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Abstract

An adaptive region method is presented for the computa-
tion of vortex sheet behind wing in compressible flow, by ad-
justing automatically computation region in size on every
trefftz’s plane, The method can keep the boundary of computa-
tion region sufficiently away from the region of vorticity to en-
sure the accuracy with less computation time. In addition,the
first derivatives of the potential on branch cuts is redefined and
a second derivatives of potential function is obtained for im-
proving calculation of the cross velocity on branch cuts. Com-
putation shows that the “hook”at vortex tip which appeared by
using Stremeland Murman’s method [1] for elliptically loaded
wing is eliminated in the present method and the computation
results are quite agreement with exact solution of Betz theory
for elliptically loaded wing.

1. Introduction

Vortex flow arises from flow Separation. Vortex sheets
shed from a wing gradually roll up and concentrate into two or
more vortex cores. Generally, the details of the wake structure
have only small influence on the pressure distribution of the
airplane surface. However, the strong and persistent trailing
vortex system caused by large transport aircraft has proven that
it may bring about hazardous for air traffic, which has resulted
the present stringent rules imposed on air traffic involving large
planes. Also the evolution and position of these vortex sheets
must be properly accounted for if it is necessary to determine
the aecrodynamic forces correctely.

A fundamental computation method of vortex sheets is
that the vortices are representated by a finite number of discrete
vortex filaments and the motion of these filaments under their
mutual influence is tracked by lagrangian, rather than Eulerian
method.

Baker([2] have introduced the “cloud in cell” technique in
plasma physics to the calculation of vortex flows, In this ap-
proach, the velocities of the vortices are obtained by solving the
equation of streamfunction on the Eulerian finite difference

grid. The velocities are then interpolated to the vortex
positions, and the vortices are tracked in a Lagrangian
reference frame. Using a fast Poisson solver for the
streamfunction, these calculations require O(Mlog,M) opera-
tions for every time step, where M is the number of grid points.
The grid introduces fine scale structures of the flow, which are
amalgamated into larger structures independent of the grid.
Large numbers of vortices can be efficiently represented by this
approach.

This approach was modified by stremel and Murman[1]
who solved the equation of velocity potential rather than the
streamfunction. The method has been applied to computation
of the flow behind a conventional wing and flapped wing. By
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tracking the vortices in the lagrangian frame and redistributing
it with “cloud in cell” methed in the Eulerian frame for the po-
tential calculation, In their result a small“hook” appears at the
vortex tip. When the computation is conducted downstream,
this irregularity becomes larger “hook” shown in the spiral vor-
tex core.

This paper presents an adaptive region method to improve
the results given by reference[1]. In the reference[l] the size of
computation region is constant on every trefftz’s plane, In fact,
the computation error is importantly affected by the region size,
when the computation station goes downstream, the region size
should be adjusted in order to keep the boundary of the compu-
tation region sufficiently away from the region of vorticity. As-
suming H is the maximum distance between adjacent local
centroids of vorticity in the given trefftz’s plane, the computa-
tion region is defined by H as well as the distance between the
computation boundary and the nearest vortex marker. The first
derivatives of the potential on branch cuts is redefined and a
second derivatives of potential function is obtained for im-
proving the calculation of the cross velocity on branch cuts.

With these improvement, The computation results for
clliptically loaded wing is quite agreement with exact solution of
Betz theory on the horizontal position of vortex centroid and
on descend speed of vortex centroid. The “hook” inside the spi-
ral appeared by using Stremel and Murman’s algorithm is elim-
inated in the present method.

The method has been applied to calculation of the vortex
sheets behind an aircraft. The computation results has been
used to conduct of formation flight of the aircraft.

1. Potential Flow computation of the vorex sheets

The flow considered in the present paper is symmetrical.
All the vortices in flow field is considered concentrated on a fi-

nite number of vortex filaments. The vortices move under their
mutual induction. The flow everywhere outside the cores of the
vortices is irrotational, Figure 1 gives illustration about the
problem. Time t represents substantially the distance from
computing station to the trailing edge of the wing. Coordinate y
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Fig. 1 Schematic of vortex wake problem




and z are in the spanwise and vertical direction. The initial posi-
tion of the wake corresponds to the wing trailing edge and its
circulation distribution is determined from the slope of
spanwise circulation distribution T, (y), the strength of the
vorticity at t =0 is given by

¥ dr
T ,(0,y,0) = —J o o<y<l
=T, 0)-T,0) [

where y,,y, are spanwise coordinates. Defining the i'vortex
marker and let i=1,+++ N, the initial position of each vortex
marker (t=0) is given by

¥y, ty
y,(0)= 1—22*
the spline smooth interpolation is used

to distribute the initial circulation to the marker points sub-
sequently, the location of the vortex markers at the next station
downstrcam are determined from the trajectory equations.

i 2,(0)=0 @
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where v; and w; are the flow velocities at the location of the
vortex marker. They can be obtained by solving the full poten-
tial equation. For the velocity field, the vorticity is a given by
aw 3y

o o )
It is assumed that the velocity is consisted of potential compo-
nent and a non potential component as

w =

{V=rpy—gl(y,2) )
w=¢, —g,(:2)
we obtain from the vorticity definition,
R ()
Substituting equation (5) into the continuity equation
v, +w, = 0 N
Hence we get
wyy+(p:z =glx+g1y (8)

An outer boundary condition away from the wake is given by
superposition of the potential ¢; induced by each vortex and its
image vortex.

p=2T.(0-90), )

where

iz, —z Jz,—z.
0 = tan 1[;”—_7':' 8, =tan l[yﬂ_+y_lJ (10)
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lower subscript B denotes outer boundary. Except the symmet-
ry boundary, equation (10) is used on the outside boundaries.
On the symmetry boundary with y=0 the condition ¢,=0
should be satisfied.

