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Abstract

A manipulator typically consists of the same number of
joinis as the number of task space coordinates, whereas if the
number of degrees of freedom is greater one speaks of redun-
dant manipulators. These manipulators can perform sophisti-
cated tasks, but kinematical redundancy results in a more com-
plicated control problem. This paper is based on the known
approach of resolved motion rate control, where the linearized
relation between world and joint velocities is utilized to solve
the inverse kinematic problem. Kinematic control is performed
in position and orientation, with the error-feedback of the orien-
tation vector based on computationally efficient Euler parame-
ters. External constraints, as obstacles in the work space or
joint limitations, are incorporated through objective functions,
Describing them explicitly by appropriate weighting matrices
results in a gain of efficiency. Inverse kinematics is performed
by a weighted generalized inverse of the Jacobian, computed by
the efficient direct calculation allowing better control close to
singular configurations. Two case studies illustrate the per-
formance of this approach. The model used for the simulation
is based on an already existing mobile robot with 9 revolute
joints. It was shown that the disadvantage of redundancy, a
conservative motion in task space does not necessarily lead to a
conservative motion in joint space, can be resolved with the use
of precomputed configurations. Using this approach of pre-
computed configurations in the workspace even a globally opti-
mal path may be reached.

Introduction

The demand of manipulators with high mobility in their
workspace led to the design of redundant robots. Compared to
nonredundant robots these systems may meet external con-
straints, like obstacle avoidance or limited joint range, and may
optimize performance criteria such as minimization of energy.
Furthermore a redundant system can overcome the limitations
caused by singular regions in the workspace.

At the institute for manufacturing engineering and automa-
tion (IPA) of the Fraunhofer research establishment in Stuttgart
(FRG) a large-scale manipulator was developed. This robot,
mounted on a truck, has a maximum radius of 24 meters and has
a load-bearing of up to 1500 kilograms, see fig. 1. The applica-
tion spectrum of this mobile robot covers interesting fields like
maintenance work or cleaning of large aircrafts and ships. It
may also serve as a highly flexible crane in construction or man-
ufacturing industry. Nevertheless, the scope of applications for
redundant robots is not limited to earth-based operations. Fu-
ture space missions, like the assembling of very large space
structures, may require such flexible manipulators as well.
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Figure 1. Prospected task of the iPA manipulator:
Cleaning large passenger aircraft. (Putzmeister)

A manipulator is considered to be kinematically redundant,
if the number of task space coordinates m are less than the
number of degrees of freedom (DOF) n. In cartesian space the
position and the orientation of an object is described by six in-
dependent coordinates. Therefore, a robot with more than 6
DOF is considered to be redundant. The degree of redundancy,
defined by the difference m — n between the number of task var-
iables and joint variables, is actually not constant. Singular
configurations or physical limitations of the jointrange decrease
the degree of redundancy.

The crucial point in the analysis of redundant manipulators is
the mapping of the joint coordinates fe R"to the task or world
variables w e R”

w=r"(P, ()

which is named the inverse kinematic problem. Eq. (1) is an un-
der-determined systeni of nonlinear equations and it is clear that
there is no unique solution rather than a solution space. The

various approaches to resolve redundancy are divided into two

groups:(?

» methods utilizing local optimization

= methods utilizing global optimization

Various investigations were done at the IPA in order to iden-
tify the best solution strategy for a realtime implementation of

the inverse kinematic problem. It was found that the local opti-
mization technique, i.e. linearization of eq. (1), is best suited for
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a fast computation. However this technique has certain draw-
backs:

° Global optimization is difficult to fulfil.

» The motion of the robot may be nonconservative, i.e. a
closed path in task space does not necessarily lead to a
closed path in joint space.®

= Optimization criterias are in general difficult to set up and
are expensive in terms of computing time.

The goal of this paper is to show an efficient and fast imple-
mentation of a local optimization technique which minimizes
the above mentioned drawbacks and is suited for realtime im-
plementation on a robot control system which was originally
based on a 80286 processor.

