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Abstract

This study describes an Engineering-oriented
approach to the calculation of the response of a

geometrically nonlinear elastic structure to
random excitation loads. It also outlines a
systematic computational process, which

incorporates the use of static finite element
computer code with the statistical linearization
method. A simple though general numerical example,
solved by the computational process described,
demonstrates the applicability of this approach.
The computational routine described yields designs
which are less conservative. '

1.Introduction

Nonlinear elastic effects often control the
behavior of structures, especially ones like
aeronautical structures which contain plates,
shells and stringers. The linear analysis of these
structures is usually based on bending behavior.
Nevertheless, during real loadings, large
deflections may be obtained which introduce
membrane stretching. As a result, the structure
tends to "harden" and introduce nonlinear effects.
An  engineering design which considers the
"hardening" effects will be less conservative, and
therefore lighter and more efficient.

Usually, linear analysis is done when
deflections are of the same order of magnitude
as the thickness. Investigation of simple models
shows that nonlinear effects are introduced even
for deflection lower than half the thickness, and
the necessity for nonlinear analysis is therefore
enhanced.

The nonlinear analysis of structures under
static loadings is performed in the industry by an
extensive use of nonlinear options of the large
numeric computer codes (such as NASTRAN, ADINA,
ANSYS, and others), which are available to most
engineers. The nonlinear analysis of structures
subjected to deterministic dynamic loads is less
frequently used. Solutions for such cases were
presented extensively in the literature, mainly
for simple structures or for systems with a small,
discrete number of degrees of freedom, but they
are seldom used by engineers. The nonlinear
response analysis of structures subjected to
randon dynamic loads is even more rare in the
daily life of engineers, although this kind of
problem is much more actual &@nd realistic in the
life cycle of a real structure. Most of the
literature in these cases relates to very simple
structures.

* In the following description, bold face letters
represent matrices
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Numerous publications on the subject of random
vibration of nonlinear structures were published
in the last decade. Nevertheless, the practical
applications of random analysis of nonlinear
structures in the industry are few. It seems that,
for some reason, engineers avoid the dynamic
random analysis of structures. Only in recent
years has a major effort been made by NASA to
develope and implement a routine, practical tool
for this purpose (e.g. Cruse et al,,1988), which
will, in the near future, make random analysis a
daily routine.

In the work described herein, an effort
was done to define and construct the computational
process for nonlinear elastic structure under
stationary, random excitation. This enables the
design engineers to routinly use the analytical
and numerical tools available to them.

The nonlinear problem is solved by the
statistical linearization method, which is well
documented in the literature (e.g. Roberts, 1981;
Spanos,1981). The functions of elastic
nonlinearity of the structure are calculated by
assuming cubic expressions for the nonlinear
stiffnesses and by using static, finite element
code (ANSYS). An iterative computational process,
which incorporates the statistical linearization
formulation and the finite element static computer
code, results in the power spectral density
functions, variances and covariances of the
response.

Numerical example is presented. This example,
although simple, is general enough to demonstrate
the applicability of the method. The two main
nonlinear effects - (a) a decrease in the power
spectral density functions and rms values of the
response, and (b) a significant shift of the
freguencies governing the response, are clearly
demonstrated.

2. Statistical Linearization

2.1 General Formulation

The formulation of the method of statistical
linearization is repeated in this section to
enhance understanding of the process described in
this work.

The equations of motion of a system with many
degrees of freedom are expressed by the general
matrix equations *

where M is the nxn mass matrix, C is the nxn
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damping matrix, K is the nxn stiffness matrix, q
is the nxl general coordinate matrix, Q is the nxl
excitation matrix, and @& is a nxl matrix which
contains the nonlinear part of the relationship
between forces and displacements, velocities and
accelerations (q,q,d, respectively).

