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Abstract

Helicopter air resonance,a serious airborne rotor/
body coupled dynamic instability problem, is studied
with complex multiblade coordinates. The source of in-
stability is the mutual excitation between two degree-of-
freedom. A method to analyze the excitation (work done
by one degree-of-
freedom) is developed. The source of instability,the in-

degree-of-freedom on another
fluence of main design parameters and their physical ex-
planation are investigated through the analysis of mutual
excitation,eigenvalue and eigenvector (mode shape). One
source of instability is the mutual excitation between re-
gressive lead-lag motion and body forward whirling mo-
tion stemming from their inertial coupling. Another
source is the mutual excitation between lead-lag motion
and flap motion which is proportional to rotor lift. The
rotor with low flap frequency and high lead-lag frequen-
cy is more vulnerable to air resonance instability. The in-
fluence of other parameters is also discussed.

Notation
a = blade airfoil lift-curve slope,rad™'(2n)
b = blade chord
¢x = blade airfoil profile drag coeffient
E = work done by one degree of freedom on

another degree of freedom

h = distance from body C. G. to rotor plane

1 = imaginary part of the eigenvector
1
— | dM;—, L
L = Jo d;brzdr,blade flap or lead-~lag inertia

I, I, = body roll and pitch inertia about body C. G

Up+hENM,) g, +hENM,)
71 97_\, = ’ N

N
?I,,RZ ?L,RZ
- = I,+1 I.—1
1,61, = (—E'Q»(—Z_ﬁ
M, = mass of one blade

N = number of blades
r = blade radial staion
R = blade radius
= real part of the eigenvector
B: = perturbation flapping motion of the kth blade
Bo = equilibrium flapping angle (coning angle),rad
pabR®

Y o= T ,blade Lock number
b
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6 = blade collective pitch angle,rad

A = ¢g+iw,eigenvalue

&, = perturbation lead-lag motion of the kth blade
&, = equilibrium lag angle,rad

p = air density

6 = real part of eigenvalue
Nb .
= LR’rotor solidity

@ = initial value of body motion ¢
@.»¢, = body roll and pitch motion,rad
¢» = azimuth angle of the kth blade,rad

Q = rotor angular velocity
Q, = rotor normal speed
w = imaginary part of eigenvalue
wg;we = uncoupled fundamental flap and lead-lag
frequencies
O = d()/dg
O = ()/R,made dimensionless by rotor radius

= ( )/{,made dimensionless by rotor speed
= conjugate of complex variable
(). = refer to forward whirling component

(), = refer to backward whirling component
introduction

Helicopter air resonance is an airborne rotor/body
coupled instability problem. It is caused by the coupling
of rotor regressive lead-lag motion and rigid fuselage
pitch and roll rotation. There is also considerable partici-
pation of blade flap motion and rotor aerodynamics. Air
resonance can happen only in soft-inplane rotors (ihe
blade fundamental lead-lag natural frequency w; is less
than rotor rotational speed (). Typically,the frequency
of the unstable mode is approximately equal to @ in the
rotating coordinate and {2— w; in the nonrotating coordi-
nate.

Previous works investigated the nature of this phe-
nomenon and provided a basis for the practical solu-
tion®®¥, Nevertheless, the understanding of its source
of instability and the influence of main design parame-
ters is still inadequate. The purpose of this work is to
obtain a clear understanding in these aspects.

Air resonance is the self-excited vibration of a dy-
namic system with multi-degrees of freedom. The source
of in stability is the positive mutual excitation between
two or more degrees of freedom (to do positive work
mutually). Clear description of the mode shape (eigen-
vector) is necessary to the investigation of mutual exci-




tation. Complex coordinates, which are superior to the
conventional longitudinal and lateral coordinates in the
analysis of mode shape, are adopted in this work. The
complex coordinates were first adopted by coleman in
the analysis of helicopter ground resonance®. But his
work is limited to the analysis of eigenvalues. Since the
complex variable is not superior in this aspect,it has not
been widely adopted. In Ref. 5, the complex coordinates
were adopted again to analyze not only the eigenvalues,
but also the eigenvectors in the analysis of air resonance
in vacuo,and were proved to be valuable for the clear de-
scription of mode shapes.

