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Absiract

A wide range of technical papers have discussed the
subject of analytical models for thin walled composite beams,
especially composite box beams. Many of these articles have dealt
with the modeling of composite lifting surfaces in various analyses,
and present a variety of methods for representing wings and rotor
blades as composite beams. These different models provide
several different qualitative values for beam propetties and
responses to loading. A comparison of these models showed these
differences and allowed selection of the "best" composite beam
model to represent a partcular lifting surface application.
Additionally, this process of selection demonstrates the relative
advantages and disadvantages of the models being examined.

Nomenclature
laminate extensional stiffness matrix
beam chord
beam depth
laminate flexural stiffness matrix element
effective beam stiffness matrix elements for Austin
model
beam flexural stiffness coefficient
inverse beam stiffness matrix element
applied load vector
effective shear modulus
beam torsional stiffness coefficient
beam bend-twist coupling stiffness coefficient
stiffness matrix
beam length
spanwise bending moment
effective shear stiffness coefficient of shear webs
for Austin model
beam wall thickness
chordwise bending torsion
horizontal displacement in y-axis direction
vertical displacement in z-axis direction

QECAXOMTM vOUae >

g<H~

o angular displacement about x-axis
o warping parameter

B8 warping parameter

8 denominator term

£y axial strain

shear strain

Subscripts

(h horizontal box beam panel
(N vertical box beam panel

Introduction

In view of the many different models presented in existing
literature for representing lifting surfaces, selecting a small number
of these models for closer examination proves to be prudent.
Because of this, four different published models were chosen for
comparison; one of these models was simplified by this author for a
total of five models to be examined. These models, in general, are
from the literature dealing specifically with aerospace lifting surface
applications.

To examine these models, a typical box beam needs to be
defined. The box beam for this comparison is considered to have a
rectangular cross-section, and has vertical and horizontal walls of
equal thickness. Figure 1 shows the general box beam dimensions,
displacements and coordinate system used.

*  QGraduate Student, Department of Mechanical and Aerospace
Engineering

Figure 1. Box Beam with Dimensions and Coordinate Axes Labeled

in any model for a beam-like structure, some form of the
force-displacement matrix equation describes the beam response to
loading:

{F}=[K]{x} M

The way that this equation is expressed and the stiffness matrix
generated provide the distinguishing features between the models.
Also, the methods for calculation of strain from the displacements
vary slightly between some of the models.

Description of Models for Composite Lifting Surfaces

The five beam models used in this comparison were all
selected to represent a liting surface which has a symmetric
laminate construction. The box beam representation is considered
to have equal thickness of both the vertical and horizontal
components. Four of these beam models are presented in
published articles or texts; the fifth beam model is a simplification of
one of the published models.

Published B 1

The first beam model is taken from Weisshaar and Foist!!].
This model is considered as a High-Aspect-Ratio Plate model, and
laminated plate theory directly provides the basis for the model.
Following the development in the article for a lifting surface built
from symmetric laminates, with the assumption that the chordwise
(or lag) bending moment is zero, the relationships between applied
moments and curvatures is:

ol 15 & ]

In this equation the stiffness matrix elements are found by

evaluating the expressions:
d)2l?
ql2 |P1zpt Az, |5

El=2c¢ D11h+A11h{-2—] - NE
Dozt A22), |5

3)
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K=-4c[D16 + A1 [9]2 c ty Gv
h h 2 anda= 5/ 7| Ig- (14)
h h
d|?2 d|2
Digpt A2y, (5] [|P26p + A26p, |3 Using these warping parameters, the stiffness matrix elements are
- 5 (4)  expressed as:
d
{Dzz + Ao [—j }
h h (2 o 42
Kgq=(1+B) {ZCD66h+20A66h [5} }
d)2|?
GJ=8c| Deg + Agg, (9|2 22n * A28 12 (5) 2
= 66n* Ae6p (5] - 5 2{ [c] }
d +(1- 2dDgg +2dA =
{Dazh”\aah H } a-p 66y 66y (2
Strains in the horizontal beam panels are examined using the 2 2 2
equations: (1-B) {2 dDgg, +2d Agg, [g] }
. " - 3 2
Eyx =2 W ©) jlg l-g-J Agp, +2dDgp, +2d Ay, BJ }
Ty =20 ) .
2
Unfortunately, the development of this High-Aspect-Ratio Plate 1+ ;3)2 {20 D26h +2 °A26h [g] }
model as described in this article, does not account for the - (15)
presence of shear webs, or vertical walls, that exist in box beams. }i [g] 3 Aoo +2GDoo. +2¢A 9] 2}
The Vinson and Sierakowskil2l text discusses a very 3la) 22y 22h 22h (2