Equation (1) is approximated by an "eguivalent"
linear equation

Mg + C*9q + K*%q = Q(t) (2)

where

Mt =M+ M,
(3)
Ceq =C + Ce

Keq = K +I<e

are the equivalent mass, damping and stiffness
matrices. The difference between the original
equations of (1) and the approximation of (2) is

EZ@—I\{[ed—Ceq"Keq (Ll)

and a set of M., C. and K. matrices is sought
so that the expected value of the gquantity A has a
minimum:

E[A]

-
Ul
—

E[e" - ¢} = minimum

Equatin (5) can be expressed as

) 2 2 . s
Elef + & + - +¢,] = minimum

(6)
where ¢; are the terms of the matrix € .

Roberts & Spanos,1990, showed that equation (6)
yields the following conditions for the terms in
matrices M., Ce ., and K,

0 2 2
am?(EEei - f% T E“D =0
ij
19,
—(El+ &+ +eal)=0
9ci (7)
19, . .
s Eld+a+- el =0
ij
where n?Eﬁc;7ks are the 1i,j term of the

matrices M., C. and K., respectively.

Roberts & Spanos,1990, also showed that the
value of EﬂeI‘-d , which corresponds to Me.
C. and K. obtained by equations (7), is an
absolute minimum if the components of the vector
(qa,d.4] are independant. In this case, a unique
set of equations exists for M., C. , and K, .

2.2 Gaussian Approximation

Many random excitations which act on real
structures have Gaussian distributions. In these
cases, the response of the linear system is also
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Gaussian,

and it 1is also 1logical to assume
Gaussian approximation for the nonlinear response.
By virtue of the Central Limit Theorem, many real

processes in engineering applications can be
idealized as. Gaussian processes, as an
approximation, Use of the Gaussian distribution
significantly simplifies the process of

calculating the equivalent terms in equation (7).
Kazakov,1965;Atalik & Utku,1976, showed that, for
a stationary Gaussian process with zero mean,
equations (7) and the properties of the Gaussian
distributed random variables yield the following
equations:

mfj—E[%]
e 0%
Cij_E[aq-j] (8)
e _ pro%

Equations (8) give a direct relationship between
the terms of the equivalent matrices and the
nonlinear functions, ®.

We may assume that the nonlinear response
problem can be solved by introducing egquations (8)
into equations (2), and solving them for q. This
is, however, not so. Another relationship must be
found between the expected values of combinations
of aq, (represented in equation (8) by the
differentiation of & ).

If the power spectral density functions of the
excitations is given by the nxn matrix Sq ,
then the PSD functions of the response, Sq , may
be expressed as:

Sq(w) = a()Sq(w)a™ () (9)
where
(10)
o) = [~ (M + M) +1(C + Co) + (K + Ke)]
then, by using
Elg0p0] = [ Sy () (11)

the expected values of ixj combinations of q are
obtained. The main practical problem in following
this procedure is the integral shown on the right
hand side of equation (11). To simplify this
integration, a normal mode approximation for a(w)
is used.

2.3 Normal Modes Approximation
For lightly damped structures, [a(w)] can be
expanded in the following series:

n
K™
aw) = — 12
; Wheg = w? + 2 regioreqw (12)
where
") AT

K=
M, (13)
A is the r-th normal mode of the system, Wreg 1S

the resonance frequency of the undamped equivalent




linear system, érw is the modal damping
coefficient, and M, is the generalized mass of
the r~th mode. )\(") and wreq are calculated from the
undamped equivalent equation

M+M)g+(K+Ko)g=0 (14)

Jsing the expansion of (12), we can show that

(15)
Sq, , dw

+oo
Elgrgs) = / - -
[ ' "] (L"‘geq —w?4 QZErEQwT’;qw)(wfeq —w?— 276”‘1""””9“‘;)
—oo

This integral can be evaluated to a closed form
solution for rational functions of S¢,, .

Note that, when equations (9) and (10) are
introduced into equation (11), the denominator of
the latter is at least in the order of 2n in
{(tw )}, with the exact order determined by the
order of the denominator of the excitation Sq.. .
When the modal approximation is used, the
denominator of (15) is of the order of 4 (plus the
order of the denominator of Sg,, ). This
significantly simplifies the integration of
equation (15).

The modal approximation (12) yields excellant
results for damping coefficients as high as 10%,
and good results for values as high as 20%. These
values are usually much higher than the values of
damping coefficients of realistic structures, and
therefore the use of the modal approximation is
generally justified for practical cases.