Based on the complex coordinates adopted ,a method
to analyze the mutual excitation quantitatively is devel-
oped in this work. Approximate simple expressions of
the mutual excitations are derived which can be used to
explain the influence of main design parameters. This
idea was first suggested by Bielawa as the "Force-Phas-
ing Matrix” method®. Since the longitudinal and lateral
coordinates were still used in his analysis,his investiga-
tion on air resonance was unsuccessful.

This work is limited to the hover condition.

Analytical Model

The model shown in Fig. 1 is as simple as possible
but still retains the fundamental characters of helicopter
air resonance. The main assumptions are

1)Only rigid fuselage pitch and roll rotation about
body center of gravity (,,®.) are taken into account.

2) Only the fundamental blade flap and lead-lag
mode are taken into account,the mode shape is simpli-
fied as a straight line.

3)There is no structural coupling between flap and
leag-lag motion, the blade pitch d. o. f. (deree of
freedom) is not retained.

4) The blade mass is distributed uniformlly along
the span and the planform is rectangular. There is no ge-
ometrical twist,

5) Linear aerodynamics, quasisteady assumption.
The dynamic inflow is not taken into account.

body C. G. r

Fig.1 Analytical model of helicopter air resonance
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The individual blade flap and lead-lag motions ( 84,
&, ) are combined together and transfered to the nonro-
tating coordinate through multiblade transformation as
below

9 X g &
S cos (g — £ ,8, = Nzﬂksin(gl/k — &)
k=1

.

i N
& = %éékcos(% — &) .6 = %;Eﬁin(ﬂbk — &)
D)

B.+f3, are equivalent to the longitudinal and lateral
rotor disc-plane tilt. &,& represent the lateral and longi-
tudinal rotor lead-lag motion. Only these four variables
can be coupled with the hub center motion induced from
the body rotation. Hence,the rotor/body coupled system
consists of a total of six degrees of freedom.

In this work the flap, lead-lag and body freedoms
are each combined into one complex variable.

B=p +if.S=&+ ik, p=0 +ig )

The equations of motion are derived by Newtonian
method. The nonlinear equations are linearized about the
steady equilibrium condition. The equations are of the
form

(MY z) + [CHx) + [KHz) =0 (3

M,C and K are the mass, damping, and stiffness
matrices respectively. the matrix elements are given in
the Appendix.

For the isotropic case (inertial isotropy of the fuse-
tage, I, = Iy, ) ,the degrees of freedom are

{x} = {B,&,9}7 4
The resulatant motion is a kind of one-directional
whirling motion. The expressions are
B = Lo, & = &Y, 0= ge¥ (5
¢ ==t is used instead of the time variable t. Hence,
the eigenvalue A = o + iw is nondimensionalized to rotor
speed (.

The imaginary part of the eigenvalue @ represents
not only the modal frequency but also the direction and
angular velocity of the whirling motion, If w is positive,
the whirling is forward,otherwise backward. Here ‘for-
ward’ and ‘backward’ refer to the direction of rotor ro-
taion. The rotor motion can be tranfered from nonrotat-
ing coordinate to rotating coordinate by multiplying
e~ . If the resultant algebraic sum of the imaginary part
is negative , the rotor motion is a regressive mode,if posi-
tive then it is an advancing mode.

The real part of the eigenvalue o represents the
modal damping. If ¢ is positive, the motion is divergent
(negative damping ), otherwise convergent { positive
damping). Besides, it also represents the direction and
veloocity in the radial sense.

the eigenvectors are normalized to body motion ¢ ;

ﬂ/gﬁ:R1+i11’g/¢=R2+i12 (6

Besides, §/8 = Ry, + il;;is also used to express the
relationship between & and 3.

The eigenvectors have difinite geometrical meaning
and represent the relationship between two different d.
o.{. For example, R;and I, represent the relationship be-
tween lead-lag motion and body or hub center motion




(Fig. 2). R; represents the radial lead-lag motion and 7,
represents the tangential lead-lag motion. Similarly R,
represents tangential disc-plane tilt and I, represents ra-
dial disc-plane tilt,

R0 R:(0 )0 10
3 ? 3 ? ¢ l ? ®
a
undeflected # ’ f
position |

i hub—center I | I
/\\69/ \ggk,\%$%/
1 i 1

Fig. 2 The relationship between blade lead-lag
motion and hub center motion due to eigenvector §/¢

S
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The eigenvalue and eigenvector combined together
fully describe the resultant motion.

