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ABSTRACT

A finite-element approach is presented for determining the
nonlinear flutter characteristics of three-dimensional thin lami-
nated composite panels using the full third-order piston, trans-
verse loading, aerodynamic theory. The unsteady, hypersonic,
aerodynamic theory and the von Karman large deflection plate
theory are used to formulate the aeroelasticity problem. Nonlin-
ear flutter analyses are performed to assess the influence of the
higher-order aerodynamic theory on the structure’s limit-cycle
amplitude and the dynamic pressure of the flow velocity. A solu-
tion procedure is presented to solve the nonlinear panel flutter fi-
nite element equations. Nonlinear flutter analyses are performed
for different boundary support-conditions and for various system
parameters: aspect ratio a/b; material orthotropic ratio, lami-
nation angle 6, and number of layers; Mach number, M; flow
mass-density-to-panel-mass-density ratio, p/M; dynamic pres-
sure, A; and maximum-deflection-to-thickness ratio, ¢/h. The
large-amplitude panel flutter results using the full third-order
piston aerodynamic theory are presented to assess the influence
of the nonlinear aerodynamic theory.

NOMENCLATURE
a,b panel length and width
la] element aerodynamic matrix
(Al panel aerodynamic matrix
(4], |B], [D] laminate stiffness matrices
¢ maximum panel deflection
[Cyl matrix relating element displacements

to membrane-bending strains

D, composite panel rigidity parameter
{e} membrane strains

E, E11, Ey isotropic and lamina elastic modulus
lg] element aerodynamic damping matrix
[G] panel aerodynamic damping matrix
G,G1a isotropic and lamina shear modulus

h panel thickness

[4] element stiffness matrix

M Mach number

[m] element mass matrix
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panel mass matrix

linearized midsurface force associated
with [A]

linearized midsurface force associated
with [B]

aerodynamic pressure

matrix relating element displacements to
membrane strains and curvatures

dynamic pressure

transformed reduced lamina stiffness
maktrices

in-plane and transverse
panel displacements

flow velocity
plate element displacements
global finite element displacements

Cartesian coordinates

real part of eigenvalue
eigenvalue phase angle

ratio of specific heats, v = 1.4
variational operator

strain vector

lamination angle

linearized displacement
matrix

laminate bending curvatures
non-dimensional dynamic pressure
Paa/ph

Poisson’s ratio, v = .3 for isotropic

panel mass density and air
mass density

stress vector

interpolation functions




{2} complex eigenvector

w imaginary part of eigenvalue
Q complex eigenvalue, o + iw
INTRODUCTION

Aircraft flight into the supersonic regime, during the 1950’s,
stressed the conflicting conditions of fabricating a structure
strong enough to withstand large aerodynamic forces during
supersonic flight, yet light enough to be economically efficient
to allow for an increase in the flight vehicle’s payload capa-
bility. Because of the resurgent interest in flight vehicles such
as the High-Speed Civil Transport (HSCT), the National Aero-
Space Plane (NASP), and the Advanced Tactical Fighter (ATF)
that will operate not only at high-supersonic Mach numbers but
well into the hypersonic regime, the additional requirement for
energy-efficient, high-strength and minimum-weight vehicles has
become apparent. These requirements have generated an interest
in the advanced composite materials to meet the high-strength
minimum-weight requirements. In addition to the structural ma-
terial concerns, the issue of the range of applicability of the
widely used first-order piston aerodynamic theory into the hy-
personic regime has been questioned. These questions have been
generated in response to neglecting the higher-order terms in
the derivation of the first-order theory. It has been hypothesized
that the higher-order terms in the piston aerodynamic theory,
at the large Mach numbers of interest, may be significant. Cou-
pling these concerns with the realistic need for analytical tools to
evaluate complex structures, the finite element method presents
itself as the most appropriate means that can conveniently and
efficiently incorporate all of the known complexities of the phys-
ical problem.

Theoretical considerations of panel flutter using linear the-
ory, as well as an early survey on the subject up to 1966, was
given by Dungundji [1]1. A thorough summary on both linear
and nonlinear panel flutter through 1970 was given by Dowell {2].
Most recently, 1987, Reed, Hanson, and Alford (3], conducted a
survey in the area of hypersonic panel flutter in support of the
NASP program. As disclosed by all of these survey papers, a
great quantity of literature exists on linear panel flutter using
different aerodynamic theories, for example references [1,4,5] and
many others. The aerodynamic theory employed for the most
part for panel flutter at high supersonic Mach numbers (M > 1.7
[6]) is the quasi-steady frst-order piston aerodynamic theory [6).
Because of the recent renewed interest [3] in flight vehicles that
will operate not only at high-supersonic Mach numbers but well
into the hypersonic regime, there is an interest in approaches
that can employ unsteady nonlinear aerodynamic theories. The
piston aerodynamic theories, although several decades old, have
generally been employed to approximate the aerodynamic loads
on the panel from local pressures generated by the body’s mo-
tion as related to the local normal component of the fluid velocity.
This theory, thus, defines a point-function relationship between
the normal component of the fluid velocity and the local panel
pressure. For supersonic Mach numbers, these theories reason-
ably estimate the aerodynamic pressures and are the most widely
used in the literature. An outstanding presentation of the funda-
mental theories and the physical understanding of panel flutter
can be found in the book on the subject by Dowell [7].

In actuality, it is well known [8] that the panel not only bends
but also stretches due to large-amplitude vibrations. Such mem-
brane tensile forces in the panel, due to the induced stretching,
provides a limited stabilizing effect of the “hard spring” type that
restrains the panel motion to be of bounded amplitude for imit-
cycle oscillations that increases with amplitude as the dynamic
pressure, )y, increases. The external skin of a flight vehicle can,

INumbers in brackets indicate reference.

thus, withstand velocities beyond the linear critical value. McIn-
tosh [9] has investigated the effects of hypersonic nonlinear aero-
dynamic loadings on panel flutter, and his findings indicate that
the higher-order aerodynamic theory may, for some system pa-
rameters, produce a “soft spring” effect that will predict lower
limit-cycle flutter velocities than those predicted by the first-
order piston theory even including the effect of membrane tensile
forces in the panel. In reference [2], Dowell identifies four panel
flutter theories, types 1-4 shown in Table 1, and with the theory
in reference [9] these theories increase to five.