simplistic model of a box beam which includes the effects of shear

webs and the "parallel axis" effect of the panels of a box beam, but 4 (d]3
this model lacks bend-twist coupling terms. The displacement- Kas=(1+B) |3 (3] Ats,
curvature equations for this model are decoupled and are quite
simply:
e +[3){20D +2CA [9]2}
M = El w" ® 26 26n (2
T=GJo (9)

di2 4/(d|3
ety zome 37308 v

The stiffness matrix elements for this model are expressed as: . (18)
{ﬁ[QJSA 26Dgo, +2CA [QJZ}
3 3l2) "e2y+ecta2nt etz (3
2Aq9,,4d
El=2Dqy, c+2A c[g]z — (10)
eV CrEMInC 3] T2 [c]z}
Kag=-(1-B)12d D1g, +2d Aqg, 5
6= [Ags d+A (11)
=5 [Agep, d + Agp,, I cl2
+(1-B) 2d026v+2dA26v 5
These relatively crude calculations provide for a very
computationally simple model for a box beam. Strain is still
calculated by equations (6) and (7). This model is the only one of {2 dD1o +2dA {9]2 + 4 [9]3 A }
the models not from literature specifically dealing with topics in 12y 12y (2] *31(2) M2y .
aerospace. * 4 [c|3 o2 a7
A recent article by Smith and Chopral® offers a more fully 3 |3) A22n+2dDgp +2dAz |3

developed model for a composite box-beam with a force-

displacement matrix equation in all six degrees of freedom. It also > 3
includes the effects of warping. For symmetric laminate beam Kssg ={20D11 +2¢ Aqq [QJ +ﬁ [Q] Aqq }
walls, the six equations uncouple to provide two three-by-three h hlz) “3l2 v
matrix equations. In representing lifting surfaces, only the

equations relating bending moments to curvatures need to be dl2 41qdl3 2
examined: 2c¢Dygp+2cAqp (3] +3(3) A2y .
K, K,c K , — d|2 4)d)3
T| | KaaKas s || @ 2oDoop+2chzy (3 +3l2) Ay
Myro| KasKss 0 11" e (12) , \
V -
2 LKy 0 Kol Wy K66={2do11v+2dA11v[-;-] +§[§] Aﬁh}
To develop the stiffness matrix elements for this model, Smith and 5 3 5
Chopra introduce the parameters o and B to include warping {2 dDyp +2dAqn [_c_] + 4 [g} Aqn }
effects: i v v 12 312 h (19)
2 3
c 41d
B=- (1-0) (18) —{ZdD22V+2dA22v L’EJ *3 [E} A22h}
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Evaluating the integral equations given in Reference 3 provides the
above expressions.

Calculation of strains in this model also includes the
warping parameters:

S =Y (V) -2 (W) (20)

yxy=~(1 +B)za (21)

The next model for examination is a model presented by
Austin, et al.l4l This model approximates vertical panels in the box
beam as orthotropic shear webs. The equation representing beam
response for this model was presented in an inverse form:

fr} [ oz [y -

This inverse form is derived from the three-by-three system:

d?w
M Dy Di2 2Di :;(2
Of=| D12 D2 2D ) =2 (23)
T |20 25 4055 ] | Y
dew
dxdy
where the coefficients are:
2
G { A1 }
Diq =—75—A 7 - e 24
11 2 "M Aqq (S +A66) (24)
Aqg A
[ 16 126
Dyo=—7—A 1- . (25
12 2 12{ A12(S +A66)} )
2
cd? A2g }
=L A1 , 26
D22 2 22{ Ao (S + AGS) (26)
d2 S
Dyg = 2 Aqg {Sv " ABB} (27)
cd? s
D26 =5 A2e {s' " AGS} (28)
cd? s
Dg6 =5 Aes {_S' " A%} (29)
S 1, ¢
with, S' = & A6y g (30)