For the nonisotropic case ( I5 5% I, ) the resultant
motion is a combination of two counter-whirling motions
B =B+ Bo= But? + B

E=€ 4+ & = £.e¥ + Ee¥

=0+ @ = e + g
X is the conjugate of A. The subscript “a” denotes
the forward whirling motion and “¢” denotes the back-
ward whirling motion. The degrees of freedom in this

4]

case are
(~T> = (ﬁum»i»ay%@%w €))
B8, and @, are conjugates of £,,&, and ¢, .
The eigenvectors are
B./e. = Ry, + ily,
B/ = Ry +ily
£./0 = Ry + iy, €D}

55/% =Ry + il
%/% = Ra + iI3

Besides, £,/8. = Ryy + il . and §,/8, = Ry + i1,
are also used to express the relationship between &, and
ﬂu ) Eb and ﬂb .

The combination of two counter-whirling motions
forms a kind of elliptical whirling motion. The whirling
direction and the position of the major axis can be de-
rived from the eigenvector.

It is interesting to note the form of the matrix ele-
ments of the nonisotropic case, The M matrix of the non-
istropic case is formed by the M matrix elements and
their conjugates of the isotropic case and coupling term

o1, .
Mll MIZ MlS
(M] = LI\;[IH M,, Mza} ------ isotropic
31 MSZ M33
M, 0 M, 0 M; 0
O Mll O Mlz O MIS
[M]= A{)“ 1\_/(1)21 A/([)ZZ ]\_;22 Af)za T\;za ------ nonisotropic
My 0 M, 0 My 36,
0 My, o0 My, &I, M,
ao
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The C and K matrices of the nonisotropic case are
formed by the matrix elements and their conjugates of
the isotropic case in the same procedure, except that
there are no such coupling terms as 67, in the [M] ma-
trix.

In view of these expressions of the nonisotropic
case, it is apparent that there are no opposite whirling
components in the equilibrium equations, such as 8;,§,
and ¢ in the equibrium equations of 8,and &, ,except ¢ in
the equation of @, and vice versa. Hence the complex vari-
ables 8,,£.,9 are orthogonal to 85,8 and 3,,8,,% are or-
thogonal to f.,%, . If the longitudinal and lateral coordi-
nates are adopted,the lateral variables £,,£. and ¢, will
appear in the longitudinal equilibrium equations and vice
versa. That is the main difference between these two
kinds of variables.

Mutual Excitation

The excitation of the isotropic case £, is the work
done by qth d. o.f. (degree of freedom) on the pth d.o.
f. which can be expressed as the dot product of the gen-
eralized forces acting on the pth d. 0. {. by the qth d. 0.
f. and the “velocity” of the pth d.o.f.. £, can be de-
rived from the equilibrum equation of the pth d. o. {.
through the following relationship

Ey=— [My,Cion K J(6,6,6)7 + (B— i
Ey =— [Myy,Crps K 9,200} + (B— i)
En = [My,Cot K18, 8,8)7 + (= i6)
Epy =— [MysyCoso K 1 90,9} + (G i)
Ey =— [My,Co K (BB B)T + 9

Eyp =— [My;,Ca3, K3 1{£,6,6)7 - @ an

Where subscript “1” denotes the 1st d.o.f. 8 ,"2”
denotes the 2nd f. 0.f. £and “3" denotes the 3rd d. o. {.
¢, M,,,C,, and K,, are the appropriate matrix elements.

The final expressions of E,, are functions of eigen-
value,eigenvectors,and elements of matrices.
. For the nonisotropic case, E,, is the work done by
the forward whirling components of the gth d. 0. {. on
the forward whirling components of the pth d.o.{. ; E,,
is the excitation of the backward whirling components of
the gth d. 0. {. on the backward whirling components of
the pth d.o.f.

