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Abstract

Honeycomb sandwich shell analysis is difficult
because an analytical solution can only be obtained for
shells of very specific geometry (i.e. shells of revolution)
under specific loading conditions. This paper presents
the results of a portion of the author's thesis research in
finite element analysis of doubly curved honeycomb
shells. The focus of this paper is the development of the
approximate eclement geometry used in the shell
element. This geometry is computed internally by the
code through a reasonable choice of the shell element
surface coordinate system. For thick shell element
analysis a reduced integration techmique is used to
suppress shear locking. The actual shell geometry is
represented accurately by the approximations of this
clement. Test cases with known exact solutions proved
the wvalidity of the element in predicting the
displacements of honeycomb plates and shells. The
accuracy of the element in predicting stresses in the
shell is comparable to other finite element codes.

Introduction

Shell structures are an imporiant part of all
engineering disciplines. Because of the presence of
curvature of its surface, the bending and extension of a
shell are inherently coupled. This geometric coupling
results in part of the bending (out of plane loads) being
carried by loads in the plane of the shell surface.

The finite element method makes the stress and
displacement analysis of shells tractable. Shells can be
modeled using a four node flat plate element. However,
to accurately model the geometry of a curved surface, a
minimum of eight nodes (four corner and four midside
nodes) and an element of parabolic order is needed. The
element described herein is an eight node element
(Figure 1) that includes the effects of shear deformation
for accurate modeling of honeycomb composites. J. N.
Reddy (O has developed a shear deformable shell
element for laminated compositc materials. The
laminate materials were considered to be orthotropic
only. Honeycomb was not considered and the geometry
of his element was not computed internally but was
analytically defined. As a result, his development was
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limited to simple geometries (cylindrical and spherical

shells) which can be expressed as analytical functions.

The goal of this study is to develop an eight node shell -
element for the analysis of orthotropic honeycomb shells

of arbitrary curvature. This element is coded in

FORTRAN such that the code would provide the

capability to modify the output to suit specialized needs.

While this capability is inherent in the commercial code

NASTRAN (2 3 user must use a unique language to

implement it.

The element developed here includes reduced
integration methods to make it applicable to thick as
well as thin shells. The element is based upon the shell
element developed by Reddy and includes
approximations to geometry so that shells of arbitrary
curvature may be represented. The topic of this paper is
the geometric approximations made in the development
of the eight node shell element. In this element is
assumed that the isoparametric coordinates of the parent
clement form a set of orthogonal surface coordinates
within the domain of that element. This allows the
Cartesian coordinates to be expressed as functions of the
surface coordinates, simplifying the computation of the
element surface metrics and the quantities that they

affect, distributed loads and displacement
transformation.

Element Development
Shell Geometry

The development of the shell element starts
with the basic definition of its geometry. The geometry,
defined by the radii of curvature and the metric
coefficients, appears in the equations for the shell
stiffness, distributed loads and coordinate
transformations.

To begin the development of the element, the
isoparametric coordinates £ and n of the parent element
are assumed to be an orthogonal coordinate system on
the surface of the element (see Figure 1).




‘ Figure 1
Node Numbering and Surface Coordinates

With this assumption the fundamental magnitudes of the
surface are greatly simplified. An element of area on the
surface is given by an area bordered by the £ and n
coordinate lines. If the surface coordinates are
orthogonal the area of this element is given by:

dA

e

= qq,dédn (1)

The Cartesian coordinates may be written in
terms of the coordinates of the parent element:

8

x(&7) = i;‘l',- (& n)e, o
Yy (5’ 77) = i;\lri (é" U)yi 5
z(&n) = i;‘l',« (& nk, ©

Now recall that the fundamental magnitudes of the
surface are given by:

{F{F 3
RCAERCIN

With the approximate form of the shell geometry
(equations 2, 3, and 4) the fundamental magnitudes may
be represented in terms of the derivatives of the shape

®
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functions (3 of the element and the coordinates of the
nodes of the element. These relations may be used to
find the fundamental magnitudes of the surface
(equations 5 and 6) for the approximate geometry of the
surface.