The first partial nonlinear behavior of a fluttering panel
was studied by several investigators: Bolotin [10], Fung [11],
Houbolt [12], and Eisely [13]. They were primarily concerned
with determining stability boundaries of two-dimensional plates.
Using a two-mode Galerkin approach, the three-dimensional
plate buckling effects on flutter boundaries using the von Karman
deflection theory and Ackert’s aerodynamic theory (also known
as a static strip theory [5,14]) was studied by Fralich [15].

For the full structural nonlinear limit-cycle approach, a va-~
riety of analysis methods have been employed to assess the
panel flutter problem. The direct numerical integration ap-
proach in conjunction with Galerkin's method was first used by
Dowell [16-18] to study the nonlinear oscillations of simply sup-
ported, in-plane elastically restrained, fluttering plates. Dowell
determined that the direct numerical integration (classical) ap-
proaches required as a minimum six linear normal modes to
achieve a converged solution for displacements and possibly more
if stresses are required [9,18]. For the clamped plates, Ventres [19]
also used the direct numerical integration method by employing
both the quasi-steady aerodynamic theory and the generalized
aerodynamic theory, type 3 analysis. Both Dowell and Ventres
used the Galerkin's method to reduce the governing partial dif-
ferential equations in time and space to a set of coupled ordinary
differential equations in time which were numerically integrated
for arbitrary initial conditions. The integration was continued
until a limit-cycle oscillation of constant amplitude, that was
independent of the initial conditions, was encountered. But be-
cause of the highly nonlinear nature of the aerodynamic theory,
there exists just a few references that have investigated the limit-
cycle oscillations of panels for hypersonic flow. McIntosh {9], us-
ing a nonlinear, partial third-order piston aerodynamic theory,
also integrated the nonlinear equations of motion for given initial
conditions and observed the resultant panel motion versus time
until a limit-cycle of constant amplitude was reached.

A number of other classical analytical methods exist for the
investigation of limit-cycle oscillations of panels in supersonic
flow. In general, for the supersonic case, Galerkin’s method is
used in the spatial domain, and the panel deflection is then ex-
pressed in terms of two to six linear normal modes. Various
techniques in the temporal domain such as harmonic balance
[10, 20-23] have been used successfully to study the subject of
panel flutter. This method requires less computational time than
the method of direct integration and is mathematically compre-
hensible and systematic, but extremely tedious to implement.
Another popular method to study panel flutter is the perturba-
tion method. Correlation between perturbation techniques and
the harmonic balance method has been shown to be quite good
[21,24,25].

Most of the early research in panel flutter using classical
analytical methods [26-30] has been limited to orthotropic panels
{or plates). Recently, a considerable focus has turned to the
application of anisotropic materials. However, most of this work
has been limited to the area of linear structural theory using
classical laminated plate theory. Librescu [31], retaining only
the linear aerodynamic damping terms, derived the governing
equations for an arbitrary number of modes using Galerkin's
method and the Lyapunov stability criterion. He investigated
the aeroelastic stability of orthotropic panels in the vicinity of
the critical dynamic pressure. The geometric nonlinear flutter
of orthotropic panels was recently studied by Eslami [32,33]
using harmonic balance. All of the analytical investigations have
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been limited to two-dimensional or three-dimensional rectangular
plates with all four edges simply supported or clamped.

Extension of the finite element method to study the linear
panel flutter problem was due to Olson [34,35]. Because of its
versatile applicability, effects of aerodynamic damping, complex
panel configurations, flow angularities, in-plane prestress, and
laminated anisotropic panel properties can be easily and conve-
niently included in the finite element formulation. A review of
the linear panel flutter using finite element methods was given
by Yang and Sung [36].

Application of the finite element method to study the su-
personic limit-cycle oscillations of two-dimensional panels was
given by Mei and Rogers [37] and Mei [38]. Rao and Rao [39]
also investigated the large-amplitude supersonic futter of two-
dimensional panels with ends elastically restrained against rota-
tion. Mei and Weidman [40], Han and Yang [41], and Mei and
Wang [42] further extended the finite element method to treat su-
personic limit-cycle oscillations of three-dimensional rectangular
and triangular isotropic plates, respectively.

Sarma and Varadan [43] studied the nonlinear behavior of
two-dimensional isotropic panels using the linear aerodynamic
theory. They presented two solution methods using a seventh-
order displacement based finite element; the first method uses
the nonlinear free vibration mode shape as an approximation to
the nonlinear panel flutter problem, and the second method uses
the linear panel flutter mode shape as an initial estimate for an
iterative solution process similar to those given in Refs. [37-42,
and 45-47]. Because of the renewed interest in panel flutter at
the high-supersonic/hypersonic speeds, Gray, et al. [44] extend
the finite element method to investigate the hypersonic limit-
cycle oscillations of two-dimensional panels. A treatment of the
aeroelastic concepts and principles is covered at the fundamental
level in Refs. [48-50].

FINITE ELEMENT FORMULATION

Consider a three-dimensional laminated panel of length a,
width b, thickness h, and mass density p with a fluid flow above
the panel at Mach number M. It is assumed that fluid flow
above the panel is in the positive z coordinate direction and
that the effects of the cavity on the back side of the panel
can be neglected. The sign convention to be followed is that
positive flow is in the direction of increasing z and a positive
deflection is into the cavity. Since this study addresses thin
panels (a/h > 50), the effect of transverse shear deformations,
normally associated with thick plates (laminates) is neglected
(see Jones [51] for example). This assumption is justified due to
the minimum weight constraint that generally drives the panel’s
design parameters such that a/h is greater than 100.

Hamilton’s Principle for a Continuum

The most general form of Hamilton’s principle for a noncon-
servative elastic continuous medium is

7 /(pﬁ,ﬁ-aa)dv— /(f-aa)a:v
t1 Lv \"4

+ [ @ 6@)dS— [(o:66)dV | | dt=0 1
fo e

where S and V are the surface area and volume of the element,
respectively. The terms under the time integral represent the
work done on the body at any time ¢ by the resultant force in
moving through the virtual displacement 6%; f is the body force,
and is neglected in this formulation; 7 is the specified surface
stress vector; and (o 6¢) is a stress-virtual strain-tensor product.