Eip =— [Myy,Coon Ky HEn b6} + (B — i)

Epy =— [My,Crp K J(E 0,60, 807 + (B, — iB)
Epn =— [Myy,Ciss K014 000000 07 + (B — iB)
Erp =— [Myy,Cops K @00 )T+ (B — i)
Epw =— [Myy Coty K J B, Bus )T+ By — i)
Epy =— [Myy,Couy K14 Bas s B} + 6y — i8))
Epe =— [MyCoso K1 00007 + (8, — i€
Eyy =— [My,Cos, K NG00} 7 + (6 — i6))

Epe =— [Myy,Coty K HBu s s BT + 5




[M:n No 9K31]{:8b1ﬁb9ﬁb}T ° SDb
Ey=— [:Msz »Ca ’K32:|<$a NN A ¢a
My, Co s Kz 1{66,65,607 * &4 a2
From the previous analysis it is evident that there is

no mutual excitation between B.,€. and £5,6.,¢ » be-
tween 5,5, and ¢, .

E31b =

Eszb =

Analysis of the Results

The most influential design parameters are the ratio
of uncoupled blade flap and lead-lag natural frequency to
rotor speed Q (wy,w). wp and w; range from 1. 03,0. 25
(articulated rotor with hinge effset) to 1. 15,0. 7 (hinge-
less rotor) respectively at normal rotor speed Q, for cur-
rent helicopters. Besides, wzand wvary significantly with
Q for hingeless rotor or articulated rotor with elastical
hinge restraint (see Fig. 19). In this work, eigenvalue,
eigenvector and mutual excitation versus w; from 0 to 2
at different w; are caeculated.

The other parameters used in this analysis are typi-
cal for conventional helicopters. The ratio of rotor height
to rotor radius £ = 0.312, The rotor solidity ¢
0.08218. The rotor blade profile drag coefficient ¢, =
0. 01 . The Lock number ¥ = 10 . The ratio of the average
value of helicopter roll and pitch inertia (I.,1, ) to rotor
roll or pitch inertia I, = 6.147. 81, represents the non-
identity of helicopter pitch and roll inertia. For the
isotropic case, 81, = 0. For the nonisotropic case, 81,
0.51,(1, = 31,) .

Rotor lift and coning angle 8, are nearly proportion-

al to blade collective pitch angle § . As mentioned in pre-
7,8

vious works"#, @is influential to air resonance instabili-

ty. @ ranges from zero to 0.3 rad in this investigation.
The variation of eigenvalues versus rotor speed for

typical rotor types is also calculated to investigate the in-

stability and unstable speed range of actual helicopters.

The Case with Zero Collective Pitch (6 =0)

The variation of eigenvalues with wsfor the isotropic
case is shown in Fig. 3. , @ = 0. 8 in this case. There are
six modes: flap advancing mode (FA), flap regressive
mode (FR),lead-lag advancing mode (LLA),lead-lag re-
gressive mode (LR),gyroscopic mode (GS),and a zero
root mode. The FA, LA and LR modes are forward
whirling modes (positive @ ), wof the FA and LA modes
is close to 14 wpand 1 + @, respectively. In the rotating
coordinate,they are advancing modes and their frequen-
cy is close to wy and w; respectively, @ of the LR mode is
nearly equal to 1— @ . In the rotating coordinate,its fre-
quency is nearly equal to — w; and hence it is a regres-
sive mode. The FR and GS modes are regressive modes
in the rotating coordinate ( w — 1 <C0), They are partly
forward and partly backward in the nonrotating coordi-
nate.

In the case of wg=1. 0 (centrally hinged rotor), o of
the FA and FR modes is —0. 625, which is equal to the
damping of the uncoupled flap motion 7/16 , and the
modal damping of LA and LR modes is close to the un-

872

38
53]
_i_(,) 25F FA
> 2}
LL}
% 1.6F LA
T ISOTROPIC
S COLLECTIVE PITGH = 0
= 06f FR LR | EAD-LAG FREQUENCY RATIO = 0.8
i

';L e
& aé GS
z -06F FR
>

_1'5 1 i3 1 1 L 1 L 4

0.2
w UNSTABLE
=) 4
i 0
g LR X 100 STABLE
4
w -0.2
o
(1]
w -0.4
O
&
& -0.8
o {SOTROPIC
& -08COLLECTIVE PITCH = O
o LEAD-LAG FREQUENCY RATIO=0.8

-1 It 1 ] L I 1 Kl 1 ]

1 11 12 1.8 14 1.6 1.6 17

FLAP FREQUENCY RATIO
Fig. 3 Eigenvalue versus flap frequency ratio w,
(isotropic, @, = 0. 8,0 =0)

1.8

coupled lead-lag damping 7c./4. The LR mode is the
most unstable. The instability of the LR mode increases
with the increase of wsand the decrease of w; as shown in
Fig. 4. Helicopter air resonance is the unstable motion of
the LR mode.