Concept of the controller

As stated above, the main requirement for the controller is to
perform its task in realtime. Furthermore it is desirable to have
a modular approach in the overall design.”” Both requirements
were realized in a layer model, see fig. 2. Each layer has a dif-
ferent time slice and only the lowest level, the kinematic con-
troller, runs at realtime.

auto filt
programming ilter servos
<= observer =
operator path optimizing hydraulic
interface collision avoidance system
< path planner <
sensor kinematic mechanical
controller system
operating system .
level level manipulator

Figure 2. Block diagram of overall control structure

The other layers perform their particular task whenever the
processor is scheduling a time slice for them. The path planner
is responsible for the calculation of the world coordinates of the
trajectory, the observer feeds back measured data to the kine-
matic controller, and the path optimizing layer handles the ob-
stacle avoidance. This module is further responsible to detect
singular regions in the workspace and other singular forms, like
fully stretched or folded configurations. Information from the
optimizing module will be passed to the kinematic controller in
form of weighting matrices. This paper emphasises on the de-
sign of the lowest level: the kinematic controller which is re-
sponsible for the transformation of the world coordinates of the
trajectory onto the joint coordinates and vice versa.

Kinematic Controller
The duty of a manipulator on-line control is to move the end-

effector (tool centre point) along a prescribed time discretized
path in cartesian space, which is given by a sequence of desired

positions w' = w(’) in task space R™. For this purpose one so-
lution of eq. (1) is required. Of course this solution should con-
sider external constraints like obstacles. Resolving eq. (1) may
be done by utilizing linearized inverse kinematics at velocity
level, ™ the so called resolved motion rate control (RMRC), or
by utilizing a formulation based on inverse kinematics on accel-
eration level: the resolved acceleration rate control. D 1t is
clear that RMRC can be used only for a fairly slow motion of
the endeffector (quasistatic motion).

Scheme of the solution algorithm

The solution algorithm for a resolved motion rate controller
can be divided into the following four steps:

1 Calculation of the actual position and orientation

For the time ¢ ‘the actual endeffector position in world or task
coordinates w' is calculated from the joint coordinates

w = f(B). )]
This unique transformation is known as forward kinematics.

2 Determination of the position and orientation error

The path planner calculates for the next time £+ the follow-
ing position wi*! = w(t'*!) and the difference between actual
and desired world coordinates, which can be treated as an error
in world coordinates, is calculated. This vector dz consists of a
translational vector dr and an orientational vector dp

— dl' 3
i [dp] 3)

3 Calculation of the new joint coordinates

The nonunique transformation of the world coordinate space
onto the joint coordinate space is known as inverse kinematic.
Having determined the B, the new position

Wit = 1B @

of the endeffector may be calculated easily using forward kine-
matics.

The error € of the actual endeffector position may be toler-
ated as long as it is within acceptable limits. The merit of this
strategy is a constant number of operations for each time step,
an important feature for realtime control. Not tolerating the er-
ror € would require a Newton type iteration till the exact posi-
tion wi*/ on the trajectory is reached.

4 Determination of the new position and orientation

For the next time increment the position wi T is considered
to be exact and the world coordinate error dz for the time step
At is calculated as the difference between this actual position
and the next desired position on the trajectory, see Fig. 3. This
strategy forces the endeffector always towards the desired tra-
Jjectory and the global position and orientation error is mini-
mized.

Forward kinematics

A manipulator consists of a series of bodies, interconnected
by joints. Typically the topology of manipulators has a chain
structure. The position of a body j+ / within such a multibody
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Feedback-vector dz
for the i-th step

Feedback-vector dz
for the i+1-th step

w i+2

Trajectory of the endeffector

Figure 3.First order approximation of a given trajectory

system relative 10 a body j is described by a vector/r; ;. ;. The
superscript j denotes here, that this vector is resolved in the co-
ordinate frame attached to body j. Omitting the left superscript
denotes the resolution in the inertia frame 0. A transformation
matrix /T, ; describes the orientation of body j+/ relative to a
preceding body j. Position and orientation with respect to the

inertia frame 0 are described by

g
Ty = 1,7, ®)
Fojvl = ro’j+Tjjrj’j+I. (6)

Using homogeneous coordinates, forward kinematics
described by eqs. (5) and (6) may be simplified as
Dj+1 :DjJDj+1’ (7)

where the 4x4 matrix D can be written as

®

For a manipulator with n joints the world coordinates w are
equal to the position and orientation of the endeffector frame
n+1. Using Denavit-Hartenberg notation® for the geometric
description of the joints, the matrix D, ; is a function of the
joint coordinates 8. Therefore, the world coordinates w are the
unique solution of eq. (7) for a given set of joint coordinates §.

