ICAS-92-6.6.2

AEROELASTIC STABILITY CHARACTERISTICS OF
COMPOSITE CYLINDRICAL SHELLS BY THE
FINITE ELEMENT METHOD

Giuseppe Surace
Aerospace Department
Politecnico di Torino

Summary

In the first part, the stiffness matrix is developed for com-
posite circular cylindrical shells by elastic theories with the
application of finite element method. A 14 parameter el-
ement is adopted. The results obtained using Novozhilov

and Naghdi theory [1], [2] are compared. In the second

part, the mass, initial stiffness and aerodynamic matrices
are given. The eigenvalue problem is formulated and nu-
merical results are presented.

1 Introduction

By applying the Novozhilov [1] and Naghdi [2] theory, fi-
nite elements can be used for circular cylindrical shells and
for stepped axially syinmetric shells in general. As demon-
strated by G. Cantin [3-4], Donnell [5] and Flugge [6], this
theory violates Maxwell’s principle for linear structures and
limits the degrees of freedom of rigid-body motion. With
this theory, rigid body motion can ncver be completely
free of deformation. Application of the Reissner-Wang [7-§]
theory provides similar results, which coincide with those of
Love [9], who first developed the general theory of bending
for thin shells. This fact vitiates the particular character-
istics of a finite element, which must be valid for general
use and must lead to deformation-freec modes flor, and only
for, rigid body motion. In this paper, the finite element
method is applied to the aeroelastic stability characteris-
tics of a cylindrical shell subject to internal pressure and
axial compression by using the Novozhilov [1] and Naghdi
[2] theory. The elements have 14 degrees of freedom and
are conforming in that the curvatures are guarantced to be
equal along the cylinder axis at the nodes. The material is
assumed to be composite and the stiffness matrices, which
are also a function of fiber orientation, exhibit extension
flexure coupling typical of these materials. These matri-
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ces can be used to compare the two theories, given that
they can be calculated directly and permit the parameters
involved to be varied readily.

In the second part of the study, the cylindrical clements
with 14 degrees of freedom employed in the first part are
used to calculate the mass matrix, the acrodynamic matrix,
and the initial stiffness matrix due to internal pressure p,,
and axial compression load ;. The flutter equation is then
written directly using the principle of virtual work. This
approach is based on that used for panel flutter {10}, and
permits parametric analysis of aeroelastic stability of the
cylinder. The results agree with those of the analytical
and experimental works of Carter-Stearman [L1], Olson-
Fung [12] {13] and other authors when initial imperfections
are not taken into account.

2 Theoretical considerations

One of the fundamental requitements of a finite element
is that it must have rigid body motion modes which are
free of strain. If the theory used to formulate the finite el-
ement is inconsistent, erroncous strain-free modes may be
introduced by the displacement field asswmed when devel-
oping the element. Because several theories have been pro-
posed to formulate the relationship between displacement
and strain, it has been necessary to analyse each thcory
to determine, and then subsequently to disregard, those
which are not consistent.

With reference to figure (1), the following notation can be
established.

o {, 1,z : local curvilinear coordinates ;

e u, v, w: displacements of the middle surface of the
shell, in the directions &, 7, 2 respectivelv.

__‘....ﬁ_ —— e —— -

figure 1
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In general, the relationship between sirain and displace-
ment can be written,

{e} = [O]{s} )

where {6} is the veclor of the displacement relative to the
mid-surface, while [O] is a matrix which constitutes the
specific relationship between strain end displacement. The
matrix [O] vaties according to the theoretical development
used to attain the formulation (1).

In the table shown below, the matrix [0] is listed for several
cases which are commonly presented in the literature on
this subject.

(a) Donnell and Fligge (h) Reissner and Wang

0/t d/d¢
o/ 07 1/r 3/ 7 1/r
d/dn Do /o /0%
—22/08 —2/0¢2
—d%/d92 RT10/dn — 22/ 09t
—202/d809 RT1D/08 ~29%/280n

(c) Novorhilov “(d) Naghdi

o/0¢ 2/0¢
0/dn /& o/ 1/x
/3y d/d% /oy d/0%
—3/082 —d1/08?
RT3 /Oy - 92/on? 2r-10/dy =~ 02/dy* Lr -2
2RVID/OF —20%/dt0y 2rRTIB/DE — 202080y
table 1

It has been demonstrated in refcrence {4] that, by using
theories (a) and (b), a rigid body motion of the cylinder
produce strain which is nol consistenl. Therefore only (c)
and (d), the theories of Novozhilov [1] and of Naghdi [2],
are considered to be suitable to be used in formulating the
finite element.