0.006
LEAD-LAG FREQUENCY
W RATIO =0.25
é 0.004 0.4
s
=z
1N
@ ooo02}
18}
e » UNSTABLE
= 0 v
o STABLE
g
Z -0.002 ISOTROPIC
s COLLECTIVE PITCH = 0
-0.004 e

18 14 16 18 17
FLAP FREQUENCY RATIO
Fig. 4 Real part of eigenvalue of the LR mode
(isotropic, 6 = 0)

1 11 12 1.8 10 2

Eigenvector of the LR mode is shown in Fig. 5. |R,
+ i1, | is much larger than [R, + iI,] and unity. Hence
the lead-lag motion is predominant in this mode. R, and
w are simultaneously positive which means that the tan-
gential disc-plane tilt is always opposite to the body
whirling motion. This can be explained by the character-




istics of the flap response to the body rotation (rotor an-
gular velocity damping).
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Fig.5 Eigenvector of the LR mode versus flap frequency @,
(isotropic, w =0. 8, & =0)

Mutual excitation (normalized to |¢[?) of the LR
mode is shown in Fig. 6. It is also shown as a diagram in
Fig. 7. The arrow denotes the direction of excitation. The
sign in the circle denotes positive or negative work.

0.16
Eqs

ISOTROPIC
COLLECTIVE PITCH =0

LEAD-LAG FREQUENCY RATIO = 0.8

0.06

0
LR MODE
oosL E®
-0}1 A 1 A L i L 1 1 1
1 01 12 18 14 16 18 17 8 18 2

FLAP FREQUENCY RATIO

Fig. 6 Mutual excitation of the LR mode
(isotropic, w; = 0. 8,6 = 0)

Fig. 7 Diagram of mutual excitation of the LR mode
(isotopic, § =0)

It is evident that the source of instability is the posi-
tive mutual excitation between lead-lag motion and body
motion. Furthermore, the expressions of normalized E,,
and E;, can be simplified as

Eyy me— %sz(w — 11,
5 as
E,~ Ehwsl p
In this case the eigenvector I,is positive and the ge-
ometrical relationship between the lead-lag motion and
hub center motion of this forward whirling mode due to
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the positive I;is shown in Fig. 8. The rotor lead-lag force
excites the body in the direction of hub center motion.
The inertial force on the blade due to hub center motion
is in phase with the blade lead-lag velocity ,but the blade
motion should be examined in the rotating coordinate.
The source of instability is this inertial coupling between
the rotor regressive lead-lag motion and the body for-
ward whirling motion.

1 CYCLE OF
f BLADE HOTION

1 CYCLE OF
ROTOR ROTATION

\
DIRECTION OF
ROTOR ROTATION \\\

p,

DIRECTION OF HUB
CENTER WHIRLING

INITIAL POSITION

w = 0.25 OF HUB CENTER

Fig. 8 Illustration of hub center motion and blade lead-lag
motion in air resonance

Since the frequency of the LR mode w ~1 —ws,from
equation (13) it is evident that only for the soft-inplane
rotor ( w; <<1) can E,;and E;y of the LR mode be simulta-
neously positive and this mode be unstable. The increase
of instability with the decrease of w;
can be explained by the increase of E,; and E,; due to the
increase of w. The increase of instability with ws shown
in Fig. 4 can be explained by the increase of E, and E,,
due to the increase of 1, (Fig. 5).

E; is negative which reflects that the high aerody-

shown in Fig. 4

namic damping of the flapping motion is the main source
of the modal damping. E,;is positive which means that
energy is transfered from body to flapping motion to
cancel out the flap damping. This is also valid for all oth-
er modes. In fact, there exists a kind of energy balance
between heavily damped flapping motion,lightly damped
lead-lag motion and the body motion without damping.
The modal damping is the result of this energy balance
and in some extent determined by the ratio between
these motions.

The influence of the ratio of helicopter inertia to ro-
tor inertia is shown in Fig. 9.

The increase of instability with the decrease of I,
can be explained by the increase of inertial coupling due
to the increase of blade mass.