Position and orientation error

For the kinematic controller the difference between the actu-
al and the desired world coordinates are used as the error feed-
back, see Fig. 3. This error vector dz, eq. (3), consists of a
translational and an orientational component. Especially the
latter component is not trivial to compute.

Orientation of a coordinate frame in cartesian space may be
represented by either a transformation matrix; or by a set of
three angles (either Euler or Bryant angles), or by a 4-paramet-
ric representation, known as Euler parameters.® The latter rep-
resentation is {ree of singularities and is computationally effi-
cient. Mathematically speaking Euler parameters arc normal-
ized quaternions and are defined as®

P = Ej &)

The components of P can be interpreted as a scalar py and an im-
aginary vector p. Quaternion algebra has significant advantag-
es over vector algebra, since quaternions form a group. Using

quaternions the relative orientation of a frame k with respect to
a frame i is described by

P, =P, P, 10

The quaternion Py, represents the absolute orientation of frame
k with respect to the inertia frame 0. Introducing the complex

conjugate quaternion
P = r 1 (11)

the orientation of the inertia frame relative 1o a frame 7 is ex-
pressed by

B, = By (12)

From egs. (9), (11) and (12) the relative difference between
actual orientation k and desired orientation i can be computed as

P! P, "
P, = oktoi | _ {Po;i’ (13)
=Ly Py, Py

where the 3x4 matrix L is given by®
L=[-p-ptpl]. (14)

Here the tilde operator ~ denotes a tensor representing the vec-
tor product and I denotes an unit matrix.

For the feedback of the orientational error a 3-parameltric
representation of eq. (13) is desirable, and it is obvious, that the
vector component p;; of the quaternion P, is a suitable expres-
sion for the relative orientation error. Denoting this orientation-
al error resolved in fame i as“dp and substituting eq. (14) in (13)
yields

dp = PoiPi— PouPi — PiPy- (15)

Transforming the components of ‘dp back to the inertia
frame 0, ensures that all vectors are resolved in this coordinate
frame.

Global asymptotic convergence of this orientation error is
shown in9,

Less cumbersome is the derivation of the translational error
dr, which is the difference of the endeffector position vector
r,.; attime / and at time i+ /

dr = rn+l ([i) _rn+l([i+1) = rn+] (ﬂl) —rn+1 (ﬁH‘I) (16)

With egs. (15), (16) the components of the error-vector of the
world coordinates dz, eq. (3), are defined.
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Calculation of the Jacobian

The mxn Jacobian matrix J defines the relation between the
world velocity z and the joint velocity B

i= m =J(BB an

where v and @ are the desired translational and angular endef-
fector velocities, and

_Y
J(B = BY; (18)

is the Jacobian matrix. An effective calculation of J for a sys-
tem consisting of a topological chain interconnected with revo-
lute joints is given by®

J = l:ulrl,nﬂ UpFy i) woe UpTy i (19)
u, ;o u,

Here u; denotes the unit vector along the joint axis j. The
relative vectors r;,,.,.; , j=1(1)n, are defined as the vectors from
the joint coordinate frame j to the endeffector frame n+1. The
rank k of the Jacobian in cartesian space m=6 is

k = rank (J) < 6. 20

Inverse kinematic

For the projection of the change in world coordinates dz onto
the change of joint coordinates d § the relationship between
world velocities Z and joint velocities B is used. The first order
linearization of eq. (2) yields the desired relation between dz
and df:

dz = Jdp. (2D

Solving the under-determined linear system of eq. (21)
yields the inverse kinematic problem

dap = J* dz, (22)

where the superscript + denotes a generalized inverse. The nxm
matrix J* is called a Moore Penrose inverse if the four Moore
Penrose conditions'® are satisfied. For the particular row regu-
lar case (n2k=6) in eq. (21), J* can be expressed as

Jt=JTgIn-L, 23)

The general solution of eq. (21) is given by an inhomogene-
ous solution df, and an homogeneous solution df,, which is
obtained by a projection of an arbitrary vector x, € R" onto the
nullspace of J

df = Jdz + (U,—TDx, . 4)
—_—
dB, dp,

Using only dﬁp as the solution, eq. (22), a least-squares solu-
tion is obtained, whereas the general solution df, + dp, canbe
utilized to optimize external constraints.

