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ABSTRACT

A thin lifting-surface code based on unsteady vortex
lattice method coupled with a prescribed wake geometry
has been developed and verified through a number of
code validation procedures for applications to aeroelastic
analysis of helicopter rotor blades. The present thin
lifting-surface code has been subsequently coupled to a
structural dynamic model of elastic hingeless rotor blades
toanalyze the stabilty behavior. This was done by using a
moving block analysis and comparing the results
predicted by 2-D theory. The effects of interblade
unsteady wake dynamics beneath the rotor blades
(including the far returning wake of both the reference
blade and the preceding one) on aerodynamic loadings
are essential. The result shows the possible reason of the
overprediction of lead-lag damping by 2-D quasi-steady
aerodynamics is due to lack of both the tip-relief effect
and the unsteady wake dynamics effect among the
blades.

Introduction

Aeroelasticity deals with the behavior of an elastic
system in an airstream wherein there is a significant
reciprocal interaction or feedback between deformation
and flow. Moreover, rotorcraft aeroelasticity inevitably
includes the hub loads which work through the various
load paths into the rest of the aircraft. When the rotorcraft
body motion such as the pitch, roll, longitudinal and
lateral rigid body motions is added to the rotor problem,
the stability phenomena that are often of most importance
are ground resonance and air resonance. The blade flap
motion and the rotor aerodynamics must be accurately
included in an analysis of air resonance, since the flap
stiffness and aerodynamics determine the frequency and
damping of the body modes in flight (Ref. 1). The
problem of aeromechanical instability of a helicopter on
the ground and in hovering flight is a complex
phenomenon involving both the rotor and body degrees
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of freedom in which the rotor lead-lag regressing mode
which includes substantial body pitch and roll motion
may become unstable (Ref. 2). The rotor progressing and,
regressing modes appear in the fixed system essentially
as a wobbling of the disk, either forward or backward,
with respect to the rotor direction. The sources of
rotorcraft vibrations has been concluded that the
vibrations are mainly due to higher harmonic rotor
airloads, undesirable rotor-airframe interactions, and
airframe resonances near excitation frequencies. The
major two sources of rotor higher harmonic airloads are
regarded as the one per revolution periodic variation in
velocity tangential to the lifting surface due to forward
flight speed, and the rapid variations in velocity normal
to the lifting surface due to vortex wake shed from both
the reference blade and preceeding blades (Ref. 3). The
strength and location of shed vortices become time-
dependent due to even any small amount of rotorcraft
attitude change. These vortices which results from the
variation of circulation along the blade span and trails in
helical form behind the blades locally induce unsteady
airloadings associated with rotor transient responses since
the rotor blade undergoes severe aeroelastic deformations
and rapid changes in flow conditions.

Observations of the experimental research (Ref. 4)
revealed that higher harmonic airloads due to complex
induced-flow effects could be attributed to three major
factors: 1) three-dimensionl effects in the plane of the
rotor, such as the vorticity which results from the
variation of circulation along the blade span and trails in
helical form behind the blades, 2) the effect of vorticity
which has been shed and blown below the rotor disc and
which shoud be passed over by succeeding blades in
succeeding revolutions, and 3) the effect of vorticity shed
by previous blades and in previous revolutions. So, itcan
be safely stated that the accurate modeling of unsteady
aerodynamic loads required for aeroelastic analyses
including interblade wake dynamics continues to be one
of the major challenges for rotary wing aeroelasticians.