For the nonisotropic case, minor opposite whirling
motion is added to the original one-directional whirling
motion and the basic characteristics of the isotropic case
are still retained in this nonisotropic case. The diagram
of mutual excitation is shown in Fig. 10.

The main source of instability is the positive mutual




0.008

w

3 0.004

<

Z

wl

O o002}

s

W

@]

— 0

Pe

o ISOTROPIC

_j -0.002

I COLLECTIVE PITCH = 0

& LEAD-LAG FREQUENGY RATIO = 0.6
-0.004 . i : . : ; . . :

1 11 12 1.3 14 1.6 1.6 17
FLAP FREQUENCY RATIO
Fig.9 The influence of I, on instability of the LR mode

(isotropic, @ = 0. 6,0 = 0)

1.8 18

Fig. 10 Diagram of mutual excitation of the LR mode
(nonisotropic, § =0)

excitation between the forward whirling lead-lag motion
&, (regressive in the rotating coordinate) and the forward
whirling body motion ¢, . The approximate expressions
of Eys, and Eg,, are still the same as Equation (13) except
that I, should be changed into I,, . The physical explana-
tion and the influence of the main factors are still the
same,

It is worthy of note that the instability increases
with the increase of nonisotropy as shown in Fig. 11.
This phenomenon can be explained by the reduction of
helicopter roll inertia I, in the nonisotropic case. Since
the roll motion ¢, is predominant in this case,the reduc-
tion of I, has the similar influence as the reduction of I, .

The Case with Collective Pitch

High collective pitch will induce high rotor lift and
coning angle,and hence strong aerodynamic and inertial
coupling between lead-lag motion and flapping motion.

Ormistion”

and King® pointed out the destabilizing ef-
fect of this flap-lag coupling which had been experimen-
tally verified*®. The mechanism of this destabilizing ef-
fect and its influence on the basic nature of the phe-
nomenon is investigated as below.

The variation of eigenvalues with w; at § = 0.3 is
shown in Fig. 12. Modal damping of the LR and LA
modes versus w; at different collective pitch is shown in
Fig. 13.
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Compared with the case of zero collective pitch,
some significant distinctions can be observed. Not only
the LR mode but also the LA mode can be unstable at
high collective pitch and instability occurs within a cer-
tain w;range and at low ws . The LR mode is unstable on-
ly in the soft-inplane region ( w; < 1) ,but the unstable
region of the LA mode extends from soft-inplane to
stiff-inplane (w@; > 1). The peak instability increases
with collective pitch @ . The instability of the LR mode is
much higher than that of the LA mode. The eigenvector
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and mutual excitation of the LR and LA modes are
shown in Fig. 14 and 15. The diagram of mutual excita-
tion in the unstable region is shown in Fig. 16.

For the LR mode there are two sources of instabili-
ty:positive mutual excitation between § and 8 ( E;, Ej )
and between £ and ¢ (Ey,Esy) . For the LA mode there is
only one source of instability,the positive mutual excita-
tion between § and 8. The main part of E,; and Es; of the
LR mode is still the inertial coupling expressed in equa-
tion (13). The approximate expressions of E;; and E,
(normalized to |B[?) of both modes are

By =— 5 — 2850 — DRy,
; a4
E21 - (zﬁo -7 z)(w - 1)2R12

. F
In the expression of E,; the term 7 ~ represents the

aerodynamic flapping moment due to lead-lag velocity
and the term 2B represents the inertial flapping moment
2
In the expression of E; the term 28, represents the iner-
tial lead-lag moment due to flapping motion (Coriolis
x
4
lag moment due to flapping motion. Conventionally, 28,

due to lead-lag motion. ¥ = is always greater than 28, .

moment) and the term ¥ — represents aerodynamic lead-

. t .
is greater than ¥ T . The expressions of B, ,F,and ¢ are
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(isotropic, w; = 0. 8,0 = 0. 3)

given in the Appendix. All of them increase with 6. In
view of the negative value of R,;, both E; and E;, are si-
multaneously positive. The physical explanation can be
inferred from the relationship between flapping motion
and lead-lag motion due to the negative R;, (Fig. 17).

The aerodynamic flapping moment due to lead-lag
velocity is in phase with the blade flapping velocity,and
the inertial lead-lag moment due to flapping velocity is
also in phase with the blade lead-lag velocity.

