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ABSTRACT

The paper presents a theoretical study of the
interactive periodic vibratory response of a heli-
copter rotor/fuselage system. The rotor blades and
the fuselage are assumed to be fully elastic and
the periodic cyclic pitch controls are generic and
may contain any number of harmonics. Emphasis is
placed on a complete and consistent formulation of
all dynamic contributions. This results in highly
nonlinear expressions of high harmonic content
which are implemented in an advanced computer code.
The paper demonstrates a successful combination of
two powerful numerical techniques: The method of
"Harmonic Variables" and advanced algorithms for
solutions of nonlinear systems. This merger mini-
mizes the required analytical effort while preserv-
ing high accuracy solution. The potential of the
present model to serve as an efficient analytical
tool for advanced control concepts such as the High
Harmonic Control {(HHC) is well established.

INTRODUCTION

Techniques for vibration suppression in rotary wing
systems have been under investigation for many
years. The development of new methods has contin-
uously accompanied needs of new design concepts.
The key to meaningful analytical estimation of the
efficiency of any specific method for vibration
level reduction is adequate modeling of the rotor/
fuselage system as a whole, and a proper, feasible
method of solution. It is well known that the heli-
copter rotor and its fuselage operate in an extre-
mely complex, unsteady environment which poses dif-
ferent modeling challenges such as structural
analysis, dynamic aspects and aerodynamic consider-
ations. In advanced realistic models, one also en-
counters limitations on the required computational
effort which become unacceptable in many cases. In
addition, many of the proposed means for vibration
reduction of helicopters are based on some types of
"additional favorable excitation" to the blade
pitch control (see Refs. 1,2). Such periodic excit-
ation, which is in the focus of the present
analysis, may either be the same for each blade at
a given azimuthal location, or different from blade
to blade and it is aimed mainly towards the excita-
tion of additional aerodynamic loads. In both

*Graduate Student
**Senior Lecturer

Copyright © 1992 by ICAS and AIAA. All rights reserved.

Israel.

cases, this additional excitation complicates the
analysis by introducing additional higher pitch
harmonics which, due to the inherent nonlinearities
of the system and the strong couplings between the
various mechanisms, might induce non-negligible
changes in many of the system behavior indicators,
compared with those obtained in a conventionally
controlled systen.

From the actual implementation point of view, one
should distinguish between two main categories of
ways to introduce controls containing high
harmonics to the blades. The first category is the
one that may be implemented through a conventional
swashplate. In this method, one introduces periodic
excitation to the swashplate in the nonrotating
frame. This technique has already proved to be fea-
sible, and it may be shown that providing that this
excitation of the swashplate is based on a fre-
quency, which is a multiple of Nb/rev. (where Nb is

the rotor number of blades), all blades are excited
identically. This method is broadly referred to as
Higher Harmonic Control (HHC) and is well docu-
mented in the 1literature. Application of this
method in flight tests is reported in Refs (3-5).
Wind tunnel test results are summarized in Refs.
(6=7), while Refs. (8-13) represent few of the
analytic simulations.

When a conventional swashplate is excited in a fre-
quency which is not a multiply of the rotor rota-
tion frequency, the blades perform different time
histories. It may be shown (see Ref. 14) that for

NbSB, a conventional swashplates may be used for

introducing any individual time history of pitch
command for each blade. Indeed, for Nb>3, employing

a conventional swashplate which is excited in fre-
quencies that are not multipliers of the rotor
rotation frequency, results in non-identical com-
mands for the blades. However, not any different
desired time history for each blade may be
achieved.

The second category of high harmonic excitation in-
cludes commands which are introduced individually
by actuators in the rotating frame. This technique
is usually referred to as Individual Blade Control
(IBC-see Ref. 15) and may be used for general pur-
poses which include cases where all blades undergo
identical excitation and cases where different
cyclic pitch time histories are introduced for each
blade.
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Based on the success of the HHC that has been re-
ported in the literature so far, and since the IBC
concept is a direct evaluation of the HHC concept,
the objectives of the present study were aimed at
the modeling and development of an efficient and
high resolution formulation and method of solution
for a rotor/fuselage system response subjected to
generic time histories of <cyclic pitch controls.
All control modes in the present analysis are in-
troduced to the blade root in the rotating refer-
ence system, and therefore, both HHC and IBC pitch
command modes may be handled by the present model.
Thus, when the blades undergo identical excitation,
a representative blade is traced, while 1in cases
where the time history of the pitch command of each

blade is different, each blade is traced
separately.

Generally, in a trimmed forward flight, the heli-
copter fuselage undergoes periodic excitation due
to many sources. Even by confining the discussion
to the vibration induced by the main rotor, in cer-
tain configurations one has to take into account

not only the vibrations which are transferred to
the fuselage through the hub, but also those vibra-
tions which are induced by the blades passage over
the fuselage, or by the main rotor wake interaction
with the fuselage. However, the study presented in
this paper is restricted to the forces and moments
which are transferred to the fuselage through the
hub.