3. Calculation of K and &

3.1 General Description

The nonlinear structure is characterized by the
M, C , K and ® matrices. Generally, a
nonlinear behavior in mass, damping and stiffness
can be handled, although practically, nonlinearity
in mass is rare. )

The nonlinearity in damping cannot, usually, be
calculated either theoretically or numerically. In
most cases of nonlinear damping, an assumption on
the dependence of C on q must be made, based on
experience gained by the design engineer.
Nevertheless, even in cases where there is no
nonlinear effects on the terms of matrix C , the
damping coefficient changes with the frequency,
based on the definition of the modal damping
coefficient:

C
freq 5
2t peq (16}
This means that, for a system with a linear
damping (terms of C depend only on 4), the

product, wreglreq, is constant,

3.2 Nonlinear Rigidity

Assume an elastic system, in which the only
nonlinearity is caused by geometric effects, such
as those described in the introduction (Section
1 above)..
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In this case, the static behavior of the
structure will be described by
Kq+®(q)=0 (17)

Assume further that the geometrical nonlinearity
behaviour of the structure is cubic:

Kq+Bq3:0 (18)

or

Kiaa +Kipg 4+ + Kywge + Bip@d + Brags + -+ Biald = R

. - . . . .

(19)

Knaq + Kupta + -+ Knntn + Baaqt + Bngs + -+ Bongd = Fy

K in (18) is the stiffness matrix of the linear
structure, and therefore is symmetric. B is a
matrix of coefficients of nonlinearity, which has
to be calculated for the specific system under
consideration.

From (17) and (18):

@) = B11@d + Bi2gs + - + B1ngi
: : . . (20)
g8 B o.d4.. LB .
D, = Bn1g]{ + Br2¢s = Dn,nqn

and, by using equation (8) and the definition of
variance

o} = Elgi(t)q:(t)

(21)
one obtains the following matrix for K
3B1,10'%A1 331.9032 ----- 3B1-770n,n
K= : f . (22)
3Bn.10'12}1 BBn’QO'SQ"""BBn ngn,n
In equation (22) only variances appear, due to

the nature of the problem.
normal modes vector, co-variances
included in the XK matrix.

If the q is not the
will be also

The assumption of cubic relationship for the
stiffness nonlinearities (equation (18}) results
in a simple relationship between the terms of the
equivalent stiffness matrix and the variances (or
standard deviations) of the vresponse. This
assumption  was found to be an excellent
approximation for many geometrical nonlinearities.
In fact, even when the structure does not behave
excactly according to a cubic rule, it would be a
good reccommendation to approximate the true
behavior with a cubic equation. This way, much
simpler linear equivalent equations are obtained
for the original nonlinear structure. The cubic
assumption means that the equations of motion are
of the Duffing type. The Duffing oscillator was
investigated extensively in the past, both
analytically (e.g. Stoker, 1950, and many others)
and experimentally (e.g. Maymon, 1978;Maymon &
Rehfield 1984, and many others), and shows many
interesting features, such as "overhang" of the
response curve, and "jump" phenomena.




3.3 The K and B matrices

The linear stiffness matrix, K, can be
calculated for a given structure either
theoretically (wherever possible) or numerically,
with any static linear finite element program. For
numerical calculation, the number of degrees of
freedom taken into account is not necessarily the
number of nodes into which the structure is
divided. One may wish to do the numerical static
analysis with many nodes, to increase accuracy,
while the dynamic analysis will be done with much
fewer wmodes, The stiffness matrix calculated
during the run of a finite element program is not
the rquired K matrix.
The principle of superposition can be used for the
solution of the equation

Numerical loading of n sets of F, in which all
terms except one (for each set) are zero, and

solution of the equation for q,
element code, yield nxn equations
of K .