Constitutive and Strain-Displacement Relationships

Since for the three-dimensional panel, there are two primary
material directions, the formulation will be for the most general
anisotropic laminated material of which an isotropic material is
a special case. For an orthotropic lamina [51], the stress-strain
relationship in z-y coordinates is

=4 oy $=101{ & b =1ala @
Tzy Yzy

The bar over the Qij denotes the transformed reduced stiffnesses
relative to the z-y-z coordinate.

The form of the strain-displacement relationships for an
arbitrary point through the thickness, h, is as follows:

1
€z = Uz +§w:?; —ZW,gx

1 2 )
Gy = 'U,y +§w,y "Z'w,yy

Yoy = Uy, +Wyz Wy — 22W,zy

where v and v are the in-plane (midsurface) displacements
measured along the z and y coordinate axes, respectively, and w
is the transverse displacement measured along the z-axis normal
to the plane of the panel. The nonlinear terms in Eq. (3)
are commonly referred to as the von Karman nonlinear (finite)
strains.

Aerodynamic Pressure Function

The virtual work integral involving the surface stress vector
is evaluated using the unsteady full third-order piston theory
aerodynamics [6] to develop the aerodynamic loads on the upper
surface of the panel. The aerodynamic pressure loading as given
by this theory is

_ 2

poo—M

1 +1 1 2
St g+ - ) m <7w,t +‘w»z)

3
+1 1
+%—2M2 (V””t +w,x) } (4)
The first two terms in the brackets in Eq. (4) constitutes the first-
order piston theory aerodynamics and Eq. (4) without the cubic
term represents the second-order piston theory aerodynamics.

In reference [9], McIntosh uses a modified form of Eq. (4). In
his work, the w,; in the cubed parentheses is neglected. Since a
complete derivation of the third-order piston aerodynamic theory
would include this term, and since the additional complications
to include this term in the finite element formulation is minimal,
this term is retained. Retaining this term will allow for a full
evaluation of it’s influence on the panel’s response.

Piston, Ackeret, and other quasi-steady aerodynamic theo-
ries have been shown [14] to give good estimates of the panel
thickness required to prevent panel flutter. However, all of the
references in the literature do strongly suggest that these theo-
ries are only valid for Mach number ranges greater than 1.6-2.0.
Generally, this is taken to be greater than /2.

Three-Dimensional Rectangular Panel

For a general plate element undergoing both bending and ex-
tension, the complete strain, for any point through the thickness
located at coordinate z, is composed of two parts. The first part
is due to stretching the midsurface, and the second part is due
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to the change in curvature, {x}, during bending. Thus, using
Kirchhoff hypothesis, the total strain can be written as

{e}={e}+z{n}={e§}+z{n§} (5)
Exy Kzy

If the relationships between the strain-displacement in
Eq. (3) are written as a vector, then the membrane strain, {e},
takes on the form

Uz +%’UJ,%
{e} = Uy +%w,§ (6)

U,y +vy$€ +'LU,3; w:y

The membrane strains in Eq. (6) can also be written as

{e} = {em} + {emsp} M

where {e;;} is the linear portion of the membrane strain and
{eémp} is the nonlinear, von Karman, membrane-bending cou-
pling strains. The curvatures written in terms of the transverse
displacement, w, become

—W,zz
{s} = { —W,yy } {8
—2w,zy

Proceeding from this point, the displacements in Egs. (6) and
(8) are approximated over a typical element using interpolation
functions and nodal displacement quantities as follows:

w = [$u]{Aw}
u = [gu}{Au} (9
v = [¢]{Av}

Using the Eqs. (6) and (8), the curvatures and midsurface
straing, in the von Karman sense, are related to the nodal
displacements as

—W,rz "[¢w];a:z
{s}= —Wyy = —[¢w]:yy {aw} (10)
—zw)xy —2[¢w],zy
and for {e} = {em} + {emp}
[d’u];:c 0
{Au}
{em} = 0 [puly { }
Ay
[Buliy  [#v]sz (v}
(11)
w, 0
1 (D).
{emp} =3 0 wy I:[d’w]yy] {Aw}
w:y W,z

The variation of the curvatures and midsurface strains are
similarly related to the nodal displacements.

Using Eq. (1) result in the following matrix equation for the
rectangular plate element:

o ] (o)
0] [mm] Wm

L [ s+ o1 + lo24e] + [g2:] [0]] {wf}
(0] (0] { wm
+ [ ([a] + [alg] + [a1f] + [a24] + [a2¢]) [O]J {"Uf }
0] [0] Wi

+:[kff] [kam]] {wf}
L [kBm I ] {kmm] Wm
[kl a1 [ w w
. [klgs]  [K1y ]]{ f}+{[k13,f] [0]]{ f}
L[klmy] (0] Wm 0 [0 | wm

SRR
O [0 (wm fm

where
(#fmp

and {f} is the internal element equilibrium forces, [k] is the
linear elastic stiffness matrix, and [k1] and [k2] are nonlinear
stiffness matrices which depend linearly and quadratically upon
displacements, respectively.

The variation principle in Eq. (1) represents a finite el-
ement approach to study the limit-cycle oscillations of three-
dimensional composite panels at hypersonic speeds. The third-
order piston theory aerodynamics for the three-dimensional
case will produce two linear aerodynamic influence matrices,
lg] and [a], and seven nonlinear aerodynamic influence matri-
ces, [gle], Lg%, 19274 lole], [aly]), [a2g4], and [a2;], where
the aerodynamic matrices are functions of the system aerody-
namic parameters, in particular the dynamic pressure, ¢. The
aerodynamic influence matrices {g] and [a] are linear, whereas
[91¢], [ale], and [aly] depend linearly, denoted with 1, upon
the displacements, denoted with subscript f, and/or the time
derivative of the displacements (generalized velocities), denoted
with subscript, t. The other four matrices, [92¢], [92t], [a2y],
and [a2y], are quadratic, denoted with 2, in displacement and/or
generalized velocities. The symmetry in the first-order nonlinear
stiffness matrix has been preserved [52] at the expense of transfer-
ring the nonlinearity [k1y,] into two equal parts and producing
the [k15¢] term. A similar transformation was used in develop-
ing the [klpyss] term. The aerodynamic damping matrices, [g],
|91] and [g2] are symmetrical while the aerodynamic influence
matrices, [a], [a1] and [e2] are skew-symmetric.