From a mathematical point of view, each additional
component in the harmonic spectrum of the cyclic
pitch time history, may be wused for vanishing a
component in the harmonic spectrum of the vibratory
motion. This component may belong to the accelera-
tion of a point in the system or to the forces and
the moments which are transmitted through the hub.
For example, in the case of conventional HHC excit-
ation, where six additional components are intro-
duced into the vibration spectrum of the swashplate

(two due to Nb/rev. collective translation, two due
to Nb/rev. lateral tilting and two due to Nb/rev.
longitudinal tilting), six components such as the
N /rev. hub forces in three orthogonal directions

b
(both sine and cosine components) may be set to
zero. Clearly, in such a case, not enough degrees
of freedom are left for vanishing also the hub
moments components or the p-Nb/rev. (p=2,3...) har-

monics of the hub loads, and a compromise in the
form of optimization of the vibratory response at
some pre-selected points of the system is
inevitable (see alsoc Ref. 2).

ANALYSIS

As already indicated, the numerical implementation
of the present analysis is based on the combination
of a recently developed concept of “"Harmonic
Variables" (see Ref. 16) with a nonlinear solver.
For the sake of clarification, the above technique
of utilizing "Harmonic Variables" will be reviewed
first. Then, the various aspects of the present
structural dynamic and aerodynamic modeling will be
developed and discussed.

Overview of the Harmonic Variables Approach

A harmonic variable is a real number the value of
which is changed periodically with a period of 2m.
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Harmonic variable, F, may therefore be represented

by an infinite array of its Fourier coefficients
as:
(=]
F=F + Z [F cos(py) + F sin(pw)] (1)
o P21 cp sp

Truncating the above infinite sum enables one to
define a finite harmonic operator, Hq, using finite

arrays of real numbers F and F of dimension g
cp sp

(i.e. p=1,....q) as:

F«H(F,F ,F )=F+
q [+] cp sp o

P? cos(py) + F sin(pw)]
b cp SP

I ~73a

1
(2)

In principle, the periodicity parameter, ¥, may
represent any variable, however, in the context of
the present study ¢ represents a nondimensional
time (i.e. yY=2nt/T where t is the time and T is the
period). In what follows, all harmonic variables
and their coefficients will be denoted as shown in
Eq. (2) (i.e., denoting the harmonics by the sub-
scripts ( )o, ( )cp and ( )Sp). Clearly any con-—

stant real number, r, may be
harmonic variable, R, where

represented as the
R =T, R =R =0
[} cp sp

(p=1,....q). In addition, the basic trigonometric
functions sin(y) and cos(y) may be described as the
harmonic variables S and C, respectively, where
S =C =1 and S=C=S5 =C =0, S =S5 =C =C =0

sl cl o o ¢t s1 cp sp <cp Sp
(p=2,...q). The mathematical operations
harmonic variables that will be discussed in what
follows enables the construction of all other tri-
gonometric functions of Y using the above defini-
tions of the sine and cosine functions.

between

It should be noted that there 1is an interesting
analogy between the number of coefficients used to
describe a harmonic variable and the number of
digits used to describe a real number. This is due
to the fact that similar to real numbers, adding
and subtracting of harmonic variables do not change

the required number of coefficients. However,
multiplying two harmonic variables represented by
q, and qa, harmonics, respectively, results in a

harmonic variable having q1+q2 coefficients. More-

over, division of harmonic variables results in an
infinite number of additional harmonics.

Basic mathematical operations between harmonic
variables are similar to those of real numbers and
may be executed by determining the coefficient of
the resulting harmonic variable directly by using
the coefficients of the 1involved variables.
Additions and subtractions are trivial and are
essentially based on adding or subtracting the
corresponding harmonics (see Ref. 16). Multiplying
two harmonic variables is based on the appropriate

trigonometric identities and may be put in the
following form for the case of E=F:G:
E F
[ 0
E F
cl cl
E. = -~ 1 «
< oq > [G] ch > (3)
F
sl sl
E F
sq sq




where [G] is a matrix which is a function of the

coefficients of the harmonic variable G only,

namely: Go, ch, G (p=1,....q). This matrix is
sp

generated symbolically for any given number of har-
monics by a separate special purpose computer code.
Division of harmonic variables is based on the
above multiplication operation. More details may be
found in Ref. 16.

Analytic functions of harmonic variables result in
harmonic variables as well. Using the above basic
mathematical operations, analytic functions are
generated by expanding the functions into power
series.

Differentiation of harmonic variables with respect
to the periodicity parameter, ¥, results in har-
monic variables as well - see Ref. 16. It should
also be mentioned that all explicit numerical
schemes for differentiation and integration that
have been developed for real numbers may be
directly applied to harmonic variables as well. As
an example, numerical differentiation with respect
to any variable (other than y), say x, may be put
in the general form:

8"F

;K
= 2 z r(k,n)F(x +x ) (4)
ax" 3" k=1 0k

X=X
o]

where 8 is a typical length, X are intervals

around Xo and r(k,n) are weight coefficients assoc-

iated with the specific finite differences schenme.
Clearly, since F is a harmonic variable the result-
ing derivative 1is also a harmonic variable.

Similarly, numerical integration with respect to x
may be performed. Other operations with harmonic
variables may be found in Ref. 16.

The implementation of harmonic variables in numer-
ical codes is carried out using a "super compiler"
which has been developed along the above guide-
lines. This is a computer code that converts codes
that were written using harmonic variables to stan-

dard computer codes. As far as the user 1is con-
cerned, all operations with harmonic variables,
(additions, multiplications, analytic functions
etc.) are written in the standard form as if they
were real numbers. A simple application 1is pre-
sented in Fig. 1.