Local Optimization

Determination of a manipulator configuration at time ¢+/,
whilst considering external constraints, is done by local optimi-
zation around the known configuration at time t'. The system of
linear equations, eq. (21), is formulated as an optimization prob-
lem with a local objective function F(d )

F(af) = S dBQdp+pTdp, 25)

with Q as an appropriate nxn diagonal matrix and p as a nx/
vector:

Q = diag [q}, .., q,], (26)
p=1Ipp-pl” @7

Rearranging eq. (21) yields an implicit constraint on the optimi-
zation problem of eq. (25):

G(dp) = JdB-dz =0 (28)

Using the Lagrange-muliiplier approach, the extended optimi-
zation function to be minimized can be stated as

@ (dB) = F(dB) +ATG (dff) = Min. (29)
Minimizing eq. (29) subject 1o eq. (28) for df yields
dp = Jgdz+ (I,-J30) (-Q7'p), (30)

where Jj is the so-called” weighted pseudo inverse

=07t ygonh-. (D)

Examples of objective functions

From the computational point of view a Taylor expansion
F(B+ dp) of a global objective function F(f) is very expensive,
since partial derivatives of F(8) have to be formed. For this rea-
son an explicit objective function in the form of eq. (25) was set
up. It was found, that this approach leads to an optimized
movement of the manipulator and is computationally very effi-
cient.

The first term of eq. (25), % dBTQdf, weights the joint ve-
locities, and the factors g, may interpreted as damping coef-
ficients. A possible choice for the selection of the coefficients
is the distance between joint j and the endeffector, leading to a
damping of the arm joint velocities.

The second term of eq. (25), pTd B, weights the configuration
of the manipulator. Through appropriate selection of the p; the
robot is forced to move towards previously calculated configu-
rations. Physically, this term may be described as a spring
which weights the difference between actual values B8, and de-

sired values B, of the joint coordinates. For this case the

weighting vector p may be described as the normalized differ-
ence in joint coordinates

(ﬁa - ﬂd)

p= B-B[+e (32)
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Figure 4. Example for weighting a desired configuration

In the kinematic controller the vector p performs tasks like
collision avoidance and achieves a global optimized movement
by using certain precomputed optimal configurations in work-
space. This approach can further be utilized to achieve a con-
servative motion in joint space and to consider joint limita-
tions. The latter constraint can be expressed by the vector p in
form of penalty terms. The closer the actual joint coordinate to
its actual limit is, the higher is the appropriate penalty coeffi-
cient in p.

Design of the kinematic controller

The scheme of the kinematic controller is depicted in fig. 5.
World coordinates are calculated in the path planner and the
orientation and position errors are calculated according to
eqs. (15) and (16) respectively and may be scaled by gain ma-
trices. The heart of the controller is the inverse kinematic trans-
formation. The Jacobian is calculated according to eq. (19) and
with the precomputed matrices @ and p the general solution d
is determined according to eq. (24). Integrating the increments
df yields the actual joint coordinates §7*/, which are passed
through a filter to the manipulator servos. Actual position and
orientation is being computed by forward kinematics and both
quantities are fed back separately to compare them with the new
world coordinates wi*/,

i N N i+l T i+1
uler | P |orientation] P conversion to ™
—+= B
parameters error Euler parameters
nullspace
control
dp
ap,,
4!
path dﬂp + ap B forward | |
planner + kinematics
filter
i+l manipulator
position

Figure 5. Closed loop kinematic controlier

Numerics

The crucial point in realtime control, using eq. (24) as a gen-
eral solution, is the calculation of the generalized inverse J*. A
particular problematic case arises when the rank of the mxn
Jacobian J is less than m. The actual manipulator configuration
in this case is either in a singular position or is close to such a
singularity (numeric loss of rank).

If a matrix J+E, where E is small, has a rank greater than
rank(J), then the generalized inverse differs significantly. In
fact, at a singular configuration the generalized inverse is dis-

continuous, which again results in a discontinuous solution d 8,
eq. (24). A discontinuity in the joint coordinates can not be ac-
cepted, whereas an error in the computation of J*and, by this,
an error in the world coordinates can be tolerated, since the
feedback loop will compensate this error.

As a conclusion the following rules for numerical methods
for the computation of generalized inverses at realtime for con-
trol applications can be formulated:

o The rank k of the Jacobian has to be explicitly determined
and has to be monitored to detect ill-conditioned Jacobi-
ans, which represent regions in the workspace close to a
singular configuration.