SYSTEM FINITE ELEMENT FORMULATION
AND SOLUTION PROCEDURE

In this section, a detailed description of the assembly proce-
dure, solution procedure and computational methods that were
developed to solve the large-amplitude panel flutter, using third-
order piston aerodynamic theory, equations is presented.

System Finite Element Formulation

By sub-dividing the problem domain into a finite num-
ber of discrete elements, a subsystem of elements for the
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three-dimensional panel can be assembled. Ensuing assembly
of the elements, using the methods of references [53] and [54],
the boundary conditions are imposed on the assembled system
equation using the method outlined by Reddy [55]. The con-
strained system finite element equations are then available for
an iterative solution.

After assembling the individual finite elements for the entire
system and applying the kinematic boundary conditions (e.g., for
simple, in-plane immovable supports; u(0,y) = u(a,y) = v(x,0)
= v(x,b) = w(0,y) = w(a,y) = w(x,0) = w(x,b) = 0), the non-
linear equation of motion for the coupled (bending/membrane)
system represents a finite element approach for solving the three-
dimensional panel flutter problem. The convention that upper
case matrix notation pertains to the assembled structure is used
in this study to parallel the system and element formulations.

The constrained system equation for the three-dimensional
rectangular panels has the following form:

[mq1 M}{W?}+[WH+WM+WM+W%m M}{Wk}
O (Ml | W (0] 0] | Wm

[(LA] + [AL] + [ALy] + [A2p] + [A2f]) [0]] { Wf}
o o\ wy

it o) G Lo 071G}
L alfd [ -G o

where {W;} and {Wy,} are the constrained nodal displacements
of the assembled three-dimensional system.

Similar to the two-dimensional case [44], Eq. (14}, as writ-
ten, is a damped vibration problem in the configuration space;
and as such, does not conform to standard eigenvalue solution al-
gorithms. Thus, the approach of transforming the problem from
the configuration space to a state space is used. By making the
transformation to the state space, the governing matrix equation,
Eq. (14), becomes

) ] fW\ 16l 1] (W)
[[0] [I]HW}Jrl[—I] [O]HW}—{O} (15)

where 01,]
_ | Mg] [0
=" ] "
6] = [([G]Jr[Glt]+[GZt]+[Gth]) [0]] an
(0] 0]

IM=FW+MM+MM+M%HMM)M]

0] [0]
N [ [Kfsl  [KBgml [ [Klgp] [K 1fm]j|
[KBmf ] [Kmm] [K 1mf ] [0]
[Klgss] (0] [K25f] [0]
¥ [ 0 {01} * [ U [01] 1)
wy={ " (19)
W

{w} 's (20)
= .
m
and (1] is the identity matrix.

Linearizing Procedure

The solution procedure for the three-dimensional panel is
fundamentally the same as ref. [44] where the solution to the
homogeneous problem is sought in the form of

W =z 2 St
=) e

where {®1} and {®;} are complex eigenvectors that are arranged
as a single column vector, ) = (a+iw) is the complex eigenvalue,
and € is a nonzero (scalar) constant displacement amplitude.
Substituting the assumed response into Eq. (15) results in the
following eigenvalue problem:

5(0[{];] m’L[[[i]] [m){:} e = {0} (22)

By expressing et as a complex quantity in the Euler form and
requiring both coefficients of sin(wt) and cos(wt) to vanish, then
Eq. (22) can be written as two separate equations

aem(n{[Ml [°]]+[[G] [K]D{'I’l}cosw>={o} (23)

o 7 -1 [o] )
i35 et (n{u[g] g]ﬂu[[[i}] {gl]){ZZ}sm(th{O} (24)

Since ¢ is nonzero, Eq. (22) is for the constrained system,
and the solution sought is for all times greater than zero, both
Eqgs. (23) and (24) represent the same eigenvalue problem. To
solve Eq. (23) or (24), the nonlinear matrices in Eq. (14) need
to be evaluated. Also, since all of the system quantities used
in developing these equations are real, it must be concluded
that the nodal response quantities must also be real [1]. The
field expressions for the transverse panel displacement, velocity,
and slope are given in Eq. (9). All of these quantities can be
approximated from Eq. (21} by normalizing the eigenvector as
follows and recognizing that {W} is a real quantity, and as such
take only the real part of the normalized Eq. (21)

w _ zet [|@1] cos(B— Br)
W @2kl | |2y

cos(8 — B)

The quantity |($3)g| is the magnitude of the largest trans-
verse displacement component of the eignevector that corre-
sponds to {®9}, and Sy, is the corresponding phase angle. Next,
denote ¢ = & e® as the damped amplitude. Thus, it is clear from
Eq. (25) that the sign of the real part of the eigenvalue controls
the stability of the solution. The solution is stable for all a that
are less than zero. For « equal to zero, then ¢ equals ¢ and the
resulting solution corresponds to that of a limit-cycle oscillation.

By letting
&1 1 [l®i]cos(6 - Br)
{@2 } T (@)l { |®9] cos(8 - Br) } (26)

then Eq. (25) becomes,

[ ¢ @7
{W =c %, cos(wt)

} cos(wt)  (25)
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Using Egs. (27), and (9) the (scalar magnitude) transverse
velocities and slopes become

w(z,y, )= [pu] {B17 }j cos(wt)

w(z, ¥, t)ys = [duwhz {‘i’zf}j cos(wt)

w(T,¥,t),y = [Pu)y {@2}-}]. cos(wt)

u(z, ¥, ) = [Pule {&’Zm}j cos(wt) (28)
uw(z, ¥, 1)y = [bul.y {‘igm}j cos(wt)

(3,9, )0 = [po]z { Bam } ; cos(wt)

vz, ¥, 1)y = [Pu]iy {P2m }j cos(wt)

In Eq. (28), the column vectors {‘il }j and {'52}]. contain the

appropriate global eigenvector quantities from {®;} and {®,}
that correspond to the particular j-th finite element. The three-
dimensional vector {@1 f} uses the subscript “f” or “m” to
denote the appropriate bendmg or membrane quantity that
correspond to the particular j-th finite element, respectively.
Thus, with Eq. (27), the nonlinear terms in Eq. (23) can
be evaluated. By making use of trigonometric identities for
cosz(wt) and cos®(wt), and neglecting the second and third har-
monics, the following approximations may be used to linearize
Eq. (23):

cos?(wt) = g cos(wt)
(29)

cos®(wt) = % cos(wt)