3 Finite Element Formulation

In this study, a finite element is considered which has lwo
nodes or, more precisely, two nodal rings. The characteris-
tics are the same {or each of the points along the perimeter
of the nodal rings.

The displacements consist of a w component orthogonal to
the surface, a v component tangential to the surface and
an axial u component, as illustrated in fig. 1.

For this analysis, a displacement field has been selected
which is function of the axial coordinate z and the circum-
ferential coordinate ¢. The dependence on z is a polyno-
mial type function and can be written as

u(z) = o+ e+ azz? + aya’ (2)
v(z) = az+ ast+ ara? + aga® (3)
w(z) = a9+ apT + 12 + aqp® + apr + aa’(4)

while the dependence on ¢ is represented by harmonic [unc-
tions.
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The properties of orthogonality of the trigonometric func-
tions allows the decoupling of equations of motion relative
to the different hiarmonics. Thus, for the generical har-
monic n, the displacement ol a point of the surface of the
cylindrical element P(s, ) can be written as,

{6} = [@[{é(=)} (3)
where,
{6:} = [u(z, 9),v(e, 9), w(z, ¢)]" (6)

are respectively the axial, tangential and radial displace-

ments of P(z, ),

{6(2)} = [u(=@), v(z), w(x)]" (7)
Thus,
[®] = [cosnd, sin nd, cos ng) (8)

The determination of the constants a; is obtained by im-
posing conditions on (2), (3), (4). The number of condi-
tions is equal to the number of nodal displacements.

The vector of nodal displacement is assumed to be as fol-
lows,

{Ae}]4xl

= [uhua}lavl)vml’zul,“)zlv Wiz,
-
U2y Ugp, Uy — Uz, Wy, —Wyy, ‘wa:x'z] (9)
where the first suflix 2 indicales the derivative of the func-
tion with respect to z, and the second suffices 1 and 2

indicate that this is relative to nodes 1 and 2. By writing
z/L = s it is possible to show that, in matrix notation this

can be written
{o(s)} = [N]{A} (10)

where the non-zero terms of the matrix [V]sx14 are

nay = 257 — 3% +1
L(s* —2s* +5)

71(1'2) =

71(2'3) = 77,(1'1)

’Vl(g‘,i) = 71(1‘2)

n@s = —06s°+ 1557 — 105 + 1

n@g = L{=3s"+8s"— 5% -+ s)

L:
nan = —2—(—3') -+ 384 — 383 + 3)
nag = 25° — 357
a9 = L(s® = %)
N2,00) = “N(g)
N2,y = TN(9)
nE12) = 6s® — 155" 4+ 1087

N3 = L(3s° — 75t 4 457)
2

1(3,14) —2—(55 — 25" 4 _93)

Thereflore, substituting (10) into (5),

{6} = [P]IN[{A} (1)

4 The Deformation State

The vector containing strains and curvatures,




€= [6576917507X31X07X501T (12)
is related to the nodal displacement through the relation-
ship, ~

{e} = [O){¢} (13)

where [0] is a matrix of differential operators, as defined
by Novozhilov and Nagdhi theory (fig.1).

In this specilic case the reference system is (s, ¢) instead of
(€,m), where ¢ =z, = $R. Substituting (10) into (1),

{c} = [B{A.} (14)
with,

[B] = [O][2](N] (15)

5 The Elasticity Matrix

The relationship which exists between the membrane and
bending forces,

{NY} = [Pzy 1, oy 2, 11y M) (16)
is shown in ref. [1] to be,
{N} = [E(=){e) (17)

The elasticity matrix E is function of z [or a general lami-
nate. It has been shown that,

Bo[4 8] 08

where, as illustrated in figure 2,

NS

MIDDLE SUAFACE 7

Tz _,_lm z, h
-L—————{h{ I, 2,
[N i
1‘/“[! NUMBER

figure 2

(19)

By By Bis

B] = { By By By } (20)
B'},] BS‘Z BBB
Dy Dy Diy

(D)= { Dy Dy Do } (21)
D:}l DSZ D}}
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.A,'j = ZN:(Q )(zk—3k~l) (22)
k=1
N

