1

]

Decnoting ¢, specified Neumann condition in Eq.(6)
2 2
fi=(FF ),/ F, +F, 17
the densities ,ljcan be obtained from the system of cquations
N

rAM =1 (18)

where
A u= 1/ (27t)fj(lnrij)"idsj 19)

once the Al arc known, the potential are also known.
Far—Ficld Problem
In this paper, the nonlincar transonic small disturbance

Eq.(12) was

Fractorization ) 0 , the far ficld boundary conditions arc as-

solved using AF2 schemec ( Approximate




sumed as
$=0, F-0 20

¢ =0 X — o0 (21)
the condition at ¥ - 0is Eq.(13)

The AF2 scheme can be given as:

(06, —6,.-8,/ ;)_/ﬁj) = anqufj‘”

22

Co—d, (0 —p )8 ~p,_4,_, 5] cl = (23)

i—1,j x i]

where the operators E,—S—;arc, respectively, first—order—accu-
rate,backward—difference and forcward—difference opcrators,
L(bg‘_” is the nth interation residual operator, Q is a relaxition

. . . 4
factor, o is an acceleration parameter. z,,is samc as .

IV. Results

The method was used to predict the flow over an clliptic
cone, two parabolic arc of revolution body. Fig.3 illustrates the
pressure results for the flow over an elliptic cone for various
angles of attack. Fig.4 shows the pressure results for a parabolic
arc of revolution body with t=0.14 at different Mach. Fig.5
shows the Cp distribution for anothcr parabolic arc of revolu-
tion body with t=0.1667. The calculation prcdicate the pres-
sure results with good accuracy.
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V. Conclusion

The results indicate that the mcthod can be used
transonically to provide uscful preliminary design cstimates. An
important finding is that , by using AF2 scheme, the computat-
ing speed increasced obviously.
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