The various linearizing methods, [37]-[43], that have been
used in the past have bounded these values. From Eq. (28),
the time functions have an absolute value range from zero
to one. The lower value of zero will reduce the nonlinear
problem to a linear one while the upper limit of one would
calculate the nonlinear stiffness based on the maximum deflected
configuration. The lower (linear) limit as discussed in the
introduction merely defines the flutter boundary as an instability.
The upper limit defines an over-stiff system by assuming the
maximum value of the developed midsurface force to occur over
the entire cycle. Physically, the actual value starts at zero then
progresses to the maximum value of one then back to zero over
a half-cycle and then repeated through the second half-cycle.
Thus, neglecting the second and third harmonics in Eq. (28) will
predict a solution that is clearly bounded between the physical
extremes. In fact, the value, 342, is exactly the root-mean-square
value of a harmonic function over its period, and % is in the same
range.

Using Eqgs. (27) and (29), the nonlinear Eq. (12) for the
three-dimensional panel result in the following element equa-
tions:

stiffness (30)
(k11m] = e[kl fp,] cos(wt) (30a)
(k1] = elklpf] cos(wt) (30b)
[k155] = cfled ¢ ¢] cos(wt) (30c)
[k1pys] = clklpyy] cos{wt) (30d)
(k25 5] = c?[k2; ] cos?(wt) (30e)
aerodynamic influence (31)
[g1t] = c[gly] cos(wt) (31a)
[92¢] = *[g2¢] cos®(wt) (31b)

[927:] = cPlg2g] cos?(wt) (31c)
[alg) = c[aly] cos(wt) (31d)
[a1/] = claly] cos(wt) (31e)
[a24:] = ?[a2 4] cos?(wt) (311)
[a2f] = *[a2] cos?(wt) (31g)

The linearized stiffness and aerodynamic influence matrices
are defined as follows using the definitions:

[¢1.U]7.’E
Cyl = 32
[ 0] [[‘ﬁw]»y:l ( )
_[¢w])zz
[Pu] = | —[du]yy (33)
=2[pw] ey
[¢u],x 0
Pu]=| 0 [du]y (34)
[¢u],y [¢U]).’B
[Pw)e {éZf }j 0
6] = 0 [buly {@2r}; (35)
[¢w]ay {§Zf}1 [¢w]»a: {&’2f}_7
The linearized midsurface forces,
{NA} = [4] [Pu] {‘§2m}j (36)
and _
Wa} = [BIIR {8371, (37)
where Ny
{Na} = Ny (38)
NAzy
and
N Bz
N} =1 Ny (39)
N Bzy
are used to define [M4] and [NVp] as
N Az NA:z:y:l
=N, 40
[ Nizy Ny Wal (40)
N Bz N Bzy |
[ Nisy Nay ] = [NB] (41)
linearized stiffness (42)
lktnf) =5 [ IPITIAYICdS (420)
S
1 Ty T
kejl=3 [ 1CoT eI AlelCalds (420)
S
1 T Tial
ks =5 [ ([ColWalich +(ColT O (BIIP.]
S
+PuIT[BIEIC]) ds (420)
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[ ] =% / Co O [Al[P.]ds (42d)
S
k=3 [ T WaliColds (42¢)
S
linearized aerodynamic influence (43)
1 = 2250 [ (16l (81),) (ulibulds (30
s
20 = LM [ (1601 {3113,)°
X {¢w}[¢w125 (43b)
2l = LY [ (16,1 3,
x (1¢u] {<I>1fs} ;) (@u}igulds (43¢)
[al] = q(v—‘jl) /
x (1wl {Sélf ;) (BuHduls ds (439)
als] = @ /
X ([Mf{ézf} ;) {#u}lsulods (43¢)
2 = LEDY [ (16l {3y,
x (1gu) {81 fs} ;) (Bu}ltulnds (431)
2] = L5 [ (160) (8p3,)”
« (ool ds (43¢)

where ( ),z = %%;2

Linearizing Method for System Equations

Assembling the element equations for the constrained system
and using the linearized element matrices, Eqs. (42) and (43),
results in the following linearized eigenvalue problem:

O R [ EEE

where the linearized matrices [G] and [K] are defined for the
three-dimensional panel as

(Mg]  [0] ]
Mj = 45
M [ O (b )
0= { ([G] + 2e[GL] + $c2(G2] + §HG2 ,t]) [0]} (16)
[0 [0

- [ (r+ Faran) + a1+ §P 1Azl + Hoiaz)) [01]
o o

[ K4 [KBfmI] V3 [{Kljf] [Kllm]]

+ + = (c

EKpmfl Wmmll 2 LKlm) (0]
V3. [Kigg) [01] 3 [[sz 101]

+—(>[ +3@? 47
27 m owl T g o “n

A detailed look at the nonlinear problem from the physical
viewpoint indicates that what is required, is to find a deflected
shape in order to compute the eigenvalues. Since the eigenvec-
tors are related to the deflected shape, all that is needed to ap-
proximate the solution is a shape that satisfies the geometric
(essential) boundary conditions and is a variation of the exact
shape. The first approximation is the normalized linear flutter
mode shape of interest. Further refinements are made by us-
ing the normalized nonlinear mode shape as an estimate of the
deflected shape. This can be repeated until the estimated de-
flected shape and the computed normalized eigenvector differ by
as small a value as required. This solution procedure can best be
described as a linearized updated mode with a nonlinear time
function approximation (LUM/NTF) method [44].

Solution Procedure

If Eq. (21) is normalized, then it can be scaled to a given
limit-cycle amplitude ¢. Having normalized and scaled Eq. (21),
then Eq. (26) results, and u,v,w and their derivatives for each
element can be easily computed as shown in Eq. (28). Thus, by
dropping the nonlinear terms in Eq. (22) and solving the linear
eigenvalue problem, the first estimate of the nodal quantities can
be approximated. With the linear eigenvectors, the process just
described can be used to approximate the quantities necessary
to assemble the linearized element matrices and the assembled
constrained system matrices. The same process can be repeated
until successive iterations yield the same eigenevalues, both real
and imaginary, and the same eigenvectors within the limits of a
convergence criterion [56]. Therefore, for a given panel configu-
ration and dynamic pressure, the nonlinear system eigenvalues
and eigenvectors can be computed.