A wide array of mathematical models starting from
simple one and computationally intensive ones has been
developed and applied to simulate the complex
phenomena of rotor unsteady flowfield (Ref. 5). There
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has been done much research efforts by lifting surface
method using vortex filament theory. Most of the efforts
has been concentrated to the prediction of rigid-blade
rotor performance and free wake geometry for tip vortex
relocation. The direct consequence of the lift on a lifting
surface in three-dimensional or unsteady flow is a wake
of trailing and shed vorticity. This wake vorticity, in turn,
induces a velocity at the lifting surface that has a major
influence on the loading. The calculation of the wake-
induced velocity is therefore an important part of rotary
wing aerodynamic analyses. Considering both accuracy
and efficiency, the calculation of the wake-induced
velocity is often accomplished for the helicopter rotor by
modeling the wake as a series of discrete elements. For
each vortex element in the wake, the induced velocity is
evaluated by analytical expressions; and, then, the total
induced velocity is obtained by summing the
contributions from all elements. Calculations of the rotor
nonuniform inflow are thus based on the induced
velocities due to discrete elements of the wake. However,
only a limited number of application using lifting surface
(Ref. 6) or lifting body aerodynamics (Ref. 7) was
reported for the computation of rotor unsteady airloads
undergoing harmonic or arbitrary perturbed motions and
for the prediction of rotorcraft aeroelastic stability,

The aim of the present work is investigation of the role
of unsteady wake dynamics and three-dimensional tip-
relief effects for elastic rotor system eigenvalues. For
investigating the interblade vortex-phasing effect on
rotorcraft  dynamics, a diffrent unsteady three-
dimensional model that can capture not only the near
wake but also the far wake (including both trailing
vortices and shed vortices) which is eventually passing
below the elastically deformable reference blade is still

required. In addition, there exist inherently different
dynamic modes in rotors such as collective, teetering,
reactionless (differential), cyclic progressing, and cyclic
regressing mode. Thus, to develop an unsteady model
suitable for rotorcraft dynamics, a prerequisite is the
accurate computation of the wake induced velocity along
with the resulting airloads and blade motion for various
kinds of helicopter rotor system.

In the present formulation, rotor blades are regarded as
thin lifting surfaces. These thin lifting surfaces and the
wake region are discretized by a number of vortex
filaments piecewise constant strength. The unsteady
strengths of all vortex elements are determined by a time-
marching solution procedure. The paths of these unsteady
vortex elements are prescribed to make the solution
procedure linear. The panel density and the number of
discretized wake elements are limited for computational
efficiency. For the prediction of steady loading, a lifting
surface can be divided into hundreds of vortex panels;
but, for the prediction of unsteady loadings, the number
of vortex panels and unsteady wake elements are severely
limited due to computational time and memory
requirements. To investigate the role of unsteady wake
for rotor aeroelasticity, the wake elements trailed and
shed from both the reference and the preceding blade
undergoing different motions are taken into consideration
up to a finite number of revolutions.

Aeroelastic Analysis of Elastic Rotor
by Lifting Surface Theory in Hover

For hovering rotors, the 3N nonlinear, nonhomogeneous,
constant-coefficient ordinary differential equations are
linearized for small perturbation motions about the
equilibrium operating conditions. The coefficient of these
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Fig. 1 Interactive Analysis Module of Rotor Aeroelastic Analysis
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linearized perturbation equations define the unsteady blade
motion near the equilibrium operation condition. The
coefficients of these linearized perturbation equations
define the unsteady blade flapping motion near the
equilibrium operation condition. In the case for which
quasi-steady theory aerodynamics is used to calculate the
dynamic residual vector, the aeroelastic analysis can be
performed by computing the steady-state hover response
and by obtaining the matrices describing the sensitivity of
the residual force vector F to perturbations about the
equilibrium state. Then, the mass, damping/gyroscopic,
and stiffness matrices, which depend upon the rotor
angular speed, the blade properties, and the assumed
modes in the analysis, are obtained for eigen analysis
which yields structural dynamic behavior of the rotor
sytem. The local stability of the steady-state response is
then described by the equation

[MI{Z}+{CKz}+{K]{z}={0} M

This linear second order system is converted to first order
by defining the state vector

0z={23}

so that the homogeneous equation becomes

(I i oy 02PHe2) @

Then, the system stability can be determined from the
eigenvalnes of the system modal matrix [P] stated above
(Ref. 8).