Once the linear stiffness matrix, K, is known, the
terms of B can be found by writing equation (18)
in the form

by the finite
for nxn terms

Bg® =F - Kq (24)
This is done through the nonlinear static options
contained in most of the large stuctural analysis
computer codes. Loading n sets of F vector, and
solution of the equations for g by the finite
element code, yield nxn linear equations, like
equation (24), for the nxn terms of B The sets
of forcing vector P are required to be such. that
static deflection similar to the n normal modes of
the structure will be obtained. Therefore, a prior
knowledge of the approximate modal deflections is
required, and would be a good practice to solve
the dynamic linear eigenvalues and eigenvectors
problem numerically, using the same structural
computer code.

4. The Iterative Solotion Procedure
€ [

The terms mj; ¢ ki are functions of the
nonlinear functions &, and, for the ca§es studied
in this work, they are functions ofaa[equations

(8), (20), (22)). The variances and covariances
(equation (11)) are functions of the egquivalent
response frequencies, equivalent mode shapes and
equivalent damping coefficients {equations

(9),(12),(13) and (15)).

In order to solve for the variances (which are
standard deviations of the responses at a

point, for the Gaussian, ZE€ro mean
an iterative solution procedure is

the
certain
process),
adopted.

The first diteration is done on the linear
equation, neglecting the nonlinearities, A result
for the Ui~ terms 1is obtained, K. terms, new
equivalent resonance frequencies, new modal shapes
(due to modal approximation) and new generalized
masses are calculated, and new values for a?- are
generated. The process is repeated until
convergence in all ¢j; and equivalent resonance
frequencies is obtained. A relatively small number
of iterations 1is required for convergence, as
shown by the numerical example.
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5. Computational Process

In many practical cases, the dynamic response
of a system with an infinite number of degrees of
freedom contains a finite, usually small, number

of modes. There are two major reasons for this
observation:

(a) The magnitude of the maximum values of the
power spectral density function of the

displacement response is inversly proportional to
w*, thus the contribution of higher frequencies
to the wvariance of the displacement can be
neglected,

(b} For many cases of random, uncorrelated
excitation, the generalized forces of excitation
vanish in antisymmetric modes. As a result,
antisymmetric modes are not excited and therefore
have no influence on the total random response.

The number of degrees of freedom to be included
in the calculation has a major influence on the
complexity of the process of the numerical
solution, Too many degrees of freedom will result
in calculations containing much more cumbersome
expressions, and, consequently, longer calculation

time and more iterations required before
convergence of the solution is obtained.
Deterministic, linear, dynamic analysis may help

decide how many degrees of freedom are to be
considered.

Once the number of modes participating in the
response has been determined, the linear matrix,
K, and the nonlinear functions, &, can be
calculated by static, nonlinear numerical computer
codes which will take those modes into account.
Expressions for the relationship between K and &
are formulated. If nonlinear damping terms are
expected, the dependence of damping forces on the
displacements and velocities (matrix C) should be
defined. The iterative computational process is
then applied.

Figure 1 illustrates a schematic diagram of the
computational process.

6. Numerical Example

The numerical example presented below is
relatively simple yet general, since it uses all
the steps required for the solution. The only

difference between this simple example and a more
general realistic structure is the number of
degrees of freedom applied in the solution.

The nonlinear structure calculated is a simply
suppcorted beam, where the supports can not come
closer when lateral loads are applied, The span of
the beam is 60 cm (23,62 in.). Its width is 8 cm
(3.15 in.), and its thickness is 0.5 cm (0.192
in.). The beam is made of steel (E=2.1x10° Kg/cm’
=29.82x10° psi) and totals 1.872 Kg (4.12 Lbs) in
weight. All the modal damping coefficients of the
linear beam are (;= 2%. The beam is excited by a

randon force, with Gaussian, Zero mean
distribution acting on mid-span. The power
spectral density of the exciting force is
So(w)=10 —~o0 <w <0
(25}
So(w)=S 0<w < 40

with S taking different values.
The following results are obtained for the
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Figure 1: Schematic Diagram of the Computational
Process

first three resonance freguencies and mode shapes
of the linear beam:

wy = 206.2 rad/sec
wy = 807.1 rad/sec
wy 17134 rad/sec

(26)
F1 1 1
Il 4142 0 -1.4142
1} -1 1 ]

