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Abstract

This paper proposes that the Worst Deterministic
Input (WDI) analysis can be used as the dynamic basis of
continuous gust design rules to replace the current Power
Spectral Density (PSD) analysis, The WDI analysis studies
the stochastic response of a system via searhing the worst
deterministic imput from an equiprobable family. For
linear time invariant system, the WDI method can give
results agreeing exactly with that of PSD method. But
the new method give the worst case with time informations,
it can deal with linear time variant and non —linear
problems, Adopting WDI analysis instead of PSD analysis
can greatly expand the application extent of design rules
without changing criteria  and parameters even compute
procedures used currently, So this proposal not only has
great value for development of aviation industry but also
is easy to implement.

Foreword

Gust loads are highly important for the structure
design of a civil transport aircraft, In Civil Aviation
Regulation the continuous gust design rules are described
specifically besides that the limit loads produced by
discrete gusts are regulated.!®

Nevertheless, the dynamic analysis method currently used
by the rules is the “Power Spectral Density” method
(simply PSD method) which is based on the frequency
domain analysis of a linear time invariant system. The
PSD method was developed forty years ago. Although the
reliability of PSD method has been demon strated by long
practice of aviation industry, it can only be applied to
linear time invariant system, so it can not satisfy the
demand of quickly developing modern civil aviation
industry, For instance, non —linear problems arise more
and more often in modern aircraft design, As pointed out
by the researchers of NASA, the usefulness of & gust load
analysis method depends on the ability to consider the
non — linearity in aerodynamic force, siructure, and control
system.”! But based on current theory, it is already very
difficult to deal with linear time variant system, it is more
difficult to solve non—linear problems.

Facing this challenge, aviation industry has been
actively searching for new method to analyse gust response
of an aircraft for many years, From the end of sixties,
J.G.Jones has developed the so —called “ Statistical Discrete
Gust” method (simply SDG method) with the attempt to
absorb the advantages of both the discrete gust method and
PSD method. In the SDG model, firstly it is assumed that
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the gusts encountered by an aircraft can be represented
by a sequence of discrete gusts whose profile has some
prescribed shape (e.g.l —cosin, ramp, etc.), Secondly a
numerical searching procedure relative to parameters such
as gust length and distance between gusts is carried out to
find the worst gust from an equiprobable gust family and
the maximum response peak of system to this gust. finally
the value of this peak is used to study system stochastic
response characteristics such as threshold exceedance
statistics.'! The most attractive point is that The SDG
method can compute the maximum gust load with its time
history and the worst gust profile, and that it can be used
to study time variant and non- linear problems,

But, the technique used by SDG to find the worst case
adopts the assumption that gusts have fixed shape and
uses a numerical searching procedure, this not only
imposes extra constraint which will bring extra error to
the computation, and also makes the problem complicated
and the compute time expensive. The investigation by NASA
indicates that for rigid aircraft motion model the error of
SDG method may be * 5%, for flexible model reachs
+10%. As to compute time, even the simplified SDG
method needs 30 times more than that of PSD method.!™

This paper proposes & method which can be called as
the " Worst Deterministic Input” method (simply WDI
method). The new method follows the basic idea of SDG
method, that is, the stochastic response of a system can
be studied through the worst deterministic input from an
equiprobable family., At the same time the new method
has the advantage of PSD method, that is, compute is
simple and precise. For linear time invariant system the
results obtained by both method WDI and PSD are exactly
consistent, Also, WDI method like SDG method can deal
with time variant and non —linear problems. Therefore the
WDI method can be regarded as the improvement of SDG
method, and also can be regarded as the extension of PSD
method. The following will particularly explain the main
points of WDI method and its application to various
systems. Before doing this it i3 necessary to introduce
briefly the current PSD method.

The Current Method

The dynamic analysis means used currently by civil
aviation regulation for continuous gust design rules is the
PSD method that is based on spectrum theory. The main
points of this analysis are as follows,

(1) Choose power spectral density function, For




atmospheric turbulence,von —ka'rman spectra or Dryden
spectra are used usually. As an example for vertical gusts
the von—ka'rman spectrum can be written as
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and the Dryden spectrum as
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where T is the characteristic time that is related to
turbulence scale (L) by equation
T= 3

here V is the flight speed.
(2) Compute A and No. The factor A is the ratio of
rms ¢, of response y to rms o of gust velocity (turbulence

velocity),
A= T3 i e vee e (4
A= O)
And the characteristic frequency No can be expressed as
1 ey
No= - o &)
where o5 is rms of the rate y of response y (y= % ).
For linear time invariant system, according to the
spectrum theory we have
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here G(iw) is the frequency response function of system,