Then, inverting and discarding the equation for curvature in the y
direction provides equation (22). The stiffness terms in equation
(22) are given as:

2
Dop Dgg - Dog
Fo=——"F%—— (31)
D12 Dog - P22 D16
F12 = 25 (32)
D11 Dop - Dy?
Fop=—"55—— (33)

8= D11 ( D2p Dgg - D2g?) + P12 (P16 P26 - P12 Deb)
+ D1g (D12 D26 - D16 D22) (34)

For comparison to the other models, equation (22) can be inverted
once again to the form:

o[ 1w @

The common stiffness matrix elements are then represented as:

F
EI=—-——22———2 (36)
(F11 F2z - F129)
-F
Kot 37)

(F11 Fo2 - F129)

F11

Ty
(F11 F22-F429)

(38

These terms will include influence of the three-by-three system
given in equation (23).

implified Model

Because the Smith and Chopra model is rather complex in
its development and implementation, an attempt was made by this
author to simplify the six by six matrix equation given by Smith and
Chopra. Small quantities are ignored, resulting in a two by two
stifiness matrix equation model, which is simple to work with and
includes some representation of cross-sectional warping. This
simplification produces the following matrix equation which
represents the discarding of (v" - yxy’), Yy » and M,, from equation

e

The stiffness matrix elements in this model are taken from the
Smith and Chopra article, using the same warping parameters:

d|2 4[d|3
EI={2CD11h+2CA11h {5} +§[‘2‘] A11v}

di2 4(d|3 2
{2CD12h+2CA12h [5} 5(51 Am}

ey o0
c-tom (9 mve
-(1+B) {2 ¢ Dogy, +2¢ Aggy, [g] 2}
oouyzom (g 0e)

“Tad]3 2
33 A22v+26D22h+2CA22h 5
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2
GJ=(1+B)2{20066h+2°A56h [g] }
2 o2
+(1-B)")2d Dgg,, +2d Agg,, |3

2 o|2?
(1-PB) {Zd D26v+2dA26v [‘2'] }

BARE 2
33 A22h+2dD22v+2dA22v

2

nio

di2
(1 +B)2 {20 D26h +20A26h [5] }

BARE d
3 [5] Az, +2¢Dap, +2C Ay, lz} }

These values are the same as Kgg, K45, and K,y from the Smith and

Chopra article, including the warping terms. The warping terms are
then neglected for calculating the strains in the component walls, so
equations (6) and (7) are used to calculate strains.

Evaluation of Models

The models were evaluated by examining a series of box
beams with varying thickness to chord ratios and aspect ratios.
Symmetric laminate stacking patterns were used to examine the
different beam model responses to bending and/or torsional loading.
Using the properties for an AS/3501 graphite-epoxy system given in
Reference 2, the stifiness matrix was generated for each beam
model, and the’ displacement response was found for a lift-type
loading condition.

Box Beams for Evaluation

To provide a wide range of comparison, 18 different box
beam dimensions were evaluated. All of these beams were created
with the idea that each must have a "wing area" of 3000 square
inches, and carry a lift load equivalent to 1000 pounds. A line load
applied along the quarter chord of the beam represents this loading
condition. Aspect ratios of the beams vary from 3 to 18, and
thickness-to-chord ratios range from 0.10 to 0.20. The wide range
of beam dimensions reflects the range from typical wing dimensions
to typical rotor blade dimensions. Table 1 provides a summary of
these beam dimensions.