We have decided to solve the -response problem
with three degrees of freedonm (three normal
modes). 0, is the mean square of the response at
1/b4-~span, and o2 2n1s the mean square of the
response at mid-span. Using the procedure
described in section 3.3 above, matrices K and B
were calculated with the ANSYS finite element
program. The beam was divided for this purpose
into 24 beam elements, The following values were
obtained for the K and B matrices:

; 511.0922  -488,8714 199. 993m
K = |-488.8714  711.0856  -488, 8714‘Kg/cm (27)
1 199.9934  -488.871k 511.0922]
6L40.1012  -75.3566 -7.1450
B ={ -91.6179 333.4502 -91.6179| Kg/cn® (28)
-7.1450  -75.3566  640.1012]

Ii;q is obtained by equations (3), (22), (27)
and (28).

The iterative computation
results for all nine values of a?] (some of which
are equal, because of the symmetry of the
structure and the loading), of which Uun>and auw

process yields
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Figure 2: Convergence of Standard Deviations

are shown in Figure 2 for one level of S. Figure 2
shows the convergence of the scolution.

The power spectral density function (PSD) of
the response is shown in Figure 3 for seven values
of S, Also shown are results obtained for an
analysis done with only one degree of freedom (an
equivalent mass centered at mid-span, with a
massless beam). As expected, there is no response
in the second, antisymmetric mode. Two points are
shown (for S$=0.01 and S=0.025 Kg? /rad/sec ) for
the linear analysis of the one degree of freedom
problemn.
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Figure 3: Power Spectral Density Functions of the
Rsponse (Note the different scale for
the right hand side)

Note the reduction in the maximum value of the
PSD function of the response, relative to the
linear solution. The ratio between the maximum
value of the response PSD and that of the linear
response PSD is shown in Figure 4. Values of this
ratio drop to approximately 205 of the linear
value for higher values of S.
Figure 5 shows different values of response
displacements:
1.The amplitude of the
nonlinear bean to
(backbone curve),

2.The rms deflection of the nonlinear beam to
harmonic excitation (peak/\Z ),

3.The rms deflection of the nonlinear bean,

excited by the random force, calculated with
1 and 3 degrees of freedom,

response of the
harmonic excitation




L.The 3¢ deflection (99.97% of all amplitudes)
of the nonlinear beam, calculated with three
degrees of freedom.

In both Figures 3 and 5, the shift in resonance
frequency (frequency of maximum response), namely,
the "hardening" effect, is clearly demonstrated.
Also, nonlinear effects are clearly shown to
influence the behavior of the beam for deflections
of the same order of magnitude as the thickness
(and smaller).

-
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PSD oF EXTERWAL EXCITATION x 10 ke*/Rab/stc

Figure 4: Maximum Value of Nonlinear PSD Relative
to Linear PSD
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Figure 5: Expected Values of Amplitudes

7. Conclusion

Examination of the nonlinear response of a
geometrically nonlinear structure, subjected to
random, Gaussian distributed excitation loads, has
led to the following observations:

(a) The influence of higher modes of the structure
is small, therefore a behavior similar to a one
degree of freedom system is observed. As a
result, analysis of the first mode response is
reccommended for the first engineering
approximation, This conclusion will not be
adequate if, because of some design criterion,
the acceleration response is required.

(b) The maximum value of the response PSD is
significantly lower than that of a linear
system. Therefore, the rms values of the
response amplitudes, and hence the strains and
stresses, are lower. This implies that
nonlinear analysis in the design process will
yvield a less conservative design. Engineers are
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encouraged to use nonlinear analysis even for
relatively small deflections.

(c) A shift in the resonance frequencies is
observed, similar to that of one degree of
freedom system., Therefore, a nonlinear response
contains a range of resonance frequencies, the
values of which depend on the magnitude of the
excitation.

(d) The results demonstrated in this work are
applicable for wide band random excitation.
Because of the ‘"overhang" of the response
curve, which causes "jump" phenomena in the
response to periodic excitations, instability
of response behavior is possible when narrow
band excitation is applied.

(e) The statistical linearization method, together
with existing static computer codes, can
provide a systematic tool for the analysis of
nonlinear structures.
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