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Abstract

This paper examines the elastoplastic buckling of a
rectangular plate, with different boundary
conditions, under uniform compression combined with
uniform tension in the perpendicular direction. The
analysis is based on the standard linear buckling
equations and material behaviour is modelled by the
small strain J2 flow and deformation theories of

plasticity. For sufficiently thin plates we recover
with both theories the classical elastic results.
However, for thicker plates there is a remarkable
difference in the buckling loads predicted by these
two theories. Apart from the expected observation
that deformation theory gives lower critical
stresses than those obtained from the flow theory,
we have discovered the existence of an optimal
loading path for the deformation theory model.
Buckling loads attained along that optimal path -
specified by particular compression/tension ratios
-— are the highest possible over the entire space
of loading histories. By contrast, no similar
optimum has been found with the flow theory. This
striking contradiction in the buckling behaviour,
obtained from the two competing plastic theories,
sheds new light on the plastic buckling paradox.
The paper contains also a detailed parametric study
over a range of plate geometries and for different
material properties. The results are of
considerable interest for the aerospace industry
since biaxial stress fields are rather common in
thin walled structures.

1. Background

Plastic buckling phenomena have provided
during the last four decades some of the ecrucial
test cases in regard to the validity of metal
plasticity theories. Indeed, the difference in the
critical load predictions obtained from the flow
theory and deformation theories became known as the
plastic buckling paradox. In a recent study , on
the elastoplastic buckling of annular plates in
pure shear, it has been found that flow theory
predictions may exceed those of deformation theory
by a factor of 17. Experimental data in that case
is in agreement with the deformation theory
predictions. Of course, there are cases where the
critical stresses obtained from the two theories
are nearly equal. A typical example is furnished by
axially-symmetric buckling of axially compressed
circular cylindrical shells. For materials with a
relatively high power law exponent there is little
difference in th&)buokling stresses predicted by
the two theories There 1is, however, a general
agreement among engineers and researchers that (a)
deformation theory is less physically correct than
flow theory, but (b) deformation theory predicts
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buckling loads that are smaller than those obtained
with flow theory, and (c) experimental evidence
points in favour of deformation theory results.

however, are concerned
like the problems in

Most existing studies,
with a single load parameter,

papers(l)’(zﬁ An early %g?eption to this appears

to be a 1968 NASA report on plastic buckling of
plates and shells under biaxial loading.

The present paper examines in detail the
elastoplastic buckling of a rectangular plate und&S
biaxial loads. The study follows a recent paper
on the same problem though of more restricted
nature in as much no flow theory results were
discussed. Here we present a full account of
buckling data obtained with both theories and over
a range of plate geometries and for different
material properties. Solutions are derived with
different boundary conditions (simply supported or
clamped edges) via a separation of variables
solution method.

The main finding of the study is the existence
of an optimal 1loading path for the deformation
theory model. Buckling loads attained along that
loading path - specified by particular
compression/tension ratios =-- are the highest
possible over the entire space of loading
histories. By contrast, no similar optimum has been

found with the flow theory. This striking
contradiction in the buckling behaviour, obtained
from the two competing plastic theories, sheds new
light on the plastic buckling paradox. It is hoped

that the theoretical data that emerges from this
study will be put to an appropriate laboratory test
which will support its validity.

2. Governing Equations

A rectangular plate of length a, width b, and
uniform thickness h {see Fig. 1) is subjected to
axial compression oy=-P along with axial tension

0x=EP where § is a fixed parameter. Thus, with &=0

we have simple axial compression, while £&=-1

describes equibiaxial compression.

With w denoting the out of plane velocity
during buckling we have the plate buckling equation

EE (B w
12 "7Txx O’ XXXX

+ 2(E. + 2G_ ) E ]
XX Xy

’ + V.J’
Xxyy Yy yyyy

- §Pw,xx + Pw,yy =0 (1)
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Figure 1 -~ Notation for Rectangular Plate.

where (E ) are the Iinstantaneous

,E._,E .G
xx’ Txy’ Tyy’ Txy
moduli of the plane-stress constitutive relations

¢ =E & +E ¢ (2a)
X XX X Xy'y

¢ =E_ ¢ +E ¢ (2b)
y XY X Tyyy

Txy = 2G7xy (2¢)

Here (GX,W ,sz) are the stress rate components,

y

while (éx,é ’ixy) are the strain rate components.

Yy

Equation (1) is supplemented by eight boundary
conditions - two on each side of the plate. Taking
the boundaries x=0,a as an example, we have for
simple supports

Ww=0 W, =0 (3a)
XX
while for clamped edges
w=0 W, =0 (3b)
X
Similar conditions are imposed along the
perpendicular boundaries y=0,b.
The instantaneous moduli that appear in Eq.