The radii of curvature also must be computed
from the approximate geometry of the surface. The radii
of curvature is a vector quantity having a magnitude and
a direction. The direction is given by the unit normal to
the surface, while the magnitudes of the curvatures may
be found from the curvature tensor B,,. The curvature
tensor is formed by taking the product of the appropriate
component of the unit normal to the surface and the
magnitude of the curvature in that direction:
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ﬂ11=_i‘nx eyt oz N,
7T M aE ™
0%x ay ° 0’z
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= n, + + n
'322 aﬂz X 67]2 ny 37]2 z (9)

Note that the magnitudes of the curvature tensor are
second derivatives of the coordinate functions of & and
1. This is important as it dictates the minimum order of
the shape functions that must be used to approximate the
geometry of the element. Because the magnitudes of the
curvature tensor involve second derivatives of the shape
functions a bi-quadratic function must be used for all
eight interpolation functions.

Once the components of the curvature tensor
have been determined, the principal curvatures may be
found from the roots of equation 10:

oy, —kpB, B =0

i @y —KP, B (10)

The terms o, have been dropped from
equation 10 because they are zero for an orthogonal
coordinate system. Equation 10 represents the
curvatures along lines of principal curvature (the
maximum and minimum curvatures of the surface). If
the surface coordinate system is orthogonal then




coordinate lines on the surface (denoted by £ = const and
1 = const) correspond to the lines of principal curvatures
and the principal curvatures (equation 10) become
curvatures in the directions of the coordinate lines. The
radii of curvature may then be found by taking the
inverse of the curvatures:

R = 1
K (11
1
R= —
K. 12

This is only valid when the surface coordinates are
orthogonal.

For computational purposes, the stiffness
matrix was expressed in terms of the curvatures. If an
element is singly curved or completely flat, the radii of
curvature become infinite. It is completely permissible
to make the substitution of radii of curvature (equations
11 and 12) as long as careful attention is paid to the
signs of curvature and radii of curvature. Curvature is
positive when the curve or surface is concave up. On the
other hand, the radii of curvature is considered positive
in the direction of the outward normal. Therefore, a
positive radius of curvature corresponds to a negative
surface curvature.

Element Integration

The principle of virtual work is used to develop
the stiffness matrix for the shell element. Because the
virtual work statement results in equilibrium equations
for the clement, this principle assures that the final
element will be in static equilibrium for all independent
virtual displacements.

The virtual work expression may be used to
derive the total equilibrium statement for an element; as
well as the entire structure. Since the element is derived
from the part of the virtual work expression
corresponding to the virtual strain energy, it will serve
as the beginning of this derivation. For a plate or shell,
the virtual work of the internal forces takes the same
form:

{56'N +o¢M +5¢ Q) a4,

oW =
}4[ 13)

e
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Since equation 13 contains the transverse shear terms, it
is applicable to honeycomb plates and shells as well as
thick shells in general.

An element of area on the surface of a shell
bounded by the & and n coordinates can be written in
terms of the magnitudes of two vectors lying in the
surface in the & and 1 coordinates (equation 1).

Which may be substituted into the equation 13 for the
differential area of the element:

cS'W=1 j.{é'sotN + ok'M + é‘gstQ}alazdfdn
33

Note that equation 14 is Stl‘ﬁ%]id for a plate element as
the components of the surface vectors o; and o, are de-
fined for any surface.

The integration of the stiffness is now taken
over the region of the parent isoparametric element.
The magnitudes of the surface metrics o, and o, also
take on the task of mapping the original curved element
onto the parent element. The isoparametric element
coordinates have been chosen to coincide with the
principal shell coordinates so that all material properties
and displacements may be referenced to the
isoparametric element coordinates. Later, this will be
used to derive a transformation from the eclement
coordinate system to the global Cartesian coordinate
system.

Translational Rotational
Figure 2

Element Translational and Rotational Degrees of
Freedom

It can be shown that by making the statement of
virtual work with respect to all independent virtual dis-
placements (the nodal displacement vector) equal to
zero, equilibrium of the element is enforced. The virtual




displacement vector is completely arbitrary. Therefore,
the internal forces and the externally applied forces must
be equal and opposite. The internal forces are the
product of the stiffness matrix and the nodal
displacement vector implying that the stiffness matrix
for an element in the shell coordinates for that element
is given by the integral term of equation 14. Restated,
the form of the stiffness matrix is an integral equation
over the domain of the parent isoparametric element
where the integrand is given by equation 14:

[1] {7 [s. ] [aBD][S, ] Y]

(15)

Numerical Integration

The integral form for the stiffness matrix
requires that equation 14 be integrated over an arbitrary
domain. This integration cannot be carried out
analytically for a general element so a numerical
integration method must be used to compute the
elements of the stiffness matrix. In this analysis Gauss
integration was used to integrate the equations to
determine the element stiffness.