Consequently, this technique allows for enormous

reduction in the required analytic effort in cases
where highly nonlinear terms which have to be
expressed with high harmonic resolution are
involved. Moreover, since all operations are symbo-
lically coded, increasing the number of harmonics
does not cause any changes in the analytic deriva-
tion or in the computer code and it 1is executed
automatically by changing the harmonic variables
dimension q, (see Eq. 2.).

Systems of Coordinates

The present formulation is based on five systems of
coordinates. The systems and their mutual trans-
formations are described in this section. As will
be clarified in what follows, each system and quan-
tities in its directions are denoted by one of the
indices G, F, H, B and D, while the corresponding
axes are denoted by Xo Yo % etc., and unit

~

~ -
vectors in these directions are denoted xG, yG, zG

etc. Any other quantity belonging to a system will
be indicated as ( )G etc.

[+
¢ Declaring HA,HB,HC as Harmonic Variables
¢ of 8 harmonics(i.e. 17 coefficients)
¢ and double precision (*8).
c
HARMONIC(17)%8 HA,KHB,HC
c
¢ Setting HA to be:
¢ 1l.+2.*sin{Psai)+3.*Cos{2.*Psai)
c
HA=SET{0.D0)
HA=INPUTC(1.D0,0)
HA=INPUTS(2.D0,1)
HA=INPUTC(3.D0,2)
C
¢ Printing HA
[
WRITE(10,%)’ HA !
HA=PRINT(HA)
C
¢ Setting HB to be:
¢ 4.+45.#8in(3.*Psai)+6.*Cos(4.*Psai)
c
HB=SET(0.D0)
HB=INPUTC(4.D0,0)
HB=INPUTS(5.D0,3)
HB=INPUTC(6.D0,4)
c
¢ Printing HB
c
WRITE(10,*)* HB !
HB=PRINT(HB)
c
¢ Setting HC=HA*HB
c
HC=HA*HB
c
¢ Printing HC
c
WRITE(10,%)’ HC '
HC=PRINT(HC)
c
STOP
END
a)
= HA ==
0 1.0000 0.00000E+00
1 0.00000E+00 2.0000
2 3.0000 0.00000E+00
3 0.00000E+00 0.00000E+00
4 0.00000E+00 0.00000E+00
5 0.00000E+00 0.00000E+00
6 0.00000E+00 0.00000E+00
7 0.00000E+00 0.00000E+00
8 0.00000E+00 0.00000E+00
mmmmczz==z HB =soseoooos
0 4.0000 0.00000E+00
1 0.00000E+00 0.00000E+00
2 0.00000E+00 0.00000E+00
3 0.00000E+00 5.0000
4 6.0000 0.00000E+00
5 0.00000E+00 0.00000E+00
6 0.00000E+00 0.00000E+00
7 0.00000E+00 0.00000E+00
8 0.00000E+00 0.00000E+00
HC
0 4.0000 0.00000E+00
1 0.00000E+00 15.500
2 26.000 0.00000E+00
3 0.00000E+00 -1.0000
4 1.0000 0.00000E+00
5 0.00000E+00 13.500
6 9.0000 0.00000E+00
7 0.00000E+00 0.00000E+00
8 0.00000E+00 0.00000E+00
b)
Fig. 1: An application of "Harmonic variables".

a) The code (includes the input and a
multiplication operation).

b) The output.
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The G (gravity) system is an inertial reference

system while gravity is assumed to act in the —%G
direction.
The F (fuselage) system is a system which is

attached to the fuselage (see Fig. 2). The trans-
formation of a physical vector from the G system to

the F system 1is executed by the transformation
matrix [T_], namely:
FG

X

F [

Y| T [TFG] G (5)

z

F G
where the [TFG] matrix is a function of the
fuselage attitude angles 8_, 6_, and 6_ . By set-

‘ Fx Fy Fz

ting GFZ=O, the helicopter fuselage is assumed to

be placed in a plane which is parallel to the gc_éc

plane.

The H (hub) system is attached to the F system at
the coordinate X=X, 252 (see Fig. 2) and is

rotating in a constant angular velocity Qéf

Although this system is excited by the vibratory
deformation of the fuselage, the differences
between the F and H attitudes are ignored. Similar
to Eq. (5), the transformation between the F and
the H systems are based on the [THF] matrix which

is a function of the azimuth angle of the reference
blade, .

The B (blade) system is connected to the H system
at eQH and its attitude is determined by the three

root angles B, L, 6. B is the flapping angle, C is
the lead-lag angle and 6 is the pitch angle. The
transformation matrix between the H and B the
systems is denoted [TBHL

The D (deformed) system is a local system of coor-

dinates which is attached to each cross-section
along the blade. The attitude of this system is

ROTOR HUB

FUSELAGE BEAM

Fig. 2: The Gravity, Fuselage and Hub systems of

coordinates.

determined by the local elastic deformation values
which will be dealt with in what follows within the
description of the structural modeling. The trans-
formation matrix between the B and the D systems is
denoted [TDB]. Before deformation the blade elastic

axis is assumed to be straight and to coincide with
the Xy axis. Thus, the blade cross-sections may be

identified by their spanwise location X(EXB). While
the elastic elongation of the blade is neglected,
the present analysis accounts for the shortening of
the distance of each cross-section to the rotating
axis induced by the transverse displacements v, w -
see Fig. 3. Thus, the location of the D system root
is at xB=x+s, yB=v, 2B=w, where:

21 Jx(w,2 + v,2) dx’ (6)
2 x x
o

114

s(x)

7R

DEFORMED

Fig. 3: The Hub, Blade and Deformed systems of
coordinates.