In the case of isolated rotor system (fixed body)
flap-lag instability can occur at high collective pitch. The
source of instability is the above mentioned positive mu-
tual excitation between § and 8. Ormiston and Hodges
pointed out that the center of unstable region is the fre-
quency coalescence point of wyand @; ,and the instability
increases with collective pitch § °For the rotor body cou-
pled system,the instability of the LR mode at high col-
lective pitch in fact is a combination of air resonance and
flap-lag instability. There are significant influences of
the é/¢inertial coupling on the phenomenon. The unsta-
ble region moves from the frequency coalescence point of
the undamped @; and @; to a much lower w; range limited
to the soft-inplane region and the instability is agggra-
vated due to the dual source of instability, The instabili-
ty of the LA mode is still a kind of flap-lag instability in-
fluenced by the coupling with the body motion. The un-
stable region moves slightly to a lower @ range and the

instability is alleviated.
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Fig. 16 Diagram of mutual excitation of the LR and LA modes

in the unstable region (isotropic, & =0. 3)

Fig. 17 Tllustration of flapping motion and lead-lag
motion due to negative Ry,

For the nonisotropic case, the basic characteristics
of the unstable LR and LA modes of the isotropic case
are still retained.

The eigenvector and mutual excitation of these two
modes in the unstable region are shown in Table 1.

Mode wg w; s X 10 w
LR 1.15 0. 62 0.52 0. 37
LA 1.15 0. 97 0. 08 2.08
R)ﬂ Ilrx RZG IZJ RIZJ Ilza
0.43 — 0.87 | —3.04 4. 46 ~—5.52 | —0.76
2. 08 -—~1.80 | — 9.09 0. 60 —2.65 | —2.00
Ry I, Ry Iy Rz I

—0.44 | —0.43 | — 0.18 0.10 0.09 — 0. 33
—0.16 | —1.06 } — 0.44 0.02 0. 05 — 0. 41
R, I, Ey,, Ey. Eps Ey,

0.63 0.20 0. 54 0. 55 0.15 0. 63
0.52 0. 001 6.13 6.12 - 1.09 13. 48
ElBa E3ld Elzb E21b EZBb E3Zb

—0.06 | —0.,10 | —0.007;—0.007] 0.077 |— 0.016

4. 95 — 2.84 | —0.037| — 0.035 3.51 - .21
El3b E:ﬂb
0. 40 —0.023
3.78 0.101

Table 1 Eigenvalue, eigenvector and mutual excitation of
the LR and LA modes in the unstable region
(nonisotropic, 61, =— 0. 51,0 = 0.3)

The diagram of mutual excitation in the unstable re-
gion is shown in Fig. 18.
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Fig. 18 Diagram of mutual excitation of the LR and LA modes
(nonisotropic)

Although in the unstable region, minor backward
whirling motions are added to the original forward
whirling motions of the isotropic case,the mutual excita-
tions between the forward whirling motions are still
dominant. The analysis for the isotropic case is still valid
for the nonisotropic case.

The Instability of Typical Rotor Types

Three typical rotor types are investigated.
Type 1:Hingeless rotor. The rotor blades are can-
tilevered. w;and @, decrease with rotor speed. At normal




rotor speed (Q/Qo=1), wy = 1. 12,0 = 0. 624 ,

Type 2: Articulated rotor with elastical hinge re-
straint, such as the French Starflex rotor. Viscoelastic
lag damper provides strong elastical restraint to the lag
hinge. At normal rotor speed, w, = 1. 038,@; = 0. 624 .
The variation of w; with rotor speed is the same as Type
1.

Type 3: Articulated rotor. At normal rotor speed,
wg = 1. 038, = 0. 25 , wgand weare constant at different
rotor speed.