(3) Compute design limits, If design envelope analysis
is adopted, the design limit of gust load y can be
determined by the following formula

y“msza e (9)

The values of design gust velocity Ue are specified in
Civil Aviation Regulation Part 250 2,

If mission analysis is adopted, the threshold exceedance
rate can be calculated as follows,
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where N(y,) is the average number of load peaks greater
than a prescribed threshold level (y,) per unit time, t is
the percentage of flight time of selected mission section

to the total flight time, and p,, p,, b;, b, are given
parameters (see ref. (1) or (2) ). The limit load can be
read out from the threshold exceedance rate curve by that
the exceedance rate equals 2x 10°% per hour™ »,

The above method requires simple compute and is based
on sound theory, so it is widely adopted. But it has
following disadvantages:

(1) The PSD method is based on spectrum theory, its
formulas are derived under conditions that the system is
linear time invariant system, and the atmospheric
turbulence is homogeneous and isotropic. Therefore it will
be very difficult to apply this method to linear time
variant system or inhomogeneous turbulence. And this
method is incapable of dealing with non - linear problems,

(2) What computed by PSD method is the average
characteristics of response such as a,, a5, etc, but from
the view point of flight safety the extreme cases are more
interesting. Moreover the power spectiral density function
has lost the phase information of gust input, so the
spectrum analysis can not determine the time
characteristic of the worst response. These may results
in many inconveniences for design and certification,

Improvement Proposal

Since the limitation of the current method results from
its dynamic basis, the proposed improvement will
mainly concern dynamic analysis, For linear time invariant
system this means that only the computing of A and No
will be improved.

Proposal: usz the worst deterministic input (WDI)
analysis as the dynamic basis for continuous gust design
rules to replace the power spectral density (PSD) analysis.

WDI analysis follows the basic idea of SDG method,
that is, study the stochastic response of a system by the
effects of the worst deterministic input on the system under
equiprobability condition. The main points of this analysis
can be described as follows,

(1) In atmospheric turbulence with power spectral
density QS(m), the gusts satisfying the spectral energy
constraint will constitute an equiprobable family. Let
a sample gust be xq (t) ( & deterministic function of time t),
its Fourier transform be x«(w), the equation

P

is called as spectral energy constraint equation. Here U, is
intensity parameter. To analyze linear system the only
case need to be discussed is U,=1, In Appendix 1, it is
explained that at least for Gaussian turbulence all gusts
satisfying equation (11) will have equal probability to
occur, that is, those gusts will constitute an equi probable
family.

(2) The worst gust input that results in the maximum
system response peak can be found from an equi probable
gust family. In Appendix 2, it is shown that for a general
linear system (include linear time variant system) the worst
gust profile and the system response peak can be exactly
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determined by variational principle. Let h(t,tm—1) be the
value of the impulse response of a linear system at instant
tz to the unit impulse input at instant t and G(o, ta )
be its Fourier transform relative to t, then the maximum
response peak of a general linear system at instant tu
under spectral energy constraint will be

Ym--<'=>=lnf¢<m)|6(m s ta) P d@]T e (12)

The Fourier transform of the worst gust profile x4(t, ta)
( a deterministic function of t with parameter ta) will be
1
Yo (in )

X (@, ta )= P@) G@, ta) e (13)
In Appendix 3, it is further shown that the worst case
of a non—linear system may be found through the iteration
procedure based on the above results for linear system.

(3) In linear case, the response peak of a system to
the worst deterministic input is directly proportional to
rms of stochastic response of that system. That is,

<y(tx ) >

| Yoor () 1= "

e (14)
here <y® (ia )> is the variance of system stochastic
response at t, , considered as an ensemble average of

¥ (ta ).

The above WDI analysis is based on variational principle,
hence need’'nt hypotheses such as linearity and steadiness.
So the limitation of current PSD analysis will be overcome,
carving out a way for dealing with time variant and
non - linear problems.

At the same time, since A and No are determined by
rms, according to the point (3) above it would not be
difficult to see that the same expression as curreni used can
be derived by the new method for linear time invariant
system, Hence the values of A and No can be computed
by WDI method with the exactly equal precision and
simplicity as that of PSD method.

Therefore, adopting the proposal of this paper can
widely extend the application of the continuous gust design
rules under such condition that the criteria and
parameters even the calculating procedures (for linear
time invariant system)used currently can be without change,
So the developing continuity of design and certification
system will be retained.