° Accuracy of the solution is not that important in a feed-
back loop system.

o Efficiency of the computation algorithm, in terms of num-
bers of operations and required storage space, is a major
requirement.

Having derived some guidelines to judge computational meth-
ods, we have now a closer look to the algorithms.

Keeping in mind that singularities in the workspace of redun-
dant robots are rare and that for this reason the Jacobian has nor-
mally full rank k = 6 and is well-conditioned, a straight forward
procedure is to use the

o direct calculation of the generalized inverse according to
eq. (23).

Most computer algorithms solving linear systems are based
on a Gauss elimination scheme, Methods based on the L-U fac-
torization extend this to mxn matrices of rank k< m:

» Transformation on hermite normal form®

» Transformation on normal formD
Other algorithms are based on;©¢

e Householder transformation

» Modified Gram-Schmidt orthogonalization

o Singular-value decomposition
Further have to be mentioned:

« Greville algorithm®

o Iterative algorithms

o An algorithm minimizing the residual error®

The last group of algorithms are very different from the de-
composition or transformation techniques. The Greville algo-
rithm is a recursive method with poor accuracy, iterative algo-
rithms do not compute the rank explicitly, and the very last
method introduces a damping factor which is difficult to
choose®™ and leads to a computationally inefficient solution.

This list of algorithms is roughly sorted according to the
number of operations required, except for the recursive and iter-

ative methods. From the point of view of efficiency the direct
calculation of J* is the most attractive one. Looking closer at
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this method, it is clear that the pivot-elements of the matrix in-
version may be used to monitor the rank and that the term J7.J
of eq. (23) worsens the condition. This results in an error in the
dB, eq. (24). According to the above considerations about the
computation of a generalized inverse for realtime control, this
error can be tolerated as long as the discontinuity of the solution
is minimized. Exactly this behaviour was found by comparing
a solution d B computed by the direct calculation with a solution
found by the singular value decomposition. For configurations
close to a singular one, the direct solution deviates from the ex-
act solution and converges towards the solution at the singular
configuration. Furthermore, the discontinuity nearly vanishes.
However, the direct calculation method fails for solving eq. (23)
in case of rank k <m. An exception handling has to be imple-
mented, when the direct solution method is used for computa-
tion of the generalized inverse. A possible strategy for the ex-
ception handling is the use of the generalized inverses
calculated at time 17/,

Case studies

Two different case studies will be presented to demonstrate
the behaviour of the presented kinematic controller. Both cases
use a model of the mobile robot with 9 revolute joints. The first
joint of the robot is perpendicular to the ground and denoted as
joint 1. The following 5 joints of the robot-arm are parallel to
the ground and the 3 last joints form a central wrist.

Control using only a pseudoinverse

The task for this case study was to demonstrate the different
behaviour of the manipulator by using

(i) a pseudoinverse, eq. (23),
(ii) a weighted pseudoinverse, eq. (31),
in the homogeneous solution. The nullspace was not utilized.

final final
configuration configuration

initial
configuration

initial
configuration

(a) - case i (b) - case ii

Figure 6. Driving into a fully stretched configuration -
pseudoinverse control

Fig. 6(a) shows the movement of the robot from a bow config-
uration into a fully stretched (singular) position using only the
inhomogeneous solution with a pseudoinverse. Itcan be clearly
seen that the pseudoinverse solution results in a movement
where all joints are actuated; a solution of a least squares type is
obtained. Fig. 6(b) demonstrates the same task using a weight-
ed pseudoinverse instead. The weighting matrix Q was selected
as

0 = [25,25,18,14,10,6,2,2,21".

Comparing the figs. 7 and 8, the scaling of the joint velocities by
the weighting matrix Q is significantly.

joint velocities [mrad/s]

[¢] 4 8 12 16 20 24 28 32 38 40
time [s]

Figure 7. Joint velocities — case i

joint velocities [mrad/s]

(o} 4 8 12 18 20 24 28 32 36 40
time [s]
e joint 2 S — joint 6
— — — — joint3 joint 7
e — joint4 joint 8
.......... joint 5 o joint 9

Figure 8. |oint velocities - case ii
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Tracking a closed triangular trajectory

In this case study the influence of the nullspace solution is
demonstrated. Two different controller were compared:

(i) pseudoinverse — no utilization of the nullspace
(ii) weighted pseudoinverse and utilization of the nullspace