The Structural Modeling

The elastic blades: The structural analysis used in
the present modeling for determining the periodic
elastic motion of the blades 1is based on the
generic nonlinear beam model described in Ref. 17.
The nonlinear terms in this model are derived for
small strains and moderate elastic rotations. The
above generic analysis has been reduced to the pre-
sent case where the undeformed blades are assumed
to be straight and untwisted while their elastic
deformation with the ;
coordinate line (see Figs. 2,3).
assumed to consist of the displacements u,

axis coincides before

Deformation 1is
v, and w

in the QB, §B and %B directions, respectively. In

addition, a twist angle, ¢, 1is assumed to occur
about the elastic axis in its position after the
displacements u, v and w took place. As shown in
Ref. 17, the bending moments components in this
case are given by:
PI
M o= (GJ + =2 )T (72)
x A
M =-~EI K -EI K + Pz (7b)
y yZ ¥ z2Z Z c
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M =EI K +El K - Py
z Yy y yz z (o)

(7¢)

P is the tensile force and y, z are the cross-
(o3 c
sectional coordinates of the center of tension. K,
~ p4
K and T are the curvatures in Y and z
z

directions, and the twist,
vatures are given by:

D
respectively. These cur-

T=¢, + (v, +w_¢)w,_ =-v, ¢) (8a)
X XX XX X X

Ky SVt W xx¢ (8b)

K =w, -v, (¢+v,w) (8c)

z XX XX X X

where ( ),x stands for differentiation with respect

to the blade length. The six equilibrium equations
for forces and moments acting on each segment of
the beam are also presented in Ref. 17. Elimination
of the shear resultant forces from these equations
yields the following four differential equations of
equilibrium:

P, =-p +KV +KV (9a)
x X vy z z
KP-(EI v, + EI w, ), =~p +TV +q
y vy o xx yzZ XX XX y z ze, X
(9b)
KP-(EI v, +EI w, ), =-p -TV -g
z yz XX ZZ XX XX z y ye,
(9¢)
(GJp, ) = ~-q + KM +KM (94)
x X y Yy z z

where q,. qye are equivalent load components which

are given by:

qze = qz+ [EIyyw’xx¢ - EIyzv’xx(¢ + v’xw’x) -
-Pyl], +KM + TM (10a)
c X Z X y
qye = qy * [_EIyzw’xx(p - EIsz’xx(¢ * V'xw’x) *
+Pz], +KM - TM (10b)
c X y X 4
and Vy, Vz are the cross~sectional forces
resultants:
V =-[EI v, +EI w, 1, -gq (11a)
y Yy xx yz XX X ze
V = - [EI v, +EI w, ], +qg (11b)
F4 YZ XX ZZ XX X ye
The associated nonlinear form of the boundary con-

ditions are given in Ref. 17, and similar to the
solution procedure described there, Eqs. 9a-d, are
solved by Galerkin method where the shape functions
are the natural mode shapes.

The elastic fuselage: From a structural point of
view the fuselage is treated as a beam and the
structural modeling is based on modal analysis. The

fuselage and its system of coordinates X Ve and

z, are presented schematically in Fig. 2. The fuse-

lage structural behavior is assumed to be charac-
terized by small linear deflection in which lateral
and torsion elastic motions are wuncoupled. Thus,
the elastic lateral deflections and the elastic
torsion are given by:

N
W

F
i i
z Ew(t) ) (Dw(xF)

wF(XF) = (12a)
i=1
N
\'4
F i i
v (x) = z £.(t) + 8 (x) (12b)
i=1
N
¢F
_ i L oat
$.(x) = z O ACH (12¢)

i=1

As a beam, the fuselage boundary conditions are
"free" at both ends. To account for rigid motions,
the first modes have been chosen as follows:

o' =o' =8l =1 (13a)
W v ]
2 2 _ *r %ree
" = §" = (13b)
W v L
F
where Xece and LF are the fuselage center of
gravity coordinate and its length, respectively,

and the successive modes were the corresponding
elastic modes. Since uncoupled elastic behavior is
assumed, the following discussion will be concen-—
trated in the vertical motion, Vs while the formu-

lation of the lateral motion v_ and the elastic
motion @F are similar. Since @: are orthogonal
modes, the governing equation for the ith mode
becomes:
12 i 1’1 112
MHEW Q + MWCHEHQ + Mwww gw =
=F We'(x) - QW) iq-); (x) (14a)
W w h W axF h
where:
LF
M = jq&lz(x’)m(x’)dx’ (14b)
W w F F'F
0

c' is a generalized damping coefficient, wl is the
W

ith mode frequency, m is the fuselage mass per unit
length and Fw(w) and QH(W) are the concentrated

force and moment, respectively, that acts at the
hub (xF=xh) due to the main rotor. ( ) stands for

differentiation with respect to the azimuth angle,
Y. Within the present study, it is assumed that all
loads acting over the fuselage, except the hub
loads are of low frequency and will be considered
as constant in what follows. Assuming identical
time history for all blades, the hub load which is
transferred to the fuselage, Fw and Qw, contains

only harmonics which are multipliers of the rotor
number of blades and may therefore be expressed as
harmonic variables containing non-vanishing values
only for the pth harmonic where p=Nb,2Nb...