As the dynamic pressure is increased monotonically from
zero (A = 0 corresponds to in-vacuo large-amplitude free vibra-
tion), the symmetric, real and positive-definite stiffness matrix is
perturbed by the skewed aerodynamic-influence matrix so that
two of the eigenvalues approach each other until they coalesce. A
critical dynamic pressure, Agr, for the linear structure (c/h = 0)
and a limit-cycle dynamic pressure, Ay, for the nonlinear struc-
ture (c/h # 0) are determined when the real part of one of the
eigenvalues approaches positive values [44, 57] for a fixed dy-
namic pressure.

VERIFICATION OF FINITE
ELEMENT METHOD

All numerical results are using a rectangular plate element
where the transverse displacement function, w, is a bi-cubic poly-
nomial in z and y, and the membrane displacement functions, u
and v, are bi-linear in z and y.

Flutter with Linear Aerodynamics—Isotropic

To establish confidence in the present solution method,
Dowell’s [18] well known numerical integration results along with
Eslami’s [32] harmonic balance solution for a simply supported,
in-plane immovable, square panel are presented in Table 3. Since
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both of these investigators display their limit-cycle results in
the form of plots, the limit-cycle data shown in the table were
read from their figures. The finite element results compare
favorably with the maximum difference of only .2%. Also shown
in Table 3 are the limit-cycle results for the clamped, in-plane
immovable panel. Kuo et al. {21] and Eslami’s [32] limit-cycle
six-mode perturbation results were also evaluated from charts
and compared within 1.8%.

Flutter with Linear Aerodynamics—Composite

A comparison to validate the present finite element method
and solution procedure is made for a single layer anisotropic
square panel. This panel is clamped along one edge parallel to
the free stream flow with the other three edges free. This com-
parison combines the flutter phenomena with the full anisotropic
material effects along with a mixed set of boundary conditions.
The present finite element results for the critical dynamic pres-
sure for three lamination angles are presented in Table 4. Since
reference [58] elected to use a 5x5 mesh, these results are also
for a 5%5 mesh. The information presented in Table 4 is for a
slightly different definition of the nondimensional dynamic pres-
sure which is noted in the table; thus, the values are smaller
than those normally presented for a similar isotropic panel. For
all three lamination angles that were evaluated, the present finite
element method agreement is good.

NONLINEAR PANEL FLUTTER RESULTS

For the three-dimensional isotropic/composite panels, the fi-
nite element method has been employed to provide a full evalua-
tion of the effects of the complete third-order piston aerodynamic
theory. Several cases are presented that assess the influence of
each of the higher-order terms. In addition, an evaluation of the
composite panel effects is offered to investigate the influence of
material orthotropy, number of layers, and stacking sequence. All
of the material properties used in this section are from Ref. [60]
and are summarized in Table 2.

An effort has been made to present finite element results
for as many of the three-dimensional parameters as possible.
Since for the two-dimensional panel [44], a range of £ = .01-0.1
and Ma’l = .05-0.1 flow parameters were presented, the finite
element results for the three-dimensional panel are provided
for ](‘7 = .1 and A—’é—h = .05. Limiting the flow parameters
for the three-dimensional panels minimizes the total number
of complete system parameters necessary to study the flutter
of composite panels. In addition, unless specifically noted the
results presented in this study are for a square, simply-supported
8x4 half-plate symmetric mesh.

Limit-Cycle Oscillations

Panel flutter designs are generally focused on fatigue life
(or service life) considerations. That is, the repeated cyclic
application of a self-excited loading to a stress level in excess
of the material’s endurance limit results in a finite number of
these applications before a structural failure/damage becomes
emanate. Since the aerodynamic damping forces are nonlinear
and amplitude-dependent, a stationary motion is achieved in
which the panel gains energy during part of the cycle and
dissipates energy during the remaining part of the cycle, so that
during each cycle the net energy exchange is zero. Thus at a
given flow velocity (dynamic pressure), the flow and the structure
interact to produce a stable repeated oscillation at a specific
amplitude and frequency. This stable repeated motion is known
as a limit-cycle.

This study presents the numerical results necessary to de-
velop a description of the limit-cycle flutter of a composite panel.

The orthotropic, simply supported, square panel (@ =12 in,
h = 0.04 in) used for this first study is a single layer of boron
aluminum, B/Al B5.6/Al—material 3, Table 2. Solving only the
linear portion of Eq. (44) and varying the dynamic pressure from
zero monotonically results in a variation of the system frequen-
cies. As shown in Fig. 1, the eigenvalues of the first mode and
third mode increase while the second and fourth mode decrease
until two of the eigenvalues coalesce. For this configuration, the
first and second eigenvalues coalesce; however, with aerodynamic
damping present, the real part of the system eigenvalue vanishes
at a slightly higher dynamic pressure. When the real part of the
eigenvalue vanishes the associated value of the dynamic pressure

is, for the linear analysis, referred to as the critical dynamic
pressure and defines the stability boundary. The nondimensional

dynamic pressure shown in Fig. 1 is defined as

2qa®
= 4
A MD, (48)
where
D, = Ey k3 (49)

The nondimensional A for this study has a different defini-
tion than that which is usually used for isotropic materials. This
definition of the dynamic pressure will be employed when pre-
senting or discussing three-dimensional panels whether isotropic
or composite.

By including the nonlinear effects (geometric and aerody-
namic) in Eq. (44) for a fixed displacement amplitude and re-
peating the same analysis process, the value of A for which the
real part of the eigenvalue vanishes is found to occur at a larger
dynamic pressure. For both a ¢/h = +1.0 and ¢/h = —1.0 am-
plitude ratio, the dynamic pressure and eigenvalue variations are
shown in Fig. 2. As was the case for the two-dimensional panel [9,
44], the response is different for a positive or negative displace-
ment amplitude. When the real part of the eigenvalue vanishes
for a fixed displacement amplitude, the corresponding dynamic
pressure is the limit-cycle dynamic pressure. Associated with
this dynamic pressure and amplitude is the frequency at which
the panel will oscillate.