Unlike quasi-steady aerodynamics theory, lifting surface
aerodynamics does not have explicit aerodynamic
damping and aerodynamic stiffness terms since all the
velocity terms enter the right-hand-side as  boundary
conditions which specify the normal velocity of the elastic
thin lifting surface. Therefore, we have

[MKZ}+{CH{z}+{KKz}={f} 3)

where

2 S2n o _ .
—écos chf(l)x CD(x,t)‘}‘idx (+viscous)

2 2h (3 -
[f}= +6lacos chf(l)x C (X)X
=2
¥C 2 152~ (< =
+——6a cos chjox CM(x,t)Gidx

where {f} represents the generalized force due to
aerodynamic forces. Thus, the damping [C] and stiffness
{K] matrices lack aerodynamic terms, which makes an
eigenvalue analysis impossible. Furthermore, the dynamic
residual of each time step becomes very different from that
of quasi-steady aerodynamic theory since the magnitude
and phase differences in lift create aerodynamic damping
in an implicit way. The system stability can be obtained,
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Fig. 2 Block Diagram of the Present Aeroelastic Analysis

however, through a numerical perturbation of Az about its
equilibrium state. Then, by tracing all the time histories of
motions, one can thus obtain input data appropriate for the
Fourier analyzer (Ref. 9) which yields damping and
frequency values of blade motions. The perturbation
equations are homogeneous, constant-coefficient ordinary
differential equations of the form

[MJ{A2)+[C){Az}+[K]{az)={Af} @)

where Az contains the perturbed quantities of blade
motion; and ar represents the small perturbed quantities of
aerodynamic forces which are calculated in real time base
from the input of perturbed az. When the blade is moving
in air, the aerodynamic forces become nonlinear functions
of both the elastic blade deformations and the relative
veloecity due to the blade motion at each instant of time.
The effect of past force history is accounted for by
consideration of the time-dependent wake vorticies which
are generated due to the time and spanwise variation of the
blade bound vorticies.

Once the equilibrium deflections are determined, the
coefficient matrices, (M], [C], and {K] can be found, and
the generalized force can be calculated from the known
equilibrium blade deflections and the blade properties. To
start the numerical perturbation procedure, initial
perturbation of displacement and velocity are required.
The magnitude of numerical perturbation of these
deflections is a few percent of equilibrium deflection
respectively. To investigate the rotor damping, the blade
perturbation is given; and then the blade is set free to
move under the interaction of internal, inertial, and
external aerodynamic forces. At each time step, from the
known values of state vector and force term, the blade
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geometry and the total velocity impinging on the blade
local surface can be determined by a numerical integration
routine such as the 5" or 6" order Runge-Kutta-Verner
method. Since the different velocity impinging on the
clastic blade, the AIC should be computed at each time
step to include the effect of derformation and to update its
normal boundary condition due to the perturbation. This
would be rather expensive; and it is fortunate that, when
the perturbation is only few percent, the numerical result
of using the AIC (aerodynamic influence coefficient)
computed at the equilibrium state shows only a small
difference with that of the AIC updated at each time step
as long as the normal boundary condition is updated at
each time step.

Thus, an interactive numerical procedure is formulated
for tracking the physical variations in time domain both of
the in the flow field and elastic rotor blades to analyze the
aeroelastic stability.

Fig. 3 Schematics of the Unsteady Wake

Formulation of Interactive Numerical Procedure

As the rotor blade moves, it sets the air in motion. As a
result, vorticity is created in the boundary layers of the
upper and lower surfaces and vortices are formed along
the sharp edges. These vortices are shed and convected
away from the blade surface and constitute the wake. To
calculate the instantaneous strength of the streamwise
vortex sheet, shed at the trailing edge, Kelvin's theorem is
applied. This theorem postulates that the circulation
around a closed circuit which moves with the fluid is
constant. This integral derivation actually implies that any
ransient change in the circulation of the blade is
compensated by the shedding of vorticity opposite sign.

dr L dr

_dTblade HTwake: 3)

This theorem postulates that the circulation T around a
closed circuit which moves with the fluid is constant. This
integral derivation actually implies that any transient
change in the circulation of the blade is compensated by
the shedding of vorticity opposite sign. The induced
velocity is the sum of all trailing and shed wake vortex
filaments. The strength of unsteady trailing and shed wake
segments is obtained by spanwise difference and timewise
difference of the chordwise sum of bound vorticity of each
panel, respectively. For example, at a time equal to t - At,
the strength of one segment of trailing and shed vortex
filament becomes as follows (Ref. 10).