(42)

Table 1. Beam Dimensions Used for Comparison

AR=L/c tic L (in.} clin.) d{in.)
3 0.10 04.86832 | 31.62277 | 3.162277
3 0.15 04.86832 | 31.62277 | 4.743416
3 0.20 0486832 | 31.62277 | 6.324555
6 0.10 134.1640 22.36067 2.236067
6 0.15 134.1640 | 22.36067 [ 3.354101
6 0.20 1341640 | 22.36067 | 4472135
9 0.10 164.3167 18.25741 1.825741
9 0.15 164.3167 18.25741 2.738612
9 0.20 164.3167 18.25741 3.651483
12 0.10 189.7366 15.81138 | 1.581138
12 0.15 189.7366 1581138 | 2.371708
12 0.20 189.7366 15.81138 | 3.162277
15 0.10 212.1320 1414213 1.414213
15 0.15 212.1320 14.14213 2.121320
15 0.20 212.1320 14.14213 2.828427
18 0.10 232.3780 12.80994 | 1.290994
18 0.15 232.3790 12.90994 | 1.936491
18 0.20 232.3790 12.90994 2.581988
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Computer Code

To evaluate these beams, a FORTRAN code was used.
This code calculates the stiffness matrix elements, root curvatures
and strain in the upper surface of the beam at the root from the
beam dimensions.

mparison an lection
Comparison of the beams was carried out using a specific
decision making process. This process accounts for conservatism,
realism and simplicity. All of the beam models begin the process; a
model is eliminated from the process when it does not meet a
decision criterion. The flow chart for this process is shown in Figure
2.

Models Selected Models Eliminated

Conservative
Strain
Prediction

All Models ——e & Vinson and Sierakowski

Bend-Twist
Coupling
Represented

e Austin, et.al.

Vertical
Component
Included

Weisshaar and Foist

Simplicity
Simplified <a—— For
Calculations

—  Smith and Chopra

Figure 2. Process for Selecting a Box Beam Model

rvative Strain Prediction

A reasonable beam model would preferably predict a
slightly higher value of strain than would actually exist in the beam
under the loading condition. This provides a safe, conservative
estimate of loading; therefore, a beam designed using a
conservative model would not fail.

All five models were evaluated for each of the different
beam dimensions for maximum strain in the top of the beam at the
root. Both the in-plane axial strain e,, and the in-plane shear strain

Yy are considered. Comparison of these values shows that the

beam model of Vinson and Sierakowski predicts significantly fower
values of strain than the other four models, for all of the cases
examined. This lower strain value prediction becomes especially
noticeable in the strain for beams of lower thickness to chord ratios,
regardless of the aspect ratio. Figure 3 shows a composite of four
plots which display a sample of the lower strain predictions given by
the Vinson and Sierakowski model. The other four beam models
give reasonably similar results, therefore the Vinson and
Sierakowski model is deemed inappropriate for modeling a lifting
surface due to this conservatism criterion.

Bend-Twi lin

Most anisotropic material structures demonstrate the
presence of bending-torsion coupling, and this coupling provides the
first realism measure for comparison. This coupling contribution is
generally small, but for this comparison, it becomes important
because a lift load on the beam produces both a spanwise bending
moment and a chordwise torsion. All of the remaining four box
beam models, with the exception of the Austin model, exhibit bend-
twist coupling. In the Austin model, bend-twist coupling is
represented in the stiffness matrix by the element K. Looking to
equations (37), (32), (28), and (27), it can be seen that to represent
bend-twist coupling in the Austin model extension-shear coupling in
the laminate extension matrix needs to exist. Because the
parameters of this comparison specify the beam to be made of
balanced, symmetric laminates, no laminate extension-shear
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Figure 3. Values of Sirain Calculated at the Beam Root for Various Aspect Ratio and Thickness-to-Chord Ratio Beams

coupling exists; so in the Austin model, no bending-torsion coupling

exists. This eliminates the Austin model from the comparison
process.
Vettical Componen

Another realism criterion and an important contributor to the
stiffness of a box beam is the inclusion of the vertical components,
which affects flexural and torsional stiffness. The range of
thickness to chord ratios examined in this study vary from 0.10 to
0.20. At the low end of this range, vertical components will be small
and have little effect on stiffnesses; yet at the upper end of the
range, the vertical components become more significant.  The

article by Weisshaar and Foist!"! states about the High-Aspect-Ratio
Plate model: "(It) has deficiencies because (it cannot) account for
fiexible transverse shear webs as are present in box beam design.
This is a potentially important deficiency because of the wide-
spread use of thin-wall, single- and multicell forque boxes in
airplane design." This deficiency is enough to disqualify this model
from further consideration in this comparison. Figure 4 displays the
difference in the values of torsional and fiexural stiffnesses between
the Weisshaar and Foist model and the Smith and Chopra model.
The stiffness differences are found by:

(43)
(44)

AEl = | Elyweisshaar - ElSmith!
AGJ = | Gdweisshaar - Gsmithl

This figure shows that for certain cases, this difference may not be
very significant, but at high aspect ratios and high thickness to
chord ratios the difference between models is quite significant. It is
important to note that in Figure 4, only two models are compared,
this is because the flexural and torsional stifinesses of the simplified
model are exactly those of the Smith and Chopra model.

implici

The last criteria for comparison in this case was simplicity.
The idea of simplicity drove this author to modify the Smith and
Chopra model, and it would follow that this simplified model would
be the logical choice to represent the lifting surface. The effect that
this simplification has on the beam model deserves discussion. As
previously stated, both of these remaining models have basically
the same stiffness matrix elements, with the exception that the
Smith and Chopra model includes all six stiffness terms. The more
complex system of equations does not provide for a more accurate
solution for strains in the beams examined in this comparison. The
v" term provides a negligible contribution in calculation of the strain
in the upper panel of the box beam. The most significant difference
here comes from ignoring the warping parameter B in the calculation
of the shear strains in the simplified model. The simple expressions
of equations (6) and (7) are used to evaluate strains. The axial
strain, &,,, does not appreciably vary between the two models.

While the numerical variation of shear strain is noticeable, this
difference is also insignificant when comparing the magnitude of the
axial and shear strains. It can be seen in Figure 5 that the effect of
simplifying the model has little overall eifect on the beam response.
The plots of shear strain for both remaining models are essentially
the same; in fact, the simplified model is slightly more conservative.
Additionally, this model reduces computational time for the
curvature calculations due to its size. Solution of a two-by-two
system of equations requires less than half as many operations as
needed to solve the three-by-three system of equations. For cases
where many solutions of this matrix are necessary, as in highly
iterative design processes, computational time can be saved.

For the specific case examined in this paper, a box beam of
symmetric laminates and equal wall thicknesses subject to a lift-like
loading, the simplification of the Smith and Chopra model is the best
choice to represent the lifting surface for the range of beam
dimensions examined. This model appears to be the best overall
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Delta Flexural Stifiness vs. Beam Aspect Ratio
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Figure 4. Difference in Flexural and Torsional Stifinesses Between the Weisshaar and Foist(!l Model
and the Smith and Chopral®! Mode!

model, but it is evident from the comparison that other models can
be used for other cases and may in fact be better choices for those
other cases.

For cases where thin wings are being examined, the
Weisshaar and Foist mode! can be used, as the effects of vertical
components become relatively unimportant. This would especially
be true for thin wings with relatively high aspect ratios, which is
implied by the model's label as the "High-Aspect-Ratio Plate Model".

When a highly accurate representation of the beam
response is needed, the Smith and Chopra model supplies the most
complete representation of a composite box-beam. This model
includes bend-twist coupling in two directions, and has a reasonable
representation of the effects of beam cross-section warping. If only
a few solutions of the moment-curvature relationship are required,
this becomes a desirable model.

Root Strain vs. Beam Aspect Ratio

In this paper, asymmetric laminates were not examined. If
a beam of asymmetric laminate construction were to be analyzed,
the Austin model would then include terms representing bend-twist
coupling, and could prove to be a viable mode! for use. The
introduction of asymmetric laminates also adds additional coupling
terms in the laminate stiffness matrices; this will effect all of the
models, and a further examination may be required to select a
model for beams of asymmetric laminate construction.

Finally, if only a rough order-of-magnitude analysis is
required, the simple Vinson and Sierakowski model proves to be the
easiest model to develop and implement. It is the epitome of a
simple composite box beam model.

This study reveals that for most general lifting surfaces
constructed from symmetric laminate panels, the simplification of
the Smith and Chopra model is the appropriate model to use. The
other models examined have their own advantages, and they may
be used when appropriate.

Root Strain vs. Beam Aspect Ratio
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Figure 5. Comparison of Strain Predictions at the Blade Root
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