The number of Gauss points is important as it
takes a minimum order of integration to represent a
polynomial of a given order. For the parabolic element
used to represent the shell in this analysis it has been
suggested [Reddy(®) and Hughes(6) and his associates ]
that a 3X3 Gauss rule be used to integrate the element
bending terms of the stiffness matrix. Note that this
3X3 integration rule is applied only to the bending terms
in the stiffness matrix. If a 3X3 Gauss integration rule
is used for the transverse shear terms the element
becomes progressively stiffer as the thickness is reduced
and the “shear locking” phenomena occurs (56,78, and
9

Several arguments may be presented to explain
shear locking. The first of these arguments considers a
beam element that may be extended to a shell ). A
structure divided into N beam elements contains 2N
degrees of freedom. The introduction of the transverse
shear strain terms to the statement of virtual work
imposes a constraint on the element for every Gauss
point used. If a two point Gauss rule is used, two
constraints are placed on the element and it “locks”
because the number of constraints equals the number of
degrees of freedom. A one point integration rule
introduces only one constraint per element so that no
locking occurs. Extending this argument to a shell
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element, a 2X2 Gauss integration rule is used to prevent
shear locking (% 5,7, and 10)

In addition, consider that the contribution of
bending terms to the strain energy is proportional to
h™ while the transverse shear and inplane terms are
proportional to h. As the thickness of the shell
approaches zero, the strain energy becomes dominated
by the shear and inplane terms. Reduced integration
relieves the effects of this anomaly by introducing a
singularity in the shear terms of the stiffness matrix (6)
Using a 3X3 Gauss integration rule on the inplane terms
is applicable for a plate element but causes an excess
amount of strain energy to be stored in membrane forces
for a shell unless a 2X2 rule is used to integrate the
inplane stiffness terms (7). Note that the element cannot
assume any hourglass modes because hourglassing in
one eclement is restrained by the presence of its
neighbors.

The final argument for reduced integration(11) ..
is the division of strains volumetric, devatoric, and shear
components. The devatoric strains may be integrated
using a full Gauss rule. The volumetric strains must be
integrated using a reduced rule because of the
incompressibility of most materials. The authors also
suggest a reduced rule for the transverse strains.

Consistent Load Vector

The applied loads are considered by returning
to the statement of virtual work. It is not sufficient that
the equivalent nodal point loads conform to the
conditions of static equilibrium but they must also do the
same amount of work on the body as the distributed
loads that they replace. Only two types of loads are
considered to act on the shell in this analysis:
concentrated forces and moments acting directly on the
nodes of the shell, and pressure loads distributed across
the shell surface.

Normal Pressures

The code developed for this paper was intended
primarily for the analysis of aircraft structures where the
primary cause of distributed pressure loads is the
aerodynamic forces on the vehicle. Such loads only act
normal to the vehicle surface. Hence, only normal
pressures were considered in the analysis.

The pressure loads acting over the surface of a
typical aircraft shell structure such as a missile nose
cone or an aircraft radome is usually a complicated
function of the position on the shell. However, if the




pressure is considered only over the domain of one
element, it may be represented closely by a bilinear
pressure distribution which is defined by specifying the
pressures at each of the four corner gridpoints of the
element. A linear interpolation in terms of the surface
coordinates & and n is then applied to approximate the
variation in pressure across the surface:

P& =P (1+£00 40,1
= @16)

In this analysis, it is necessary to express the
pressure loads in terms of loads applied directly to the
nodes of the element. To derive the nodal load
contributions from a given pressure load, it is necessary
to use the statement of virtual work.