The @ matrix and the p vector of case (ii) were set up as:
0 = [25,2518,14,10,6,2,2,2]1 7,

_ ﬂ - ﬂo
P=1p-Bj+o1’

where f§, are the joint coordinates of the initial configuration.
The fig. 9(a) shows the tracking of the first two sides of the tri-
angle with a pseudoinverse control, whereas the fig. 9(b) shows
the same task utilizing the nullspace as well. The tracking of
the last side of the triangle is depicted in figs. 9(c) and (d).
Fig. 9(d) demonstrates the effect of the nullspace control. The
manipulator reaches again the initial configuration, whereas
with a solution based solely on pseudoinverse control a config-
uration far away from the initial one is reached, fig. 9(c). Fur-
thermore this configuration can not be determined in advance.

Using the nullspace control of case (ii) with an appropriate
choice of the weighting vector p, the task of tracking a closed
path in world coordinate space led to a conservative motion in
Jjoint space. Extending this approach to various desired config-
urations along the trajectory in the workspace, which are pre-
computed in the path optimizing module, an approximation of
the global optimum may be achieved as well as collision avoid-
ance.

Conclusion

This paper has presented an implementation of the resolved
motion rate control for a redundant robot developed at the IPA
research establishment. Special emphasis has been laid out on
aspects concerning realtime computation of the generalized
inverse. Between various methods the direct calculation has
been identified as the most efficient and as the most suitable one
for a feedback loop. Utilizing this method the discontinuity of
the solution at a singular configuration can be minimized. The
orientation error, a feedback in the control loop, has been de-
scribed in 3-parametric form based on quaternions. External
constraints, like obstacles or joint limitations, have been consid-
ered by an explicit, easy to set up, objective function using in-
terpretative measures for the weighting matrices. Two case
studies, using a model of the IPA robot with 9 joints, have been
demonstrated the performance of this approach. The simulation
of tracking a closed triangular path in task space has showed,
that utilizing an appropriate objective function led to a conserv-
ative motion in joint space. The robot reached its initial config-
uration again, whereas with an inhomogeneous solution the fi-
nal configuration could not be determined in advance.
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Figure 9. Tracking a closed triangle -
effect of nullspace control

References

[1} Ben-Israel, A.; Greville, T. N. E.: Generalized Inverses: Theory and
Applications, John Wiley & Sons, New York, 1972.

[2] Denavit, J.; Hartenberg, R. S.: A Kinematic Notation for Lower-Pair
Mechanisms Based on Matrices, ASME J. Appl. Mech. 22, 1955,
p. 215 -221.

[3] Hiller, M.; Kecskemethy, A.; Woernle, C.: Computergestiitzte Kinema-
tik und Dynamik fiir Fahrzeuge, Roboter und Mechanismen, Fachgebiet
Mechanik, Universitit Duisburg, Institut A fiir Mechanik, Universitit
Stuttgart, 1989.

[4] Klein, C. A.; Huang, C. S.: Review of Pseudoinverse Control for use
with Kinematically Redundant Manipulators, IEEE Trans. Systems,
Man. and Cybernetics, 13, p 245 - 250, 1983.

[5] Kuhnert, E: Pseudoinverse Matrizen und die Methode der Regularisie-
rung, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1976.

[6] Nash, Z. M. (Ed.): Generalized Inverses and Applications, Proceedings
of an Advanced Seminar, Academic Press, New York, 1976.

{71 Nenchev, D. N.: Redundancy Resolution through Local Optimization: A
Review, Journal of Robotic Systems, John Wiley & Sons, 1989,
p 769 -798.

[8] Nikravesh, P. E.: Computer Aided Analysis of Mechanical Systems,
Prentice Hall, Englewood Cliffs, NJ, 1988.

[9] Wanner, M. C.; Engeln, W.; Rupp, K. D.: Enabling Technologies for
Large Manipulators, Proceedings of the 8th international Symposium
on Automation and Robotics in Construction, IPA, Stuttgart, 1991.

[10] Yuan, J. S. C.: Closed Loop Manipulator Control Using Quaternion
Feedback, IEEE Journal of Robotics and Automation, Vol. 4, No. 4.,
1988, p 434 - 440.

[11] Zielke, G.: Verallgemeinerte inverse Matrizen, Jahrbuch Uberblicke
Mathematik 1983, Bibliographisches Institut AG, 1983, §. 95 - 116.

626