The variation of wp and ¢ with rotor speed ratio for
Type 1 and 2 is shown in Fig. 19.
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Fig. 19 Variation of wg and @, versus /€,

The variation of ¢ versus rotor speed ratio for the
isotropic case is shown in Fig. 20 (Type 1) and Fig. 21
(Type 2). The modal damping is calculated at collective
pitch 4 = 0,0.13,0. 3. In the case of § = 0. 13, the rotor
lift at normal speed is approximately equal to helicopter
weight. When ¢ = 0. 3 ,the rotor lift is approximately e-
qual to three times helicopter weight. Of course, rotor
lift is zero when @ = 0. = 0and # = 0. 3 can occur in ma-
neuver,

Both type 1 and 2 can be unstable at normal speed
range with normal or high collective pith (8 = 0.13,
0.3) ,LR mode is more unstable than LA mode, Type 2
is more unstable than type 1. The reason is that w, of
type 2 is closer to e than type 1. Hence the mutual exci-
tation between & and 8 is more serious. At zero collective
pitch type 1 is less stable than type 2 which can be ex-
plained by the higher w; of type 1. For the actual non-
isotropic case, LR mode of type 1 can be unstable at high
rotor speed.

For the articulated rotor (type 3),the LR mode is
stable at zero collective pitch (Fig. 4)due to the low ;.
The LR and LA modes are also stable at high collective
pitch due to the low @, (Fig. 13).

It is obvious from this analysis that the rotor with
low flap frequency and high lead-lag frequency is more
vulnerable to air resonance instability.

Conclusions

1. The source of instability for a multi-d, o, f. dy-
namic system is the mutual excitation between two or
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Fig. 20 Modal damping of the LR and LA modes
(Type 1,isotropic)

more d. o.{. and this is critical to the basic nature of the
phenomenon,

2. The source of air resonance instability of the LR
mode for the zero collective case is the mutual excitation
between regressive lead-lag motion § and body forward
whirling motion ¢stemming from the inertial coupling of
these two d.o. f..

3. For the case with high collective pitch,both LR
and LA modes can be unstable. For the LA mode the on-
ly source of instability is the mutual excitaion between
the lead-lag motion &€ and flap motion 8 originating from
their inertial and aerodynamic coupling. There are two
sources of instability for the LR mode ;mutual excitation
between € and @ and between § and 8. The dual sources
aggravate the instability.

4. The flap frequency ws and lead-lag frequency w;
are the most important parameters which influence the
instability. The rotor with high @; and w¢ (such as the
hingeless rotor) and the rotor with low @ and high w;
(such as the articulated rotor with lag hinge restraint)
are more vulnerable to air resonance instability at nor-
mal or high collective pitch,especially the second type.

5. The other parameters are the ratio of helicopter
inertia to rotor inertia I, and the nonisotropy of heli-
copter inertia 61, . The instability increases with the de-
crease of I, and the increase of nonisotropy.
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Appendix
Each element of the M,C,and K matrices is a com-
plex variable.
The elements of the isotropic case are given below
M, =1 M;,;=0 M13=f2i
3
M, =0 M, =1 M, = “2“}12
35, - 3+ - -
M; =— Eh:@ol M, = Eh My =1, + 3hB,
(AD
Y . Y
Cn"—‘z—zl C1z=EF“2180
Y 4
Ch=2+ %thl + Zfﬂ' Cor = 2By — Zf
)4 . -2 Yo,
sz = ”Z—C — 2t ng = g)’th — Zfltl
Y Y. 2 2 .
CSI = *3'}113 - ghﬂol ng= EVhC i gyhpﬂol
3 1 - .
Cyy = YR (h,C + gfzﬁo) - 7h(%fzt + hFBodi
(A2
— 7 Y
== 2 _— —
Ky=wi—1+ 5 Fpg, i
V4
Ky =— (gF - zﬁo)i Ky;=0
Y 7 .
Ky = ?Cﬂo — 2f, — Zt)l
K22=5%—1-%Ci Kyp=0
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2+ 1+ D
Ksl = 7(§hcﬁo - ’ghﬁo - Z)

+ [0 — 1+ ZhCT + 1 — 2B

_ —, Y + .
Kaz = (wfé —1— w?- - Ehﬁ)ﬁo - 7(%—}15 - %ﬂo)l

Ky =0 (A3)
_ac 240 _F 1
a=% 1+2;_1] C=C.+ 504
=& D=C.+ Al — A
1 4+
“—“0_31‘1 f1=1+§hﬁo
fzzl—i_%zﬁo h1:71_+%180
hzzﬁ"‘%ﬁo h3=ﬁ+%ﬂ0
S=C,+ A T=0—A
vy T
t=0— 24 ﬂo=zz—§ (AD)
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