Consequently, each of the modes coefficients E: may

also be expressed as harmonic variables, and Eq.

(14a) implies that for p=Nb’2Nb"'
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wep - __1_ .
i 2 2
Ewsp Ai "’Bx
w oW
x %,
Ai —Bi ¢w(xh)ch T ax. (Xh)chp
W W F
; . ) (15)
Bw Aw i 6¢w
¢w(xh)Fws - g)i (Xh)Qwsp
where:
i i 82 2.2
Al =Ml{w —pQ) (16a)
W wl w
B' = M'c'p (16b)
W W W

and for any p which is not a multiple of Nb'

E‘ =§1 =0. As for the constant values El , it is
Wecp Cwsp wa
possible to show that for the rigid modes, these
values vanish due to trim considerations, while
the constant values of the other (elastic) modes do
not necessarily vanish and they are determined by
the assumed steady load distribution over the fuse-
lage and are not of interest in the present con-
text. Based on Eq. (12a), the acceleration in the
W direction at a given point X=X, along the fuse-

lage is given by:

wx) = Gp,x Jcos(py - B(p))  (17)
p=N ,2N ... P
b’ b
where according to the present analysis
N
W
Fa 248 i
Glp,x)) =~ J pV g v ) (18)
1=1
Alternatively, ©both G(p,xp) and B(p) may be

extracted experimentally from standard vibration
testing of the isolated fuselage (e.g., Ref. 18).
In such testing, the fuselage is excited in various
frequencies by a periodic force at the hub and the
acceleration absolute value, G(p,xp) and the phase

angle B(p) at some prescribed locations over the
fuselage are directly measured. Clearly, for deter-
mining the rotor/fuselage coupled response, G(p,xh)

and B(p) (p=Nb,2Nb...) are sufficient. Then, to
determine the vibration level at Xp G(p,xh) is

also required.

Longitudinally, the fuselage is assumed to be
stiff. Thus, by choosing one mode in this direc-
tion, and a shape function ¢u=1, the longitudinal

rigid body vibratory motion may be determined along
the same lines described above for the other
directions.

The Inertial Loads

To find the inertial loads at a certain cross-
section in the local D system coordinates direc-
tions, one has to express the inertial acceleration
of each material point over the cross-section under

discussion. For the sake of convenience, two posi-

tion vectors, ﬁH and ﬁn are defined. The vector RH

connects the G (inertial) system origin, with the H
system origin while the (rotating) vector RH con-

nects the H system origin with a generic material
point, P, which has been located before deformation

at X=X, Y IV, Z.=7 (see Fig. 3). Based on the
above described system of coordinates, ﬁH and ﬁu
are given by:
ut X + U -ZW_ A -ZV
h h ' F,x h F,x
R =4 Vt +4v ~20 (19)
H F h Fx
Wt W+ z
G F h F
e X+s 0
ﬁH= O + + 4y (20)
0 W z
H B D

where U, V and W are the helicopter velocity com-

ponents in the Xor Yoo Zg directions, respectively.

*
By denoting ( ) and (°) as the nondimensional deri-
vatives (i.e. the dimensional derivative divided by
Q) relative to the G and the H systems, respec-—
tively, the inertial nondimensional acceleration of
the above generic material point is given by:

B * ° -X <]

a =R + QxR +0x @xR)+20xR +R_

G H M M H
(21)

Since the rotor angular speed is constant and the
rates of the attitude change of the H system due to

the elastic motion of the fuselage are neglected, Q
may be expressed as:

0
g=|0 (22)
Q
H
Assuming steady flight where U, V and W are con-
stants, 5& may be expressed as:
+
ax * axyy axzz
a =4 a +a y+a z (23)
G y vy yz
az * azyy * azz2 D
Integrating the above acceleration results in the
distributed forces and moments due to the inertia.
These loads are given by:
5=—”5 p dA (24)
a G
A
3 =- X -22) x 3 25
a II(ny zzD) xa. p dA (25)
A
where p is the material density. These expressions
may be explicitly expressed as:
= - ; = 26
P, m(a, + YoiPoy * zcgaaz) i (e = x,y,2) (26)
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q =-mly a-z a+I a ~I a +I (a -a )
cg z cgy YY 2y 2z yz Yz Zz Yy

(27a)
g =-m(z a +I a +1 a ) (27b)
y cg x YZ Xy ZZ XZ
q = - m(—ycgax - Iyzaxz - Iyyaxy) (27¢)
where:
(my my , mz , mI , mI , mlI )=
cg cg Yy yz ZZ
2 2
= ” pll,y,z,y%, yz,2%) dA (28)
A
The Aerodynamic Loads
The dynamic velocity: To determine the aerodynamic

loads which are distributed along the blade, one
first has to evaluate the components of the dynamic
velocity at each cross-section. Since the present
analysis deals with motions containing high har-
monics, exact and complete expressions for the
dynamic velocity which are fully consistent with
the dynamic response of both rigid and elastic
degrees of freedom of the systems, are required.

