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Abstract

This paper summarizes our analytical and
experimental studies on active control technolo-
gy for control of vibration response and dynam-
ic stability of mechanical system in aeronautical
and astronautical engineering in recent years.
There are two kinds of meaning for application
of active control technology. As usual one is the
application of closed loop feedback control. The

" design for vibration

other one is ' open loop
control using the ideas of modern control theo-
ry. The studies mentioned are briefly reported

here.

I . Introduction

The goal of vibration study is to control vi-
brations. It is necessary and possible to find out
more efficient vibration control modes and de-
sign methods according to the developments of
modern sciences and technologies, and more
and more stringent requirements for the prod-
ucts and structures in the field of aeronautical
and astronautical engineering. Active control
technology,because of its potential features su-
perior to passive control technology,is now be-
coming a kind of powerful means for solving

more complicated and difficult problems of vi-

Copyright © 1992 by ICAS and AIAA. All rights reserved.

578

bration control, to which more and more dy-
namics and control specialists highly pay atten-
tion, especially in the field of aeronautical and
astronautical engineering.

Modern control theory provides powerful
means for control design. But until now many
topics worthy to be further studied for vibra-
tion control remain. This paper summarizes our
analysis and test researches on active vibration
controls which are important for their applica-
tions in aeronuatical and astronautical engineer-
ing,and tries to open a new approach of design
for passive vibration control, i. e. using the
ideas of modern control theory for optimization
design. The former is dealt with active flutter
suppression for aircraft,active vibration isola-
tion for helicopter and active vibration reduc-
tion for flexible structures. The latter is dealt
with “Ground Resonance” suppression for heli-
copter and optimization design of vibration re-

duction for complicated system.

1. Active Flutter Suppression of the Wing

The unstable modes become stable using
closed loop control, and critical flutter speed
can be increased!'?), The state and output equa-
tions of the servoaeroelastic system can be

written as




Xs = FsXs + GoU + G 1

Ys=HsXs+ Y, &)

The state and output equations of dynamic out-
put feedback controller can be written as

Xo = AXc + BY (3)

U=CXc 4

By combining equations (1)-(4),the equation

of closed loop system (see Fig. 1) can be ob-

tained.
X.=F.X,+ G, (5)

The meaning of the notations in mentioned

equations is shown in reference[2]. It is ideal

method for determining matrices A,B and C to
use suboptimal output feedback methodology.
But usually there exist two kinds of problem,i.
e. difficulty for choosing initial values of itera-
tion for controller and poor convergence of iter-
ation. According to the characteristics of aeroe-
lastic system and the idea of pole placement we
presented the gradually changing parameter de-
sign method. Thus the problems mentioned
above can be solved. The optimization with un-
equality constraints is constructed as follows.
Determine the design variables in matrices
A,B and C to minimize the following perfor-

mance index Js:

Jo(4,B,0) = LE[["IQiYs + UrQUdr]
(6)
with least stability margin
gs(A,B,C) = MaxRe[A(F) ] <<— 0o
¢p)

in which A (F.) is i-th eigenvalue of matrix F,
and E is ensemble averaging.

Table 1 shows the calculated and measured
values of critical flutter speed and frequency for
delta wing test model. The critical speed of con-
trolled system (26.7 m/s) is increased by
37% ,compared to that of uncontrolled system
(19.5 m/s).
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Table 1 Comparisons for Calculation and
Test

calculation (test)| uncontrolied controlled
critical speed [19. 8 (19.5 m/s) 27 (26.7 m/s)
flutter frequency| 6. 72 (7.0 Hz) 6.58 (7.125 Hz)

Il . Active Dynamic Antiresonant Vibration

Isolator for Helicopter

Dynamic Antiresonant Vibration Isolator
(DAVTY) has been used for vibration isolation of
helicopter rotor and equipments because of its
very low transmissibility in specified low fre-
quency ranges and at the same time not too low
stiffness of the supported spring. In order to
further improve its performance it is necessary
to use feedback control to obtain lower trans-
missibility in several specified frequency ranges
and more satisfactory isolation in wider fre-
quency ranges,thus a kind of active DAVI (A-
DAV is constructed the mechanical model of
which is shown in Figure 2.