M B M g
Iy p(ht-at) = zrmn(rj +l,t—At) - Zl"mn(rj,t~m) 6)

Igprt-at) = r\zﬂrn%n(rj,q - r\zﬂrr?m(rj,t—m) %)

The control point is at mid-span and three-quarter chord
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Fig.4 Schematics of Hingeless Rotor Blade

of each rectangular element of the bound vortex surface,
which satisfies the Kutta condition implicitly. The
boundary condition of no flow penetration is satisfied at
this control point' of each element. The instantaneous
induced velocity at any point on the rotor blade surface
will be a sum of all the velocities induced by the vortex
elements as shown in equation (8).

Fxdl

oo r
_Eﬁsurfacewake ‘F3‘ (8)

9Z surface

After the kinematic analysis of the deformed rotor blade,
the perpendicular velocity components (V) impinging
on the deformed lifting surface at each collocation point
becomes the right hand side of equation (9) which includes
the normal component of the perturbed freestream and one
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due to flapping, pitching and lead-lag motion of the elastic
rotor blade as well as one due to rigid blade motion. To
satisfy no flow penetration across the collocation point of
the lifting surface, the total sum of the induced veocity by
the bound and wake filaments and total kinematic normal
velocity should vanish at each collocation point in
hovering flight as follows.

Fxd T -~ =
#surface+wake 3 = vgh
‘ l &)
=—Qx(6+)+W+Qv(

+W')—~(0+)v—E(6+¢)cos Boc

pC

where ¢ is the relative chordwise distance between the
elastic axis and collocation point of each panel. Previous
rotor blade applications with two-dimensional quasi-
steady theory do not have the last term &(6+é)cosp, which

represents an unsteady normal velocity due to pitching
rotation and chordwise offset. After discretizing the lifting
surface into panel elements, the previous equation can be
expressed in a simplified marix form

B} = {77} - Whota (10)
where [B] represents an AIC matrix due to the unit
strength bound vortex I" of each panel and {W} is the total
induced velocity contributed by all trailing and shed wake
filaments. For a two-bladed rotor undergoing arbitrary
transient motions, as mentioned before, there are two
different modtions depending upon flight conditions such
as collective, teetering (cyclic differential), respectively.
Thus, a formulation that can treat the interblade phase
difference is required. Equation (10) can be expressed as

follows for a two-bladed rotor (See reference 6 for multi-
bladed rotor cases).

(6, Pr2 e = frgn)
[T e o frf”
L e
- [ngn}m[ E:FT, (r.i-kAL) ® {‘I’q}m ]
[ et o frgf

where (i,m) represents the chordwise, and j represents
spanwise panel number of blade surface and (k,n)
represents the timewise, spanwise number of wake
segments due to a finite number of revolutions. {T], [S]
represents AIC matrices due to the individual unit strength
trailing and shed wake filaments of each blade. Also, R
and P1 represent the reference blade and preceding blade,

respectively. The differential strength of wake vortex
filaments multiplied by AIC gives some finite out-of-
phase normal velocity component on each collocation
point of the lifting surface panels.

To simulate the interblade phase difference, a phase

control matrix is introduced as {¥a} which actually makes
the release of each vortices' memory to be delayed
dependent on each blade phase. For a teetering mode, for
example, the phase of reference blade and preceding blade
(P1) has 180 deg phase difference which implies those
blade wake vortices have opposite sign of strength
compared to reference one. After an initial transient
revolution, the interblade phase difference effects are
clearly demonstrated in the flowfield.