For a pressure load the virtual work is the
product of the pressure and the normal displacement
integrated across the region of an element:

W= - jP(ga 77)5”’(5’ U)dAe
] a7

Hence, if equation 1 is substituted into equation 17 the
virtual work statement for the applied pressure loads can
be written in the same form as the element stiffness, as
an integral over the parent isoparametric element. The
integral portion of this equation will be the force terms
conjugate to the virtual displacements {dw}. The
implications of this statement are quite important. Only
the force terms conjugate to the virtual normal
displacements are the forces applied normal to the shell
surface. Therefore, if only first order deformation terms
are considered, only normal forces can be produced by a
normal pressure. These forces at node i may be
computed by integrating the pressure weighted by the
appropriate shape function over the domain of a parent
element:

11
F, =[ [ P(&, i)y, cdédin
14 (18)

Equation 18 was evaluvated analytically and
coded in terms of the pressures at the corner nodes for
an arbitrary shell element. For this paper the nodal
forces were evaluated by numerically integrating the
pressures over the element. A 3X3 Gauss rule was used
to integrate the pressures and obtain the nodal point
forces.

Element Performance

The shell element described herein was
developed to model shells of arbitrary curvature.
However, since no exact solutions exist for shells of
arbitrary curvature performance of this element must be
evaluated on specific geometries where exact solutions
exist. Table 1 shows the test cases used to evaluate the
accuracy and performance of the shell element.

These cases represent all combinations of geometry for
which analytical solutions exist. For all of these cases
the finite element code was used to compute the defining
geometric quantities of the shell (metric coefficients and
radii of curvature). The deflections used for comparison
in cases 1, 2 and 4 was the normal deflection at the
center of the center of the model. Stress and moment
resultant errors were compared instead of actual lamina
stresses because the resultant give an over all picture of
stress in the elements. The stress resultant are defined
for an element while the stress is defined for each
lamina. NASTRAN models were assembied using the
QUADS element as it is the closest element to the one
presented in this paper. All stress resultant were
measured near the supported edge as a worst case
analysis.

Flat Plate Solutions

The first test case for element performance was
a simply supported orthotropic sandwich plate under a

Table 1
Shell Element Analysis Cases
Case Benchmark Quantity Compared

Plate Exact Solution Deflection

NASTRAN Stresses
Clamped Orthotropic Cylinder Exact Solution Deflection

NASTRAN

Reddy’s Shell Element
Clamped Sandwich Cylinder NASTRAN Stresses
Sphere Exact Solution Deflection




oniform load of 10 psi. Material properties (Table 2)
represent those of a typical aircraft radome with glass
fiber face sheets.

Two core thicknesses were used in the analysis 0.1 in
and 0.5 in, corresponding to thick and thin shells,
respectively.

Because of biaxial symmetry only a quarter of
the plate was modeled using appropriate boundary con-
ditions to enforce the effects of biaxial symmetry. A 4 X
4 mesh of shell elements was used to model the quarter
plate. Figure 4 shows the mesh of elements and
boundary conditions used for the paper element and the
NASTRAN model.

Ty Ty=T =0
1 2 3 4 5 6 7 -]
10 11 12 13| 14 v
1 -] 3 4
15| 6 1 18 19| 20 21 2 23
T.= 24 25 27 28
T s 6 2ﬂ ? 8 _
y 29 %0 3 32 3 3¢ 35| 36 3| TyT
T,=0 g @ 70
Z7 39 39 40 atl 4zl %
9 18 11 12
43 44 45 45 47 48 44 50 51
53 54 55 56|
1 13 14 5 16
57 58 59 s0 &1 62 53| 64 ﬁ
Ty~ =0
S
Figure 3

Flat Piate Element and Node Numbering

Predictions of the center deflection (Table 3) of
the plate agree well with NASTRAN and the exact
solution based on a Fourier Series (13),

Note that the finite element solutions are more flexible
than the exact solution contrary to what is expected in a
descretized displacement model. While no exact reason
for this is known it is believed that this is duc to the

underprediction of the element area by the finite element
solutions. In spite of this anomaly, agreement with the
exact solution is excellent (maximum error 2.2%).
These data also indicate that the element does not “lock”
as the thickness is reduced.