BU = Z(Q ) ( A‘*zl\ l)/2 (23)
k=1
N

Dy = Z(Qu)( ~z)/3 (24)

The coefficients @;; are defined as follows,

Q) =[e1 ' [Q)e] ™ (25)
with
cos?( sin? 0 2sin 0 cos 0
@ 1= sin® 0 cos?0  —2sinfcosl (26)
—sin0cosl sinfcosl cos?0 —sin®0
and

Qi1 Gie Ui
[Ql= [ Q22 82,6} (27)

The terms @Q;; are defined for the case of the materials
being orthotropic by,

Qun = El/(1 - 1’121’21) (28)
Qiz = vl /(1 = vizvm) (29)
Qa2 = BEf(1—wvipvm) (30)
Qs = G (31)

(32)

le = Q'zc =0

with v, By = vy B4

6 The Stiffness Matrix

To construct the stiffuess matrix of a single cleient, the
principle of virtual work can be used,

Li= /V{e"}T{o—}.(zv (33)

Taking into account equation (13), the internal work [;
can be expressed as

L= /5 {&)T(N).dS (34)

Therefore, by substituting into (35) equations (14),(17)

et [0

By equating the internal work L; Lo the work done by the
external forces L, = {A}T{F,} (positive when they have
the same direction as the corresponding displacement), the
stillness matrix can be written,

k= [ [er

and more simply,

BIRL.d$p.dS{A,}  (35)

1R L.d¢.dS (36)

[K] = #RL[K] (37)
The stiffness matrix [K] obtained using Novozilov’s theory is
presented in Appendix. It is constituted by elements w hich
exhibit coupling extension-bending. The matrix [ K] repre-

sents the correction due to Nagdhi [2]. The terms are




small with respect to the corresponding terms of matrix
[c/(] and are independent of the [A] matrix. The matri-
ces [I{] and [ K] become very simple when the material is
either isotropic or one of the following:

e Antisymmetrical Cross-Ply Laminates: An odd num-
ber of orthotropic layers with fibers alternatively at 0
and 90 degrees.

At = Az = Biz = Byg = Bgg = Dig = 0 (38)
Bz-) = lgll (39)

e Antisymmetrical Angle-Ply Laminates: an orthotropic
layers orientated at —a and a degrees with respect to
the middle plane.

Ajs = Ags = Biy = Bay = Bgg = Dy = Dy = 0 (40)
o Nonsymmetrical Laminates

At = Ags = Big = Bag = Dyg = Dy =0 (41)

7 The Mass Matrix

The mass matrix is obtained hy impesing the condition
that the virtual work done by the inertial forces must equalise
the virtual work of equivalent inertial forces applied in the
nodes of the element. The inertial force is written as,

2
{AFm} = —pgig[ez(i—)}hu]?,.[,.d(f).flﬁ (42)

If displacement {6.} is assumed to be an exponential func-

tion of time, _
{8c(t)} = {6c}e™ (43)

then,

{AF)} = pw?{8.)e™ hRLddds (44)

Using equation (11),

[m] = pRhL/ /

[h] = mpRAL[m] (46)

The clements of the matrix [m] are presented in the Ap-
pendix.

D][N)ddds (45)

or

8 The Aerodynamic Matrix

The aerodynamic theory considered here is called the Pis-
ton Theory. This constitutes a first order approximation of
the linear theory relative to the potential flow of a super-
sonic stream. According to this theory, the acrodynamic
force [16] acting on the infinitesimal arca Rd¢dz can be
written,

P(I1¢7t) = -

2R [2{W)
g dz

LM =2\ oW} (W)
- — lddx 47
U (M‘l-]) TR e )

In (47), the first term constitules the true acrodynamic
force, while the second and third terms represent the so
called aerodynamic damping. Assuming a harmonic de-
pendence on time,

Wz, ¢,1) = w(x
AP(x,$,1) = Ap(x

it is possible to write,

e (48)
) (19)

2R [a{wu,m N

/\’12 2 _{w(mvd))} ¢ T 50
U (MZ >{w( #)} tods ()

28R

Also in this case, for the determination of the acrodynamic
matrix called [A], the pressure p is reduced to the nodes
obtaining

(A] = '%/OL /Ozn {{w(x,(/))}Ta{wg: ¢)_}_+

That for simplicity can be written with this notation

(A} = U([an] + iklas]) (52)
where,
.[(LR] = 8] [1 A] -+ Cy [2A]
~[“l’] = C3 [2/4]
€1 = »“WR/)a//? (53)
e = mLpaf2
e = —(mRLpJS)(M? —2)

The elements of matrices [ A] and [, A] arc presented in the
Appendix.