The closed loop transfer function of active

isolation system can be written as

Bs*+Cs+ K
Ast 4+ Cs + K — G(s)

(®

The transfer function of the displacement, ve-

D) = X)) /Y (s) =

locity and acceleration feedback consisted of
second order oscillator with zero can be ex-
pressed as
As® + as?
s+ Bs+ 7
€D

The parameters of A nad B in equation (8) are

G() =— |K, + K,s + K52 +

ones related to DAVI. By analysing equation
(8) the influences of the feedback parameters
on the transmissibility and stability can be
known, The feedback parameters K;,K;,K;,a
and A are determined by optimization method.

The objective function J is

J=["10w) |dw 10




in which w, is upper frequency limit. There are
two kinds of constraint conditions; (1) the re-
quirement of stability: corresponding to the
roots with negative real part for characteristic
polynomial for equation (8). (2) the limit of
control force;in the case of second order oscil-
lator with zero the ratio of control force to the
acceleration amplitude Ty at two [requencies
should be controlled. One is the value Tg(wg )
at resonant frequency wg ;and other one is the
value Tg(ws ) at antiresonant frequency wa pro-
duced by active feedback, i. e. the following
conditions should be satisfied.
TF(‘”R]) < T19TF(wAZ) < Tz (11)
in which T, and T, are selected according to
specified vibration environments. Figure 3
shows the measured transmissibility curve of
ADAVI with velocity, acceleration feedback
and second order oscillator. it is known from
the results of analyses and tests that the vibra-
tion isolation of ADAVI is superior to that of
DAVTI in reduction of resonant frequency and
its amplitude, increase of effective frequency
width of isolation, formation of several antivi-
bration ranges,reduction of transmissibility at

higher frequency range and increase of stability

margin.

V. Active Vibration Control for Flexible

Structures

The flexible structures essentially belong
to infinitive degrees of freedom systems,which
still are high order system after discretion.
How to design a low order controllers and sim-
plify the design for controllers are important
practical issues. Besides, the selection of posi-
tion for sensors and actuators give direct influ-
ences on the performances of closed loop sys-

tem.
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Optimization Design for Low Order Con-

trollers™

Here we presented an improvement on op-
timization design method for the controllers to
meet the requirements of both modal damping
ratio and small control energy. Furthermore,
the control law designed for reduced order
model can satisfy the design requirements for
high order design model after local modifica-
tions.

The state and output equations for high
order design model are expressed as

X = AX 4+ BU
Y=CX az
The state and output equations for dynam-

ic output feedback controllers can be written as

S =DS + FY
U=GS+ HY (GR))
in which
-l
F D
Equation (12) can be reduced as
Xr = ApXyr + BU
Y = CrXz (14>
Consider the objective function J as
J=E f:oUTRUdt} 15

in which R is positive definite weighting matrix
and E is mathematical expectation.

The objective function J can be trans-
formed into the following expression

J =Tr(KZ,) (16

in which K is the solution of Liapunov equation

ATK + KA, =— Q, an

The notations of equation (17) are shown in
Ref. [4].

Now the question is to find matrix P in or-
der to minimize ] and meet the requirement for
modal damping ratio,i. e.

Gi=20;—0;0=20{=1,-,r) (18

in which 8y is required i-th modal damping ratio




and r is its number.

8, =—a;/ Jai + b as
Here a; and b; are the real and imaginal parts of
closed loop eigenvalues respectively.

Usually the controller parameter matrix P
obtained for the reduced order system (equa-
tion (14)) does not satisfy the design criterion
mentioned above for high order design model
and needs local modifications. The criterion for
modification is the same as that mentioned

above.

Decentralized Control of Structural

_Vibration[s]

The decentralized control method is spe-

cially suitable for the structures which need to
be controlled partly. Thus the computation
amounts of controller design can be reduced.
The global system is devided into N sub-
systems in physical space. Suppose that the

controls between the subsystems can be decou-

pled,i. e.
X; =AX,+ BU, + CZ,
N
VARS 2 L X; Qo
=1,

in which C; is interconnection matrix and Z; is
interconnection vector. The second expression
of equation (20) is called interconnection equa-
tion. Suppose (A;,B:) is controllable complete-
ly.