(1) depend on the plasticity theory used to model

material behaviour. For the J2 flow theory we
have, with the usual notation,
S, .S, .€
. _ . . _ _ i3kl kl
Gij 2Geij + Aaijekk 3(G GT) -~;;?———— (4)
e
where &ij are the stress rate components, éij - the
strain rate components, (G,A) - the elastic
constants, Sij - the stress deviator components, de
is the effective stress, and GT is the tangent
shear modulus defined by
1 1 [ 1 1 J
— = = + 3 _— - = (5)
GT G ET E
where ET is the tangent modulus obtained from the

uniaxial stress-strain curve.

Similarly, the rate form of the JZ deformation
theory reads

S, :Sy1€
. . ij kl
c,.=2Ge, .+, .g. - 3G, -G BERE S <
iJ sij s ij kk s T ¢2
e

(6)
where (GS,AS) are the secant moduli defined by

E v E
85 S

S - ——
(1+vs)(1~2vs)

Gs = 20 ) s
5

(7)
vs being the secant Poisson ratio (E, v are the

usual elastic constants)
- (5 -v) = (8)

and Es is the secant modulus obtained from the

uniaxial stress~strain curve.

Specifying (4) and (6) for the present

problem, with 01=cx, 62=¢y and c3=cz=0, it is

convenient to redefine the instantaneous moduli as

=E

p,22 vy + 2G (9)

M1 XX H12 Xy Xy
Thus, with the flow theory we get(m

2 4
4G(G+A) - (G—GT)[(2G+3A)ZiZj— G(Ei—Ej) + §G]

M, =
B 2G + A - %(G—GT)(21+22)2

i,j = 1,2 (10)

while for the deformation theory we find

2.4
4GS(GS+>\S]—(GS—GT]((2GS+3AS)zin.—GS(zi zj) +§Gs]

M, .=
ij 1. 2
ZGS + AS 3(Gs GT)(21+22)
i,j=12 (11)
The effective stress is now given by
02 = (1 + &+ §2)P2 (12)

and the normalized prebuckling stresses, Zi=oi/oe

i=1,2, are

Zl N 22 = - ———J;~—- (13)
v 14g48? V 1egeg?
To sum up, for given plate geometry, boundary

conditions, material properties (uij) and loading

program (§), we seek the smallest value of P for
which Eq. (1) admits a nontrivial solution. That
eigenvalue is identified with the critical load
which causes buckling of the plate. Any uniaxial
stress strain relation can be implemented in this
analysis. The examples ©presented later were
calculated with the Ramberg Osgood elastoplastic
formula

06 we
g:E—+K[E-——J (14)

where (K,n) are material parameters.
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3. Separation of Variables Solution
The simplest solution of (1) is obtained for
simply supported boundaries, namely w=w,XX=O at
x=0,a, and Q=Q,yy=0 at y=0,b. These constraints are

met with the velocity field

"= Asm(_m_X] sm(w]
a b

where, A is an arbitrary constant. Inserting (15)
< . . (4)
in (1) we get the eigenvalue equations

m,n =1,2,... (15)
1 2 2 22
[2G + A - §(G—GT)(21+22) 1(¢m™-8"n")P

+ a{%G(2G+3A+GT)(m2+BZn2)2 -

(6-G1) [ (26+33) (m221+l32n222)2

- ZBZmZnZG(Zl—ZZ)ZI} =0 (16)
for the flow theory, and
[26 + A - 2(G_~G,) (£,+5,)%) (gn°~g%n”)P

+ a{%GS(ZGS+3AS+GT)(m2+62n2)2 -

(G,~G) [(26_+31) (n°s, +6°n°5,,)°

- ZBZmZnZGS(Zl—ZZ)ZI} =0 (17)
for the deformation theory. The geometrical
parameters (a«,B) are defined by

« = “zhz B=2 (18)
12a

when GT=GS=G and AS=A we recover from both (16) and
(17) the linear elastic buckling equation(a
(l—vz)P - an2+m2

a E anZ—EmZ

(19)

Accordingly, we shall refer to the nondimensional
buckling parameter (not to be confused with the
Ramberg Osgood constant in (14))

2
g = AV P (20)
o E
as a suitable measure of the critical loads. Notice

that the smallest eigenvalues of (16)-{(17) should
be minimized with respect to the wave numbers
(m,n).

We turn now to the case where the boundaries
x=0,a are simply supported (3a), but the compressed
sides are clamped. It is convenient here to locate
the origin of the (x,y) axes at the center of the
boundary x=0 (see Fig. 2} so that the clamped
boundary conditions read

w=0 w,y =0 at y =% g (21)
P
B —— ¢ —_
¢p s s e X
<_~ C
P
Y

Figure 2 - Rectangular Plate. s - simple support.
c - clamped boundary.