Figure 2 shows the panel response for a fixed amplitude ratio.
If this approach is repeated for several amplitude ratios, then the
response shown in Fig. 3 results. These results show that as the
limit-cycle dynamic pressure is increased above the critical value,
then the panel will oscillate at increasing amplitude levels.

The typical panel limit-cycle deflection shape is shown in
Fig. 4 for a full 12x8 finite element mesh; these results are
plotted along the lines y/b = 0.5 and z/a = .75. The basic shape
remains similar to those for two-dimensional panels. Similarly,
the maximum panel deflection is noted to occur at .75 of the
length.

Laminated Panel Effects

Since the stiffness of a laminate depends substantially on
the number and orientation of each lamina in the laminate, an
evaluation of a regular cross-ply laminated panel was performed.
This evaluation computed the limit-cycle dynamic pressure for
a range of limit-cycle amplitudes for several regular laminates.
To effect this, a panel thickness was selected and the number of
layers were increased from one to six as the limit-cycle amplitude
was varied from zero to positive one plate thickness. Aseach new
lamina was added to the laminate, the orientation was alternated
between 0° and 90°. This results in a laminate that alternates
between symmetric and unsymmetric; thus, for the unsymmetric
laminate the bending-extension [B] matrix is non-zero. However,
the [B] matrix is diagonal and only a 8x4-mesh half-plate was
modeled to exploit global symmetry. The variation of the limit-
cycle amplitude for a six-layer cross-ply laminate is shown in
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Fig. 5. It is noted that the stiffer response is characterized by
a single-layer orthotropic laminate, (0], and the softest response
is exhibited by a two-layer, unsymmetric laminate, [0/90], with
the 0’s on the air flow side. This is to be expected since the
two-layer cross-ply has an equal number of 0's and 90's, 50%
of each. At three layers, the total percentage of 0’s increase
to 67%, the maximum percentage for a cross-ply. Any further
increase in layers will reduce the effective stiffness of the laminate
up to approximately six layers at which point it is noted that
the response is no longer sensitive to the addition of alternating
layers.

To further investigate the effects of lamination angle, a
single layered laminate was evaluated. The lamination angle was
varied from 0° to 90° and the limit-cycle dynamic pressure, for
a fixed limit-cycle amplitude of 0.6 of the panel thickness, was
computed. The variation of the lamination angle and its effect
on the dynamic pressure is shown in Fig. 6. These results show
that, again, the orthotropic laminate exhibits the most stable
response. The difference between the 0° and 90° laminate is
approximately a 20% reduction (for material 3) in the limit-cycle
dynamic pressure changing more noticeably between 30° to 60°.

Boundary Support and Aspect Ratio Effects

As was noted in the introduction, all of the classical solution
methods are for either simply supported or clamped supported
panels. With the finite element method, any combination of sup-
port conditions is easy to accommodate. The limit-cycle results
presented in Fig. 7 show the varying response that changing the
support conditions has on panel flutter. These results indicate
that the clamped panel resists flutter much better than the sim-
ply supported panel. It is interesting to note that the slopes for
the various boundary support conditions behave according to the
trailing edge support conditions.

Since most of these results were for a square panel, the effect
of different aspect ratios (a/b = 0.5, 1.0, and 2.0) is shown in
Fig. 8. The larger aspect ratios produce a more stable response,
and the smaller the aspect ratio, the less stable the response.
However, for an aspect ratio of a/b = 0.5, the loss in stability is
not as great as the increase in stability for a/b = 2.0. Thus, for
the same panel flow area, the most effective use of the material is
to conflgure the geometry such that the flow-direction dimension
is greater than the width.

Influence of Orthotropic Materials

The major portion of this study on three-dimensional panel
flutter has focused on a single composite material. The
orthotropic material was boron aluminum, B/Al, B5.6/Al—
material 3, Table 2. For the materials listed in Table 2, it is
easy to see that there are a considerable number of cases and
conditions to evaluate in order to fully characterize flutter of a
composite panel. This section attempts to address an approach
to assess the panel fluttered for different composite materials.
By defining a composite material parameter, (E1; Egg /G%Z) V19,
the critical {¢/h = 0) and limit-cycle (¢/h # 0) dynamic pres-
sures can be scaled and plotted against this material parameter
for several limit-cycle amplitudes. The results shown in Fig. 9
show a strong linear correlation of these parameters. Thus, given
any new material properties, a reasonable estimate of the limit-
cycle response can be assessed provided the analysis has been
performed for at least two material systems. Further works is re-
quired in this area to provide the designer with a meaningful tcol
to accommodate flutter constraints into flow surface structural
designs.

Nonlinear Aerodynamic Effects

To complete this study an assessment of the third-order
piston aerodynamic theory is provided. The influence that the
nonlinear aerodynamic terms have on the motion of the panel
as it oscillates at a higher dynamic pressure is investigated
for an isotropic material and two composite material stacking
sequences. By including a small parameter multipler on each of
the terms in the piston theory expression, then Eq. (4) can be
written as

(r+1)
4

2 1 1
P~ Poo = Mq {—Wlt Wy T W,, + M(T/"’Qtw;t

14
Ot+1),0

+ MWz )2 + 12

1
(Vﬂ'ztwat

M3 Wz )3] (50)
where the parameter m can be varied for zero to one indepen-
dently. Tables 5 and 6 summarize, for the parameters shown, a
comparison of the limit-cycle results and the effects of neglecting
each of the nonlinear terms independently of the others. The
composite material results shown are for a boron aluminum ma-
terial, B/Al B5.6/Al—material 3, Table 2. Seven cases were
studied where the 7 parameters took on values of either zero or
one. For all of these results, the term that has the most signif-
icant influence when included in Eq. (50) is the w9, parameter.
This is easily seen by noting the case 3 results in Tables 5 and 6.
For this case, the first-order theory is used and only the mg, pa-
rameter is nonzero. The most interesting conclusion from these
results is that nearly all of the contribution from the nonlinear
aerodynamics is contained in the w,2 term.