In forward flight, trailing and shed wake AIC must be
computed as function of radial and azimuthal to the wake
geometry, whereas in hover it can be computed once in
rigid blade. When a non time-varying (rigid) blade is
considered, bound vortex AIC can be computed once; but,
when a time-dependent (elastic) blade is considered, every
bound vortex AIC should be computed at each time step.
However, when perturbed motions are small in the rotor
blade in hover with respect to equilibrium positions, the
wake AIC do not have to be iterated at each time step
because wake geometry changes only a small amount due
to the small fluctuations of the blade motions. The time-
dependent boundary condition of no flow penetration must
be updated at each time step.

The solution of the algebraic matrix equation gives the
bound vortex strength of each element at each time step
which determines the local pressure jump on the blade
surface as expressed in equation (12). The detailed local
chordwise pressure jump can be obtained if enough
chordwise panel number are used. The amount of
computational time is related to the total number of blade
panels, number of wake revolutions, and number of time
steps.

2pu Jca_“’dxA (12)

Ap(t) =
where i mdu:ates the spanwise section and ¢, S represent
its sectional chord, and area, respectively. This can be
rewritten in terms of the panel chordwise unsteady bound
circulation as follows.

AR(t) =

(1) = Apy(t)S; = 2pU(Y) Jo

xAyi (13)

The resulting sectional unsteady aerodynamic loadings
about the aerodynamic center are obtained by integrating
each normal force along the blade surface.

Results and Discussions

To investigate the effect of wake alignment on the
vibratory airloadings beneath the rotor blades, the cyclic
differential plunging hub motions having integer-multiple
of frequency ratio (N = w/Q) were added to a two-bladed
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rigid rotor in the collective mode. The collecive pitch
angle is set to 8° which determines the wake helix
departure angle. The lifting surface is discretized as one
chordwise and eight spanwise bound vortex filaments, and
each blade has each 4 wake layers below the rotor disc.
Figure 5 shows the time history of the perturbed
generalized lift from the results of two-dimensional quasi-
steady aerodynamics and the present method. In the case
of N=1 hub motion, the two blades oscillate in phase and
generate in-phase vortices. Thus, in this case, the unsteady
vortices shed from the preceding blade arrive at the
reference blade after one-half revolution make the induced
inflow out-of-phase which means cancelling effect of
wake-induced flow (small lift loss). The perturbed
airloading is mainly influenced by near wake vortices.

In the case of N=2 hub motion, the trend is reversed
from that for frequency ratio 1. The in-phase vortices shed
from the preceding blade pass below the reference blade in
phase. This in-phase inflow causes the unsteady lift
fluctuation to be smaller than that of N=1 case, as shown
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in Figure 6 because the vortices shed from the reference
and preceding blade have same sign of strength when they
pass below the refence blade. Figure 7 shows the spanwise
lift distribution of these two cases. At the outboard section,
clear lift loss due to the strong tip vortex of near wake is
observed for both two frequency ratios. But for the N=2
case, more lift loss is observed by the in-phase shed
vortices. Thus, the rigid hingeless two-bladed rotor
experiences an abrupt lift loss at even integer exicitation
frequency in the collective mode. However, the quasi-
steady theory is modified version of two-dimensional
airfoil theory could not observe the vortex-phasing
phenomena beneath the rotor disc regardless of rotor blade
motions, which leads to predict larger magnitudes of
thrust.

For two-bladed rotors in hovering flight, there are two
kinds of dynamic motion - the collective mode and the
teetering (cyclic differential) mode. In the teetering mode,
one blade is moving in an upstroke, while the other one is
moving in a downstroke; in the collective mode both
blades are subjected to the same motion. Thus, the
unsteady vortex strength of each wake grid is dependent
on the mode. In a teetering mode, matrices of vortex
strength of the wake of the preceding blade have equal
magnitude and opposite sign of those of the reference

blade. Figure 8-9 shows two 3-D representations of
induced inflow’ velocities due to the shed wake of both the
reference blade and preceding blade. As shown in the
figure, the induced inflow produced by this kind of
unsteady wake is dependent on the individual mode of the
two-bladed rotor subsection From Figure 9, it is noticed
that after half revolution the wake-induced inflow by the
preceding blade has some magnitude since the vortices
generated by the preceding blade takes half revolution to
reach the reference blade.