The optimal control of the global system is

expressed as

N oo
Ming =Min| > 1" CXIQ.X, + UTRU D41
i=1 0

N
=Min >, J, (21)
i=1

The constraint conditions are equation (20).
Assuming the interconnection vector Z; can be
represented as the following dynamical model
Z; = AzZ; 22
If (A;,B) is controllable completely,according

to optimal control there exists
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U =— RMABIPW, =— Gy X, — GuZ,
@23
in which P; satisfies
AfP,+ AP, — PBR7BIP, + Q. =0
24

and

A R T
A = B = W6 =
0 Az; 0 0 0

In order to improve the interconnection trajec-
tories on-line a reference model is introduced
the input of which is provided from equation
(22) and Z;is changed on-line.
The dynamical equation of subsystem
model is expressed as
X: =AX: + CZ,
— BGy[Z; — STICTP (X, — X))
X, =AX + (C:— BGDZ: (25
and equation (22). The block diagram is shown
in Fig. 4.

Optimal Selection of the Positions for Sensors
3

and Actuators!®

For equation (12) the more general form
can be written as
X =AX + BU
Y=CX+ DU (26)
In order to use full state feedback the state ob-
server is needed the form of which is
X= (A — B:OX + BsY + (B — B-D)U
Q@0
in which X is the observation value of X and Bc
is the gain matrix of observer.
U=—KX (28)
Thus equations (26)-(28) form a closed loop
system. If (A,B,C) is both controllable and
observable, the poles of state feedback system
and observer can be placed respectively and ar-
bitrarily according to seperation principle. The
characteristic equation of observer is
|I — CAI — A)™*Be| =0 @29

The characteristic equation of feedback control




system of controlled structure is
I — K — A)'B| =0 (30)
Therefore the combined optimization design for
the poles of system and the positions of sen-
sors/actuators consists of the following two
parts:
(1) the optimization design for the posi-
tions of sensors and the poles of observers
By placing the poles of observers s, in a
specified complex plane region optimally select
the positions of sensors (reflecting in matrix
C) to minimize the objective function J;.
Jy = Tr(B:BD) (31
Here constraint conditions are equation (29) in
which A is replaced by sg,and Real (sq)<<—oy,
< |Real(sp) |/ 80| <Gy
(2) the optimization design for the posi-
tions of actuators and the poles of feedback
control system of controlled structure
By placing the poles of feedback control
system s, in a specified complex plane region
optimally select the positions of actuators (re-
flecting in matrix B) to minimize the objective
function J,.
J, = Tr(K'K) 32
Here constraint conditions are equation (30) in
which A is replaced by s.,and Real (s,)<<—o0,,
£ <|Real (s |/ |51 <<ts

V. Active Vibration Control Based on

Tolerance Index and Robustness

For practical applications the vibration re-
sponse of controlled structures is restricted
within a specified value,and the parameters of
the system (reflecting in system matrix) ,exter-
nal disturbances and controls are different from
those for design according to all kinds of uncer-
tain factors. These can be expressed as bounded
uncertainties.

In the case of state feedback U=—KX,If
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there exist the uncertainties of system parame-
ters and control inputs, the state equation of
closed loop system can be expressed as

X =

(A~ BK)X +Dd@) + (AAX + Buv(®)
33

in which AA is system increment matrix with
uncertainty, d (t) is external disturbances the
uncertainty of which is expressed as bound con-
stant B4,and v(t) is uncertainty imposed on ef-
fective control which is expressed as bound
constant f3, too.

Therefore the unequality for feedback ma-
trix can be deduced in the case of satisfying the
tolerance index of vibration response (which is

expressed as ;) sand bounded uncertainties and

controlst,;
lQLQ™!||
< BO
TRIQUAAQT + B.llQD] + B.IQBI
=U;

34

in which Q is nonsingular weighting matrix, L.
t

is linear operator, (Lx) (t) =JoeR“")x (v)dt,R
=A —BK,

satisfy equation (34) the eigenvalues of linear

is the norm of (). In order to

operator L should be placed reasonably. Addi-
tional constraints, such as the placements for
some eigenvectors, may be added to avoid the
nonuniqueness of feedback matrix. Ref. [ 7]
shows the active vibration isolation for one de-
gree of freedom system,in which the effective-
ness for low frequency vibration isolation is il-

lustrated from the test results (see Fig. 5).