The stress resultant predicted by the finite
element solutions do not agree well with those predicted
by the exact solution. The element stress resultant do
however, agree well with those predicted by NASTRAN.
Note in Figures 5 to 8 the difference is small for the thin
plate case. In these plots the element appears to have a
large error for Mx in the thin plate case. This is
misleading as the numerical values of the moment
resultant are small for this case causing a rather small
numerical error to appear as a large percent error. Note
that the profile shown in the figures was taken 1.25
inches from the supported edge of the plate. 1t is
believed that these factors contributed to the difference
in stress resultant. The latter hypothesis is supported by
the fact that error in resultant decreases as the center of
the plate is approached. The inplane stress resultant
were correctly predicted as zero by both finite element
solutions.

Table 2
Sandwich Material Properties

Face Sheets
E, =3.7X 10° psi
E,=32x10° psi
Vg = 11 S
ny= 5.1 X107 psi
thickness = 0.02 in

Core
E, =100 psi
Ey =100 psi
Vay = 3
G,y = 100 psi
Gy, = 14X 10 psi
G,, =50X 10° psi
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Relative Error
Honeycomb Plate

[e— MTHd—e— CQyThdk—— MkThn —— Q/Thn]

4X4 mesh of elements identical in numbering to those
used for the flat plate analysis was used to model both
cylinders.

1007 The first cylinder test case corresponds to an
20 exact solution presented by Reddy (1) for an orthotropic
non-sandwich shell. Material properties for this test case
60 are presented in Tabie 4.
%Erar 40
201 Table 4
Orthotropic Shell Material Properties
0-
20 . E, = 7.50 X 108
0 2 i &8 0 E, - 2.00 X 106
o ® Gp=Gp=Gy =  125X105
gur Vip = Voy = 0.2

Honeycomb Plate Stress Error
Relative to Exact Solution

Relative Error
Honeycomb Plate

[—o— Mk Thd—o— Oy Thd—a— MTHn —3¢— Gy Thin|

This case was used to verify element displacements for a
cylindrical shell as an exact solutions exist for was read-
ily available. Table 5 shows the normal displacement of
the cylinder at L/2.

Table §

Center Deflections of an Orthotropic Cylinder
Analysis Center Deflection (in)
Reddy (Exact) 3.6700 X 10
Reddy (linear elements) 3.7540 X 104
Reddy (quadratic elements) 3.7270 X 10#
NASTRAN 3.6858 X 10
This Element 3.6772 X 10

187
16
14
127
10%
%Err 8%
6 3
4
2
0
2 -
] 10
Rositian (n)
Figure 5
Honeycomb Plate Stress Error
Relative to NASTRAN

Cylindrical Shell Solutions

Two test cases were used to verify the element’s
accuracy on cylindrical shell problems. Both test cases
used identical geometry, a circular cylinder (R=10 in,
length = 20 in) clamped at both ends and pressurized to
6.4/m psi. As in the Test Case 1 biaxial symmetry

permitted % of the cylinder to be used as a model. A

Table 3

For this test case the performance of the element
developed here is even better than that of the element
from which it was derived (Reddy’s quadratic shell
element). The element slightly overpredicts the
curvature of the surface. This apparent error in the
geometry results in better displacement prediction due to
the increased apparent stiffness.

The second cylindrical test case was introduced
to verify the accuracy of the stresses predicted by the
element for honeycomb shells. Material properties used
were those in Table 2. No exact solution was available

Flat Plate Center Deflections

Solution Method t.=0.1 t,.=0.5
NASTRAN 19.139 1.1077
Exact Solution 19.275 1.0902
This Paper 19.334 1.1151
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so results were compared against NASTRAN. Figure 7
shows the error in primary inplane, bending and
transverse stress resultant plotted along the length of the
shell for the thick (t, = 0.5) and thin shell (t, = 0.1)
cases. Agreement with NASTRAN is excellent for both
cases proving that the element does not lock under thin
shell conditions. Once again some of the stress resultant
are small causing their percentage error to appear large.
This agreement also validates the use of reduced
integration on the inplane stiffness. In all cases the
behavior of the stress resultant at the boundaries
appeared to be correct, although it can be deduced from
the plate analysis that the resultant are probably
overpredicted in this case also.