Figures 10-11 show the time histories of flapping
response and flapping motion-induced generalized lift in
the teetering mode at a collective pitch ¢=2°. Because
two-dimensional quasi-steady theory produces larger
flapping-induced lift due to the lack of the tip-relief effect
and the unsteady wake effect, the response obtained by
quasi-steady theory decaies earlier. The larger velocity
(90° phase lag with displacement) implicitly couples with
larger acrodynamic damping forces which are dependent
on velocities of blade motions. This also proves that the
two-dimensional quasi-steady theory is not suitable for
rotor craft aeroelastic anaysis. Figure 12 shows the phase
plane of flapping velocity and displacement during the
residual transient period at low collective pitch angle. As
expected, the locus predicted by the present theory shows
slow convergence due to lift loss than that of quasi-steady
one (Ref. 11).

As discussed earlier, the time histories of numerically
perturbed lead-lag, flap and torsion equations yield
damping and frequency values through the use of the
moving block analysis. Figures 13-15 show the time
histories of lead-lag, flap and torsional perturbed motion at
8 deg collective pitch. Once the equilibrium deflections are
determined, the coefficient matrices, {M], [C], and [K] can
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be found, and the generalized forces and moment can be
calculated from the known equilibrium blade deflections
and the blade properties.

To start the numerical perturbation procedure, initial
perturbations of displacements and velocities are required.
The magnitude of numerical perturbation of these
deflections is a few percent of equilibrium detlection
respectively. A small value is used so that nonlinearities
do-not enter. To investigate the lead-lag damping, only the
lead-lag perturbation is given; and then the blade is set free
to move under the interaction of internal, inertial, and
external aerodynamic forces. The initial values of velocity
and force are assumed as zero at time t = 0, since at the
maximum lead-lag deflection, it can be assumed that the
lead-lag velocity and theresidual drag are at a minimum.

Ateach time step, from the known values of state vector
and force term, the blade geometry and the total velocity
impinging on the blade local surface can be determined by
a numerical integration routine. Once the time histories of
lead-lag, flap and torsional deflection are obtained, the
modal damping and frequency can be determined using the
moving block analysis as in Figure 16 which shows the
frequency response of particular lead-lag mode is plotted.
When the rotor blade has highly coupled motions, it is
recommended that a particular mode of interest for each of
the lead-lag, flap or torsion deflections is perturbed
initially and then the subsequent motion is analyzed to
obtain the modal damping and frequency for that particular
motion and mode. The rotor blade used for the present
computation is a simplified rotor that was suggested by
Sharp (Ref. 12) for an analytical study. Figure 17 show the
comparison of the lead-lag damping. The damping from
the present method shows a lower value than ones from the
damping from two-dimensional aerodynamics.
Experimental measurement of lead-lag damping was
performed in teetering mode excitation, which means more
lift loss due to wake alignment beneath the reference blade
in odd number of mode frequency. The present interactive
numerical modeling could capture the interblade wake
alignment whereas the two-dimensional theory took
constant wake-induced inflow regardless of blade motions.
This difference of the lead-lag damping is expected to be
larger if the flapping and torsional frequencies are to be
interger multiples.

Conclusions

The present thin lifting-surface code has been
subsequently coupled to a structural dynamic model of
elastic hingeless rotor blades to analyze the stabilty
behavior. This was done by using a moving block analysis
and comparing the results predicted by 2-D theory. The
unsteady wake effects on rotor aeroelastic stability are
essential. The result shows the reason of the overprediction
of lead-lag damping by 2-D quasi-steady aerodynamics is
due to lack of tip-relief effect, the unsteady wake dynamics
effect including returning and far wake of all blades.

Coclusively, without inclusion of the interblade rotor wake
effect, the predction of rotor stability would lead to
inaccurate results.
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