V. Optimization Design for Passive

Vibration Control Using the Ideas
of Modern Control Theory

Optimization Design for Suppressing “Ground

Resonance” of Helicoptert®




For the helicopter with hinged rotor (or e-
quivalent hinged rotor) the occurrence of the
mechanical instability accounts for the coupling
of fuselage-landing gear system and rotor sys-
tem under certain conditions. Such kind of in-
stability is called “Ground Resonance”.

The optimization design based on pole-re-
gion placement for suppressing “Ground Reso-
nance” of helicopter can be transformed into
the following constrained optimization prob-
lem. For the specified ranges of rotor speed,pa-
rameters of system stiffness and damping,opti-
mally select the parameters of the latter to
make the necessary damping parameters mini-
mum. At the same time the poles of the whole
dynamic system are all within the specified sec-
tor zone. In such case the whole system is dy-
namically stable in a given rotor speed range
with certain stable margin.

For a specified rotor speed range [Qr,Qx]
the state equation for helicopter “Ground Reso-
nance” is

AX = B{c}, {k}, DX
Find {c} and {k} to minimize the following ob-
jective function J and satisfy the following con-

strained conditions

J=S\We
i=1

0, < i {el < {e} < {clus
(R} < (k) < {k}u
in which the meanings of 3;and 8; are the same
as those in equation (19).

Because the requirements mentioned above
should be satisfied in a given range of rotor
speed, the selection for design rotor speeds is
essential. The more the design rotor speeds,the
larger the amount of calculation. Based on the
principle of helicopter “Ground Resonance” we
the

amounts of calculation. Furthermore, the opti-

presented four criteria for reducing

mization design method in different layers is
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provided for {c} and {k} which give different
influences on the objective function in optimiza-
tion. Fig. 6 shows the characteristic root locus
for space model system before and after the op-

timization.

Optimization Design of Vibration Reduction

Devices for Complex Structures

From the view point of control the action
of passive vibration reduction devices for com-
plex controlled system corresponds to the input
of control. Here we study the following opti-
mization design problem for vibration reduc-
tion,i. e. determine the optimal positions and
parameters of vibration reduction devices to
make the maximum response of given points
within a specified range. In the case of station-
ary external excitations F(t) the state equation
of controlled system with vibration reduction
devices is

X = AX + BU + DF (35)
in which U is control forces,i. e. actions of pas-
sive vibration reduction devices.

The objective function with quadratic per-

formance index J can be formed.
J = %f”(XTQX 1 UTRU)dt
0

(1) the determination of optimal positions
and control forces of vibration reduction de-
vices

Based on the Maximum Principle and satis-
faction of minimum J and equation (35) a non-

homogeneous matrix equation can be deduced.
{X [ A - BR_lB’] X} {D}
L= + F
P —Q — AT P 0
(36)

in which P is costate vector. Equation (36) is a
kind of first order nonhomogeneous differential
equations with 4n dimension in which X € R".
Knowing F(t),X (t) and P (t) can be solved
from equation (36). The control forces are ob-

tained according to the expression U= —R™!




BTP.

In order to determine the optimal positions
and control forces of vibration reduction de-
vices two iterations are needed.

A. The maximum responses of given points
(say X.) should be limited in a specified range
by adjusting the weighting matrices R and Q.

B. Determine the control forces U,and re-
tain the larger components of U to decrease the
number of vibration reduction devices.

Usually these two iterations are repeated
several times. Thus more effective and less
number of vibration reduction devices can be
obtained. At the same time their positions are
determined and the requirements for maximum
responses are satisfied.

(2) the optimization for the parameters of
vibration reduction devices

Based on the principle that the forces acted
on the controlled system by passive vibration
reduction devices are as closer as possible to
the optimal forces,the parameters of vibration
reduction devices can be determined. The
method of curve fitting is one of the useful
methods. Ref. [9] shows an example for a three
degrees of freedom system. In the case of har-
monic excitation with frequencies covered two
modal frequencies of the system and given lim-
its for maximum response at specified point,the
optimal number of dynamic absorbers,its posi-
tions and parameters can be determined by us-

ing minimum norm method® (see Fig. 7).
VI. Conclusions

Our analytical and experimental studies
show that by using active control technology
the performances of controlled system are su-
perior to those by using passive vibration con-
trol. Some are impossible for passive tech-
niques. Furthermore, the idea of active control
technology opens a new way for optimization

design of passive control.
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