Relative Error
Honeycomb Cylinder
——— MThn —¢— MThid—a— QcThin —3¢— X Thicq
—g— N/Thin —e— NyThdk

103
5.
0
57
9% -107
=154
=201
251

30 + + |

00 200 400 600 80 1000
Raton{r)
Figure 6
Cylindrical Honeycomb Shell Error Comparison
Realtive to NASTRAN

Spherical Shell Solutions

The spherical shell represents a double curved
shell for which an exact solution exist. The shell
presented here corresponds to a simply supported
spherical vault. Shell dimensions and material
properties are presented in Table 6.

Center deflections of the shell (Table 7)
compare well to both those predicted by the exact
solution and NASTRAN for the 2 X 2 mesh of elements
used. No stresses are predicted by the exact solution so
they were not compared in this case. It is felt that the
two sandwich test cases sufficiently prove the accuracy
of the element in computing stresses.

2183

Table 6
Spherical Shell Properties

R, =R, =9 in

a=b=36in
shell thickness = 3.6 in

Lamination Sequence 0°/90%/90%/00
E,=25X 106
E,=1X106

Vi =.25
Gy, =Gy =G3=05X10°

Table 7
Center Deflections of a Spherical Vault
Reddy 1.468 X 10 -3
NASTRAN 1.489 X 103
This Element  1.501 X 10-3

Conclusions

A new finite element has been developed for
the analysis of laminated composite materials, including
honeycomb sandwich shells. The element features
internal geometry processing and provides stress and
displacement predictions for all combinations of single,
double and no curvature of the clement.

From the rescarch done in this paper
conclusions can be made about performance of the
element:

1. Reduced integration of the transverse shear
terms eliminates the effects of “shear locking”.

2. Reduced integration of the inplane stiffness
terms is valid as no type of hourglass instability was
encountered. This step reduced the computational
expense of the element.

3. Displacement predictions of the element are
excellent, with maximum error (2.2%) occurring for flat
plate analysis.

4.  Internal computation of the radii of
curvature can be accomplished if the proper order of
interpolation functions are chosen. The small errors in
predicting the radii of curvature resulted in increased
accuracy due to the additional stiffness they created.

5. Stresses predicted by the element are high in
comparison to analytical solutions; however, they are no
worse than other finite element methods. The element
errs on the conservative side making it suitable for

design purposes.




The element developed herein is simple enough
that no Supercomputer is required to run the code. Run
times on an IBM 3090 are less than those of NASTRAN
on a CRAY X/MP 24. The code is written in FORTRAN
and may be modified easily for future use. All of the
goals of this study were met.
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Appendix A
Shape Functions

vy, = % (A+£8)A+nn)(ES +nn,-1)
i=1-4

W= 5 (+68)01-17)

i=6,8
1 2
v, = é‘ (1-&)a- nn;)
i=5,7
Appendix B
Nomenclature

[ABD] - Constitutive Relations for a Composite
Material

[ﬁN] - Shape Functions Derivative Matrix



[k] - Element Stiffness Matrix in Shell Coordinates
[Sd] - Strain - Displacement Operator Matrix
{ F } - Element Force Vector in Cartesian Coordinates

{f } - Element Force Vector in Shell Coordinates

A, - Area of an Element

dA, - Differential Area of an Element

E,,E, - Young's Modulus in Material Coordinates
G, - Inplane Shear Modulus

G,,,G,, - Transverse Shear Modulus

1z%

A

77 - Unit Normal to A Surface

~ A A

n.n,n, - Components of the Unit Normal

P - Normal Pressure
P, - Pressure at Node i

R, R, - Radii of Curvature in v and n Directions

u,v,w - Continuous Displacements of A Shell

u,,v,, W, - Displacements of Node i in Shell Coordinates

X, ¥,z - Cartesian Coordinates of A Shell

X;,Y;,%; - Cartesian Coordinates of the Element Nodes

@, =a,
Q,,, &,,, &,, - Surface Metric Coefficients

a, =0,

B1:Bs Py - Second Fundamental Magnitudes of a

Surface
{ ‘I’i} - Element Shape Functions for Node i

@, ¢, - Rotation of the Shell in the &1 Direction

& - Inplane Midsurface Strain Vector

&° - Midsurface Transverse Shear Strain Vector

% - Surface Curvature

K, K, = Initial Surface Curvatures

x - Midsurface Curvature Vector

&, 17 - Element Surface Coordinates

&, 7; - Element Surface Coordinates for Node i

dW - Virtual Work
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