Based on the previously defined ﬁH and ﬁn vectors,

the velocity of each material point is given by:

* o
v =R +QxR +R (29)
G H M M

Similar to Eq. (23), Vv may be expressed as:

<
+

v + v z
xyy XZ

<l
L]
<
+

v + vV z (30)
yyy z

Yy
vV +V y+vVv z
zy zz D

The distributed loads: The following expressions
for the aerodynamic loads are based on a two-
dimensional unsteady strip theory and the classical
Theodorsen theory and its extension for periodic
free stream velocity proposed by Greenberg (see
Ref. 19). Employing such a two-dimensional unsteady
strip theory combined with a prescribed inflow
model is based on separating the flow-field into
“inner"” and "outer" regions. In the "inner" two-
dimensional flow-field, the loads are calculated by
taking into account inflow induced by the trailing
vortices and the magnitude and phase shift varia-
tions induced by the "near" shed wake vortices. In
the "outer" flow-field, the trailing vortices in-
duced velocity is determined. The prescribed inflow
model used in the present model as the trailing
vortices induced velocity is assumed to be steady
at a given location over the disk. This assumption
is justified since the present modeling is concen-
trated in a steady trimmed flight where the changes
in the overall thrust and moments acting on the
fuselage are negligible. On the other hand, the
local variations of loads are rapid in the case of
pitch commands of high harmonics content, and un-
steady treatment of the "inner" flow-field which
yields loads distribution is inevitable.

Figure 4 presents the Yo% plane of the local de-

formed system of coordinates where the airfoil is
represented as a thin flat chord in accordance with

Fig. 4: Notation for the cross-sectional aero-
dynamic analysis.

the above mentioned Greenberg’s theory used in this
formulation. Since the loads depend on the free
stream velocity, UB, and the three-quarter normal

velocity, Q, these quantities will be determined
first. In the present analysis UB and Q should be

evaluated at the three-quarter chord location the
coordinates of which in the &D—ED directions are

given by (see Fig. 4):

1
- _ 1 31a)
Y1q o [2 a]cosetw (
z_=-C 1_, sin® (31b)
TQ 2 tw
twist

where C and 9t are the blade chord and the
W

angle, respectively, and Ca is the distance between

the forward quarter-chord and the &D—ED origin (see

Fig. 4). Substituting the above coordinates in the

velocity expressions of Egq. (30), vyields the

velocity v and v, in the &D and ED directions,
y

respectively. By geometrical consideration it is

clear that Q and UB are then given by {see Fig. 4):

Q=-vsing + (v + v )coso (32)
y tw z i tw

U =vcosd + (v + v )siné (33)
B y tw z i tw

v is the external inflow velocity (which is

i

assumed to be in the —ED constant

direction and
over the cross-section) and similar to vy, vz, Q
and UB, is a function of both the spanwise and the

azimuthal location over the disk.

Having Q and UB in hand, the circulatory 1ift may

be expressed as:
L =-2mp Ub C(k) Q (34)

where P, is the air density and b 1is the semi-

chord. C(k) is the Theodorsen 1ift deficiency (com-
plex) function. Note that C(k) should be a function




of the reduced frequency k=wb/UB. As in Greenberg’s

theory, UB in the case of oscillating free stream

velocity is replaced by its constant (mean)

U . Thus, the
Bo

harmonic becomes:

valqsf
reduced frequency of the P

(35)

Rational approximation for C(kp) and its wusage in

Eq. (34) appears in Ref. 20. Drag 1is approximated
as a quasi-steady force which depends on the
instantaneous free stream velocity. Since lift and
drag act perpendicular to and in the direction of
the resultant velocity, respectively, the aero-

dynamic loads due to the lift, pA and p: in the ;D
y

and én directions, respectively, may be expressed

as (see Fig. 4):

A
= - 36
P, pab[Zn(vz + vi)C(k)Q vaBCd] (36a)
A
- _ 36b
o’ pab[vayC(k)Q f v s vi)UBCd] (36b)
Again, it should be emphasized that Vo Ve Q and
vy are all periodic. In addition, the blade
undergoes an aerodynamic moment due to the above
lift which is given by:
A A A,
= - 36
qa Ca(pzcosetu py51n9tw] (36¢)
while the aerodynamic moment due to the profile

camber and the moment associated with the drag are
neglected.

As already indicated, the inflow at each cross-
section is assumed to be an harmonic variable, and
therefore, any prescribed values of inflow may be
introduced. The results presented in this paper are
based on the classical inflow variation which in-

cludes one harmonic having coefficients that vary
linearly along the blade span, namely:
v =v (37a)
io i
v. =vk x/L (37v)
icl iec
v =vk x/L (37¢)
isl is
v =v =0 (p22) (374)
icp isp

where Vl is Glauert’s averaged (momentum-based)

induced velocity over the disk.
Hub Loads

Hub loads are obtained by direct integration of the
distributed loads along the blade. For that pur-
pose, all distributed loads and moments originally
developed in the D system are first transformed to
the B system. Then all quantities are integrated
which may be expressed as:

L
[Fxs’ FyB' FzB] = J[pxs’ pyB’ sz]dx (382)
0

[MxB’ MyB’ MzB] =

L

= J[qu+ szB_ waB’ qu+ waB_(X+S)sz"

o

q,* (x+s)pyB— vpr]dx (38b)

Thus, the hub forces and moments in the rotating H
system are therefore:
F F
xH xB
F = [T ] F (39a)
yH HB yB
F F
zH zB
and
M M 0
xH xB
M = [r ] M + e -F (39b)
yH HB yB zH
M M F
zH zB yH

Such loads due to all blades are then assembled to
give the resultant forces and moments in the non-

rotating system ¥ ,F F ' M M M . A

xHN" yHN  zHN xHN" yHN  zHN
generic scheme for the case of identical blades
behavior may be found in Ref. 21.
Trim
To assure a trimmed steady flight, the present

solution procedure is supplemented by seven equa-
tions which enables the introduction of seven un-—
known trim parameters. These unknowns are the fuse-
lage attitude angles 6 and 6 (=0 is
Fx Fy Fz
assumed), the collective pitch angle 60, the cyclic
pitch angles elc and 615' the tail rotor thrust TR,
and the averaged induced velocity 31. The corres-

ponding equations are based on forces and moments
of equilibrium in the F system and on Glauert’s

classical momentum equation for the averaged
inflow:
F _+F -1/2pVSC =0 (40a)
xHN WX a x x D
F _+F +T -1/2pVsSC =0 (40b)
yHN wy R ayyD
— 2
R S pa(Vz + Fvvlo) s.C,=0 (40c)
+ - -
xHN thzHN thyHN * ychwz chFwy+
+ prFAz - chFAy -zT =0 (404d)
M + zF x F + z - F +
yHN h xHN h zHN cg WX cg WZ
Zcp Ax cp Az TR =0 (40e)
M + x F -y -y F +
ZHN h yBHN h xHN cg Wy cg WX
XoFay ™ YopFax * %Tg = 0 (40£)
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0 (40g)

2 .2
c/2/u* - A

In these equations, V ,Vy,VZ are the helicopter
X

flight velocity components in the F (fuselage) sys-—
tem obtained by the U,V,W velocity components which
were defined in the G systems. Sx,Sy,SZ are the

fuselage flat-plate areas in the fuselage system
directions and CD is the corresponding drag coeffi-

cient. F (u) is an empirical function of the advan-
v
ced ratio, u(EVx/QR), and accounts for the fuselage

download due to the rotor inflow. F ,F ,F are
WX Wy WZ

the fuselage weight components in the fuselage sys-
tem coordinates, x ,y ,z and X ,y ,zZ are
cg “cg cg ¢cp cp cp

the center of gravity and center of pressure coor-
dinates, respectively (measured from an arbitrary
reference location). xh,yh,zh and xT,zT are the

rotor hub and tail rotor coordinates, respectively.
CT is the rotor thrust coefficient while Ai=vi/DR

and A=(V_+v ) /OR.

Method of Solution

As already indicated, the present method of solu-
tion is based on the combination of the Harmonic
Variables technique with generic algorithms for
solving nonlinear systems. To demonstrate this com-
bination, the following generic nonlinear system is

considered

ri(xl,xz...xn) 0 (i=1,n) (41)

T . .
where {xi}=<x PRy X >" is the vector of indepen-
n

1

T, .
dent unknowns and {rl}=<r1,r ...r > is the resi-
n

2
duals vector which may generally be expressed using
nonlinear operators. A general purpose nonlinear

solver which was designed for determining the
vector (xl) that will satisfy Eqs. (41), is usually

based on two main components. The first component

is "the algorithm" which includes the logic of the

nonlinear solution (such as the Newton-Raphson

method, quasi-linearized iterations etc.). Starting
RS 0 N

from an initial guess, (xi}, this component reaches

the desired solut%on by successive substitutions of
trial vectors, {xi}, in the second component that

may be titled "the equations”. This component eval-
uates the equations residuals (r:} for each trial

the
the

vector. Depending on the solution algorithm,
trial vectors are selected in a way that
solution vector (x?} may be deduced.

In the present formulation, all time-dependent
variables are defined as harmonic variables and
therefore, by putting all the governing equations
in an homogeneous form and using the mathematical
operations between harmonic variables, the equation
residuals are also obtained as harmonic variables.
Therefore, in the present analysis, the {xi} vector

contains the harmonic coefficients of all unknown
harmonic variables and the residual vector, (ri)

contains the harmonic coefficients of all the resi-
duals harmonic variables. Thus, for n time-
dependent unknowns, n-q scalar unknowns are pro-
duced (see Eq. (2) for the definition of q). In
addition, scalar unknowns may be added to the above
residual vector.
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It should be emphasized again, that since opera-
tions between harmonic variables are executed auto-
matically (see for example the multiplication oper-
ation in Fig. 1), both analytic and coding efforts
are reduced to the expression of the governing
equations in their homogeneous form, while no addi-
tional adaptation or discretization is needed.

RESULTS

The capability of the
method of solution to determine the
nonlinear coupled response will

through the exploration of the effectiveness of
conventional higher harmonic pitch inputs and the
fuselage influence. For demonstration purposes,
only the collective higher harmonic pitch control
will be presented and discussed. The following
results are for typical full scale hingeless four
bladed rotor in forward flight (u=0.3).

present formulation and
rotor-fuselage
be presented

Case a: Isolated Rotor Response

In this case, the fuselage is assumed to be
infinitely stiff and massive enough so that the hub
motions may be neglected.