The branch cut is introduced to produce a single valued
function. Consideration of the fact that there is an image for
each vortex leads to the condition,

Sop=9  —¢ =21T, -y <y<y, z=z an
where ¢* = (y,z;£ ). This jump condition also can be imposed
on the symmetry boundary. Thus the derivatives of ¢ are con-
tinuous and finite everywhere except at the location of the
markers, where they are singular. On branch cuts, the first deri-
vatives with respect to z at point jk

@)y =310, +(@)}] (12)
where the upper superscript minus denotes the lower side of the
branch cut and upper superscript plus denotes the upper side of
the branch cut.

Since the motion of each vortex is tracked through space,
the method is lagrangian in nature. However, the velocities are
found by solving the equation of the velocity potential on a fi-
nite computation region surrounding the vortices at each time
station and then interpolated to each vortex location, this solu-
tion of the potential equation at each time station is an Eulerian
description of the flow, A redistribution method is for transfer-
ring vortex strength at the vortex markers from the lagrangian
coordinate system to the Eulerian coordinate system. A area
weighting method for the transference scheme is used as
follows.

T, =(4,/ AT,
T,=(4,/ AT, a3
I',=(4,/A)T,

T,=(4,/A4)T,
where A and Aj,*+,A, are the areas defined in Fig 2. This is
just a bilinear interpolation approximation that conserves the
total circulation. Values of v and w are determined on the
Eulerian mesh from the solution of potential equation and then
they can be interpolated to the marker locations (y;,z;) by using
the bilinear interpolation again. The velocities at the marker lo-
cation y;, z; are then given by

qul + Azqz + Aaqs +A4q4
q,= 1
where q represents v or w.

(14)
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Fig. 2 Redistribution scheme

1. Computation region

The problem considered in the present paper is unsteady,
The marker location (y;, ;) can be obtained from equation (3)

pi e
z:“ =z: + Atw’

§
The stability condition of the equation was suggested by Baker
At<min[é—z, g] (16)
w LY w
As the calculation of marker location (y;, z;) is an integrate pro-
cess. the errors due to improper size of the computation region
on each trefftz’s plane will be accumulated while the calculation
is done downstream. The accumulated errors may cause
incorrect computation results of the location of vortex marker.
So adaption of region size on every trefftz’s plane is very impor-

(15)
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tant to the wake computation.

The size of computation region is adjusted auntomatically
as following. The maximum distance H between the adjacent
local vortex centroids is used as a basic parameter to determine
the first approximation of the region, then the truncation error
of the derivatives of the potential on the boundary is used to ad-
justed the size of computation region. The calcalation of the lo-
cal centroids of vorticity is

=P
r = » T,
" f=(m—~1)pe)
mp
I x = Y T, an
e T={n—Dp+1
mp
ry,= L Ty,
I=(m-1)p+1

where m=1, 2,2ee, M=1M/P; P is the number of the vortex
markers which composes of a local voriex centroid. The re-
sulting error is small when the boundary is Ay - H away from
the nearest vortex marker (x;, v,). Ais a control parameter de-
termined by the truncation error of the velocity on the bounda-
ry, The error can be expressed as

2 2 2 2
2y 2v 2W aw
E—K—) <—) *(5) +<;;>L a8)

where subscript B denotes outer boundary. Given the number
of local centroids, the minimum region can be determined with-
out loss of accuracy.

IV. Computed Examples

Elliptic Span Load

The spanwise circulation distribution of an elliptically
joaded wing is r 2

r,=0-»" (19

the horizontal and vertical position of the vortex centroid de-
fined by

N
i=2zT, (20)

N
y=2xyT,
1=1 f=1
The results are compared with the results of Siremel and
Murman algorithm in Figure 3. the horizontal position of the
vortex centroid is 0.78537. It agrees with the classical theory of
Betz, The descent speed of the vortex centroid nearly a constant

downstream. The velocity is —0.639

Span load for a swept wing

The computation of the vortex sheets for a swept wing is
another example. The spanwise lift coefficient distribution of
the swept wing is acquired by solving transonic full potential
equation. The circulation of the swept wing obtained

_ c,-U_+-C 1)
w 2 ’

where C, is lift coefficient distribution of the wing. U, is the
free stream velocity. C is the Jocal chord length. There are two
cores for the problem (figd) due to the effect of wing root
and wing tip.

V. Conclusions

An improvement computation method has been developed
to compute vortex sheets for time dependent potential flows by
“cloud in cell” method. An adaptive region is used and a new
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expression of second derivatives of potential funtion is intro-
duced. The computation result show that the “hook” at the
very tip of the wake for ellipticaily loaded wing which appeared
in other references is eliminated,and the positions of the vortex
centroid is of good agreement with classical theory. Finally, it
should be pointed that the method has been applied to giving
data for conducting formation flight of aircraft.
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Fig. 3 Vortex wake geometry for elliptically loaded wing.
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Fig. 4 Vortex wake geometry for a swept wing
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