9 The Initial Stiffness Matrix

This matrix takes into account the application of a com-
pression axial load P, and the presence of an internal pres-
sure pm. In the formulation of this matrix only the mem-
brane forces due to P, and p,, are considered. Thus, the

10
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transversal effect of the shear is neglected. The potential
energy due to the internal force p,, and the axial compres-
sion P, for the generic harmonic can be written as,

L p2xn .
Vi L [ [0y i Rg.ds (54)
2Jo Jo
where {r} is the vector of rotations so defined,

{r}) = [rs,rz,mal" = [C1{6) (55)

with,
a
[C]= R TR (56)
18 _19
IRaF 20z
whilst
[F] = [Fo, Py, (I + ) (57)
with
Py
Feo= oh==50

Fy = o4=Bpn

By substituting (11) in (55), it is possible to express the
vector {r} as function of nodal displacement through the
matrix [B;] obtained applying the operator {C] to {6}

{r} =[B.H{A]) (58)
Equation {54) can be written as function of nodal displace-
ments {A.} as follows

V= SIATIHAL) (59)

Comparing (54) with (55) and taking into account (58) it
is possible to write,

. 1 2r
(K] = RL / / (B, [F)[B.)dp.ds (60)
o Jo
where, for simplicity,
(K] = 7 RL[K}] (61)

The elements of matrix [/{;] are presented in the Appendix.

10 Flutter Equation

Assembling finite elements and applying kinematic bound-
ary condition the instability of the cylinder can be ex-
pressed as follows,

(D] = AN {A} = {0} (62)

where

(D] = (7)™ ([M] + ($)2([AR] + ik[AL])

{A} = matrix of generalized displacement of all the nodes
of the structure

[K7] = global stiffness matrix of the structure

[M] = mass matrix of the structure

[AR] = real part of the total aerodynamic matrix

[A;] = imaginary part of the total aerodynamic matrix
A= 1/w?

k=wS/U
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11 Concluding Remarks

Equation (62) constitutes a complex cigenvalue problem.
The aeroelastic instability of the cylinder is determined by
finding the eigenvalues A. lInfact the instability is man-
ifested when the amplitude of oscillation of the cylinder
increases exponentially with time. TFrom a mathemati-
cal point of view, this can be verified when the imag-
inary part of w becomes negative. In those conditions
{A)} = {A}e™! corresponds to a harmonic oscillation
with an amplitude that grows exponentially. The instabil-
ity can be determined by fixing the values of the internal
pressure pp, of the axial load P, and of the number of cir-
curmnferential harmonic n. Then the value of % is varied
until the imaginary part of one of the eigenvalues becomes
negative. This procedure must be repeated for different
values of n in order to determine the mininmun critical ve-
locity which is attained in correspondence of the critical
number of harmonics, 1., as illustrated in [15].

The finite element method allows the study of flutter of
composite circular cylindrical shells subjected to initial in-
ternal pressure and axial compressional load. The results
obtained in the case in which the material is omogeneus
and isotropic, are comparable with those found analytically
[13], [16] and experimentally [14].

As already it has been shown, in reference [10], for a flat
panel, also for a composite cylindrical shell the angle of
fiber orientation @ influences the value of the natural fre-
quencies and the flutter parameters.

Finally, it is necessary to point out the structure of the
matrices for the element (see appendix). These are sym-
metrical and are constituted of four submatrices that are
symmetric, as well with the exception of matrix [;A4].
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13 Notation

e R Cylinder radius ;

0 Fibre orientation ;

L Length of finite element ;

S Length of cylinder shell ;

N Number of layers ;

e t Time ;

E1,E; Youngs moduli in the two principal directions ;

{e"} Virtual deformation ;




vi2 Major Poisson’s ratio ;

217 Minor Poisson’s ratio ;

(1, Shear moduli in the mid-surface ;

Gha = G2l — viavay)

p Density per surface dnit of the cylindrical shell ;
Pa Ireestrean mass density ;

U Freestream velocity ;

q= %anz Freestream dynamic pression ;

M Mach number ;

B=vVM*-1

The other symbols have been deflined within the lest.
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