Generally, the higher harmonic control pitch
command is expressed for four bladed rotor as:

8 (k) = Acolcos(4¢1'¢c°l) + Alatcos(4w1-¢lat)c05¢k

+ A (42)

longCOS(4w1_wlong)Slnwk

wk is the azimuth angle of the k2 blade while the

first blade is the reference one (w=w1). 2] pre-

Hk)

sents the higher harmonic control that is super-

imposed on the 6 +elccoswk+elssin¢lk pitch command
o

which is determined by trim considerations (see
Eqs. 40a-g).
First, the influence of higher harmonic collective

pitch is presented. The 4/rev. amplitude of the
three hub shear components Fx,Fy,Fz and two of the

moment components Mx,My are presented in Figs. 5a-c

as function of ¢ for A =0.005 rad, and com-
col col

pared with the base line value (the MZ vibratory

component is assumed to be absorbed by the engine).
As shown, the most effective phase angle is differ-
ent in each direction and the most influenced com-
ponent is Fz, where the 4/rev. vibratory amplitude

may be reduced from 596 Nt to 95 Nt by ¢ =126°.
col

To study the dependency of this behavior on the
higher harmonic control amplitude, Figs. 6a-c pre-
sent the amplitude changes due to collective higher
harmonic control as function of the ACol value., As

shown, in most cases 1linear variations are
obgerved. This indicates that the higher harmonic

effectiveness is constant. However, in the most
important component, F , the beneficial lower
z
branch (of ¢ 1=120°) exhibits nonlinear behavior
co

by having a minimum value around A 1=0.0055.

co
For better insight into the mechanism associated
with the vibratory amplitude changes presented in
Figs. 5, 6, the effective angle 9f attack is shown
in Fig. 7 for Acol=0.005 wa”=120 . In terms of the




present formulation, this angle is determined by

(see Egs. 32,33):

-1{Q{y)
= t 43
a(y) = tg (U o (43)
B
As shown, the changes in the effective angle of
attack are of 4/rev. nature and are relatively
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small. Note that these variations are not the
direct outcome of the higher harmonic pitch control
since the determination of the effective angle of
attack includes also the influence of the resulting
dynamic response. Further, the resulting root
vertical hub shear in the rotating frame with and
without the higher harmonic pitch command 1is pre-
sented in Fig. 8. Although, the variations are of
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4/rev. nature, the structural dynamic effects in-

duce a phase shift between this behavior and that
of the effective angle of attack (see Fig. 7)
Assembling all blades contributions to the non-

rotating frame shows a pure 4/rev. vibratory force
where the effectiveness of the higher harmonic con-
trol is evident (see Fig. 9).
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Fig. 7: The effective angle of attack with and
without higher harmonic gollective pitch
(AC°1=0.005 rad, <pcol=120 ).
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-
v,,,=1207).

597

Case b: Coupled Rotor-Fuselage Response

To investigate a vast range of fuselage properties,
the fuselage response at the hub has been charac-
terized by its magnitude, R (measured in g/Nt) and
the phase lag of its response, 8. Figure 10a pre-
sents the 4/rev. amplitude of the vertical force,
Fz, which is transferred to the fuselage as func-

tion of R for different values of 8. The values of
the fuselage response which may be obtained in rea-
listic fuselages are also indicated while the corr-
esponding values of the phase lag depend on the
damping in the fuselage structure. Figure 10b pre-
sents the hub acceleration amplitude for each curve

of Fig. 10a. The symbols in Figs. 10a represent
constant acceleration amplitudes.
As shown, for very stiff and massive fuselage

(large values of R), the 4/rev. amplitude of Fz
coincides with the base line which has been dis-
cussed above in the case of isolated rotor, while

the hub acceleration amplitude vanishes. As the
fuselage became elastic and less massive, the hub
acceleration amplitude raises. However, it is poss-

ible to adjust the fuselage structural damping
(which reflects itself by the phase angle, B) so
that for a given value of R, both hub acceleration

amplitude and the vibratory force amplitude will be

o
—~8
3
i
B9
.(_é
<2
3%
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of its response magnitude and phase.
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minimal. Note that Figs. 10a,b covers all possible
linear fuselages characterized by their response at
the hub. However, it is expected that the accelera-
tion amplitude at any other point of interest on

the fuselage (such as the pilot seat) will be only
slightly different.

CONCLUDING REMARKS
A theoretical modeling of rotor/fuselage coupled

response has been presented. The model is based on
advanced frequency domain computational techniques

that enable the incorporation of high harmonics in
nonlinear formulation. The model may be wused for
predicting the fully unsteady coupled response due
to harmonic pitch commands and may serve as the
analysis component in a comprehensive optimization
scheme. The effects of collective higher harmonic
pitch control and elastic fuselage were demon-
strated and discussed. It has been shown that the
effectiveness of collective higher harmonic pitch

control is not always constant and 1is changed
significantly as function of its magnitude and
phase angle. It has been also shown that adjusting

fuselage damping may reduce both hub acceleration
magnitude and vibratory vertical hub force.
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