The buckling mode is now written in the form

W= Asin( 5‘”;—" ]f(y) m=1,2,... (22)
where f(y) is to be determined. The field ({22)
complies with the boundary data (3a), and when
substituted in (1) results in the ordinary
differential equation
h2 Tm 4 m 2
ﬁ[“u[a—]f'z“u[’a_]f * oyt ]
2
mit vy e - d()
+§P[g—}f+Pf =0 , () “&y (23)

The solution of this equation has a symmetric part

" . Y .
fl(y) = D2s1nh(n71 = ] + D4slnh[n73

] (24)
and an antisymmetric part

(25)

= y y
fz(y) chosh[n'y1 3 ] + chosh[n73 2 ]

where Di(i=1,...,4) are integration constants and

(¥ ) are the characteristics roots of (23) as

1’73
determined from the equation
4
D A (P—Zuizamz)yz + up11m4 + §Pm2 =0 (26)
m=1,2,...
This equation has four roots labelled as i71 and
173. We skip here much of the algebra involved in

the analysis, and for more, details one should
consult_ the original thesis ', or the forthcoming
report .

The standard technique of compliance with
boundary conditions {gﬁ&7?nd the requirement for a
non trivial solution leads to the eigenvalue
equations. For symmetric buckling modes (24) we get
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n L4
73tanh[ o 73] yltanh[ B 71] = Q (27)
while for antisymmetric modes (25) we have
y,tanh| & - 7, tanh| L. =0 (28)
3 28 Y1) T N tamh| 25 ¥3) =

The solution of (27)-(28) provides the critical
buckling parameter (20). Both modes have to be
considered in the calculations along with a
minimization procedure with respect to the wave
number m.

Proceeding along similar lines we can solve
the problem when the compressed sides are simply
supported and the other edges clamped. here we move

the origin of the coordinates to the center of the
side y=0, so that at y=0,b, Q=&,yy=o while at x=t2,

Q=&,X=O. A solution is now sought in the form

W o= Ag(x)sin[ 2%! ] n=1,2,... (29)
and the eigenvalue equations follow as
tanh| = gy.| - 7 tanh| Z =0 (30)
3 2 Brg) -7y 3 Ry =
for symmetric modes, and
v.tanh| E By | - ¥, tanh| = By, =0 (31)
3 2 1 1 2 3
for antisymmetric modes.
The characteristic roots tyl and 173 are
determined by the transcendental equation
2 4 22, 2 2 4 2 _
af Myg7 - (€P + 2u12uB n“)y" + 28 Hoohh Pn™ =0
n=1,2,... (32)

Solution procedure parallel that of the previous
problem including minimization with respect to wave
numbers n.

4. Numerical Examples and Discussion

Critical stresses were evaluated numerically
by solving the eigenvalue equations (16)-(17),
(27)-(28) and (30)-(31) for the different boundary
conditions. The solution is straightforward though
care has to be exercised in handling the complex
roots of (26) and (32). As we have said already,
the numerical routine includes a searching
technique to trace the smallest eigenvalue (20).

Results for aluminum Al 7075-T6 are shown in
Fig. 3 for simply supported plates with «=0.001 and
B=1. The Ramberg-Osgood parameters (14) for that

metal are K=3.94-1021, n=10.9, and the elastic

constants are given by E=7.24-1O10 Pa, v=0.32.

AL 7075 T6
«=0.001
p=1

—-1.0 -0.5 0.0 0.5 1.0 1.5

Figure 3 - Variation of Buckling Parameter with
Load Ratio.

Initially, for low values of € both theories
are in agreement, but with increasing load ratio
flow theory predicts increasingly higher values of
K as compared to the deformation theory.
Furthermore, the deformation theory predicts an
optimal buckling load at a specific value of &£.
That behaviour is more emphasized in Figs. 4-5
which display the gradual transition from the
elastic range {(with «=0.0001) to the deep plastic

range (a=0.002) by  increasing the plate’s
thickness.
10

Deformation theory
AL 7075 T6

pe
0 T ] I |

-1.0 -0.5 0.0 0.5 1.0 1.

[

Figure 4 - Influence of Plate Thickness.
Deformation Theory.
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Flow theory
AL 7075 T6

B=1
0 T | : |

~0.5 0.0 0.5 1.0 1.5

Figure 5 - Influence of Plate Thickness.
Flow Theory.

When the plate is more narrow (increasing g)
optimal buckling is attained by biaxial compression
(see Fig. 6). It is interesting therefore that
there exists a critical value of plate aspect
ration (B) for which the highest buckling load is
obtained in purely uniaxial compression (£=0). This
observation can be helpful in optimal design of
stiffness spacing.

10

Deformation theory

b
RS AL 7075 16
L a=0.001
04

I T I T

-0.5 0.0 0.5 1.0 1.9

Figure 6 - Influence of Plate Dimensions.
Deformation Theory.

Results for the other boundary conditions
reveal a similar picture. Of course, clamped plates
buckle at higher loads in comparison with simply
supported plates, but the contrast between flow and
deformation theories remains very much the same
(see Figs. 7 and 8).

«=0.,002
g=1
0 T l ] I ER——

-0.5 0.0 0.5 1.0 1.5

Figure 7 - Buckling with Two Clamped Boundaries.

2‘ e beformation theory —  TUTrme—ll _
AL 7075 T6
B=1
Q ] ] I T
-1.0 -=0.5 0.0 0.5 1.0 1.5

Figure 8 - Influence of Plate Thickness.

Deformation Theory. Two Boundaries
are Clamped.
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