SUMMARY AND CONCLUSIONS

The unsteady, hypersonic, aerodynamic theory and the von
Karman large deflection plate theory were employed to formu-
late the aeroelastic problem. Nonlinear flutter analyses were per-
formed to assess the influence of the higher-order aerodynamic
theory on the structure’s limit-cycle amplitude and the dynamic
pressure of the flow velocity. The presented procedure has been
used to solve the nonlinear panel flutter finite element equations.
This procedure utilizes a linearized updated mode approach with
a nonlinear time function approximation (LUM/NTF) method.
Linear finite-element flutter for isotropic and composite panels
and large amplitude isotropic panel flutter results were compared
with existing classical solutions and excellent agreement between
the proposed finite element method and alternate solution meth-
ods was found. The large amplitude panel flutter results using a
frequency domain solution and the full third-order piston aero-
dynamic theory were presented to assess the influence of the non-
linear aerodynamic theory and for the cases investigated only the
w,2 term was found to be significant.
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Fig. 1. Eigenvalue Variation for First Four Linear Modes
of a Simply-Supported, Square Panel for Material
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ory Aerodynamics of a Simply-Supported, Square
Panel for Material 3. (u/M = .10, Mh/a = .05).
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Fig. 3. Variation of Limit-Cycle Amplitude vs. Limit-
Cycle Dynamic Pressure of a Simply- Supported,
Square Panel for Material 3. (u/M = .10, Mh/a =
.05).
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o8

ch o8
04T
02r
0.0 . ’ . .
40 50 80 70 80 g0 100
e
Fig. 7. Limit-Cycle Amplitude at z/a = .75 and y/b = _ o ‘
.50 vs. Dynamic Pressure for Various Support Fig. 9. Limit-Cycle Parameter vs. Orthotropic Mate-
Conditions for a Single Layer Square Panel of rx'al Parameter for L1p11t-Cycle Amplitudes and a
Material 3. (u/M = .10, Mh/a = .05). Simply-Supported, Single Layer Square Panel of
Material 3. (u/M = .10, Mh/a = .05).
1.2 T T
1.0
081
ch 08
04
Aspect Ratlo
O afo=1.0
0.2k A a/o=2.0
A ab=0.5
0.0 . A
20 40 80 80 100 120 140

M

Fig. 8. Limit-Cycle Amplitude at z/a = .75 and y/b = .50
vs. Dynamic Pressure for a Simply-Supported,
Single Layer Panel for Several Aspect Ratios for
Material 3. (u/M = .10, Mh/a = .05).

1293




Table 1. Panel Flutter Theories

Table 4. Linear Panel Flutter, A¢r, for 3-D Anisotropic
Cantilever Square Panel (Ey1/Ey = 2., G13/Eg = 0.364,
vig = .24, p = .00026 lbs-sec®/in?, a = b = 12 in,

Table 3. Nonlinear Panel Flutter with Linear Aerodynamics,

Mg, for 3-D Isotropic Square Panel (E = 10 Msi, v = .3,
p = .00026 lbs-sec?/in?, @ = b =12 in, h = 0.04 in)

| Simply Supported Clamped Supported
Present Present
Dowell [18]/ FEM Kuo [21])/ FEM

¢/h | Eslami [32] | (8x4 Half | Eslami [32] | (8x4 Half
1 Plate) i Plate)
0.0 540.5 535.75 881.0 887.59
04 578.4 583.38 940.5 940.12
0.8 724.8 731.53 1081.1 1100.67

tValues read for charts, A= %@ﬁ;

Range of - :
Type |Structural |Aerodynamic Mach Flutter h=004in)
Theory Theory Numbers Results Lamination Angle
1 Linear Linear V2 < M < 5| Boundary Solution
Piston Method #=15° 6 = 45° 6 = 90°
2 Linear Linearized 1 < M <5 | Boundary Lin et al. 2.470 3.920 3.455
Potential [59]
Flow Rossettos 2.385 4.055 3.505
3 | Nonlinear Linear V2 < M < 5|Limit-cycle and Tong [58]
Piston Present FEM 2.386 4.060 3.507
4 |Nonlinear | Linearized | 1 < M < § |Limit-cycle (5x5 Full Plate)
Potential 3
Flow Aer = %, where D, = Eggh®
5 |Nonlinear | Nonlinear M >5 [Limit-cycle
Piston
Table 5. Effects on Limit-Cycle Dynamic Pressure by
Neglecting Higher-Order Terms in Aerodynamic
Piston Theory®
Table 2. Material Properties
Three
Single | Layer
Weight Case |m1t |m1z |mae |mog |mat |max Isotropic | Layer |{0/90/0]
Material Ey, | Ey, | Gig, Density, 1 1711070 [0 ]0 | 8252 [70.34 | 66.38
Number | Material | Msi | Msi | Msi |v12 | 1b/in® 2 |11 {100 {0 | 79.93 (70.12| 66.24
1 Grs/Ep (2130 | 1.58 ] 0.93 [.38 | .058 3 |11 f0]1 (0|0 | 77.00 [67.61  63.90
T300/5208 4 |1 11 (111 {0 |0 | 7742 [67.82 | 64.15
2 B/Ep 30.00 | 2.70 ] 093 [.21 | .0725 5 |11 1 {11110 | 7742 |67.82 | 64.15
Avco 6 |1 |1 1|1 {01 77.19 |67.69 | 64.03
5505 /4 7 (11111 (1}1 1} 77.30 |67.71 | 64.05
3 B?/G?}Xl 31.00\20.00 | 840 ).27 1 .09 @ Simply Supported, p/M = 0.1, Mh/a = 0.05,¢/h = 1.0
6061-F
4 StEEI~ 30.00 130.00 111.54 |.30 | .283 Table 6. Effects on Limit-Cycle Dynamic Pressure by
ssotropic Neglecting Higher-Order Terms in Aerodynami
5 | Aluminum |10.00 |10.00 | 3.84 [.30 | .100 O e g | erodymamice
Tsotropic iston Theory

Three
Single | Layer
Case |m1t| w1z | 7ot | 7oz | T3t |73y |Isotropic| Layer [[0/90/0]
1 111 (0|00 ]0 73.66 |65.13 | 61.67
2 1]14{170 (0|0 73.55 |65.13 | 61.70
3 1 /101 (01}0 71.11 |62.88 | 59.61
4 1y14j1]1(0]0 71.10 |62.88 | 59.65
5 1 ]1|1]1 (110 71.10 |62.88 | 59.65
6 (11 (1111{0 1 70.98 |62.77 | 59.55
7 1 ({1 (111111 70.98 [62.78 | 59.54

@ Simply Supported, /M = 0.01, Mh/a =0.05,¢/h =1.0
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