The Implementation

1, Linear Time Invariant System

According to WDI analysis, there are following results
about the response of a linear time invariant system to
homogeneous and isotropic atmospheric turbulence in
frequency domain;

The worst response peak,
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The worst deterministic input (with t_,=0).
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where G'({w) is the conjugate of frequency response
function G{i®) of the system. Equation (15) and (16) are,
in fact, the special case of equation (12) and (13). Due
to definition, in the case of linear time invariant system
G(w, tz= ) is related to G(iw) by equation,

G(@, ta )= g;@le-“ﬂn e e (17)

«

Substituting G(@, ta ) by ﬂ:;ﬂl, we get equation (15)

and (16) from equation (12) and (13). The time profile
x4(t) of the worst deterministic input can be obtained from
x4(w ) via inverse Fourier transform, FFT technigue
makes this very fast.

Obviously, for linear time invariant system the worst
peek Y. is independent of ta .

The results can alse be expressed directly in time
domain (See Appendix 2):

The worst response peak,

o= — [f" J h(ta—1) h( ta= v) RA—V) dvdt] T o (18)
NET S

or more simple
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The worst deterministic input,
= - Lh(t,. WR(-V) dv 19
or
x§(¢)= %f R(IR(N — EYdY wrermrrenemreansinnnne (198)
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where h (£) is the impulse response function of the system,
R({) is the auto —correlation function of the turbulence.

Noting the relationship between y, and o, it is not
difficult to get

s e (20)
since the rate y of y (¥= g—:') has transfer function
3G(8) , by the same reason one can obtain,
= —— [f;’qﬁ(m) Giw) 1* d )T rwervvsveeies 1)
NE: °

here (¥)a is the worst peak of the rate y, Finally,
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Then the design limit can be determined as
before (see equation (9) and (10)).

Comparing the frequency domain formulas of WDI
method for A and No with those of PSD method, it is
obvious that the results obtained by both new method and
current method agree exactly. Therefore in the extent of
linear time invariant system, the WDI method not only
has the same precision,but also is equally convenient as
the PSD method.

Nevertheless, it should be emphasized that the WDI
method has many advantages over the PSD method even
for linear time invariant system.

Firstly, the WDI anealysis focuges attention on the worst
case, this is particularly meaningful for flight safety
concerns, For instance, if & measured turbulence sample is
inputted to a simulator for test or training, the simulation
may not be very reliable and is time expensive, since the
finite sample of a stochastic process may not contain the
worst case and the establishment of steady response
needs time. Directly inputting the worst gust can overcome
those difficulties, it will produce more reliable results and
be very fast,

Secondly, the proposed method not only can calculate
important design parameters such as A and No, but also
can determine the time history of the worst gust input and
system response. This kind of time information is very
useful in practice. For example, while a particular load
reaches its maximum, the varying of all other related
quantities can be computed by WDI method. If a particular
load is critical for design, aircraft manufacturer can obtain
a group of design loads by the proposed method, and
loads the test aircraft with them in reality. The determinacy
of time history of various loads makes it very convenient
to consider the effects produced by structure deformation,
fluid motion, etc. The consideration of those effects is
required by civil aviation regulation, but it is very
difficult to do this by the traditional PSD method.

2. Linear Time Variant System

The more important advantage of WDI method is that
its application does not be restricted to linear time invariant
system, In fact, the deduction in Appendix 2 is based on
general linear system. Let h(t, ta—t) be the impulse response
at instant tu to the unit impulse input at instant t, and
G(w, ta ) be the Fourier transform of h(t, tn —t) with
respect to t , then the worst, case under spectral energy
constraint can be expressed by equation (12) and (13) in
frequency domain, The counterpart in time domain can be
written as,

Sou10)= [f . Eh(t, ta= (Y, ta—VR(t-V)dvdt] T
PR TR PP (25)

and
% (tita)= —nﬁ)—f h(v, ta=V)R(t=v)dy +roeeeree (26)

For linear time variant system, the worst deterministic
input and response peak are related to some selected
critical instant tz . So the mission analysis is not convenient
in this case. But the design limit of response at tz can
still be determined by the design envelope analysis. It is

not difficult to see that A is also & function of t.

A )= YT Youlta)

[
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The design limit will vary with t. too
Yia (ta)=Ue K(tu) (28)
Obviously, the selection of t». will depend on the problem
in hand.

3, Non-Linear System

The WDI method can also be applied to non— linear
system, In Appendix 3, an iteration method is proposed. If
the iteration procedure converges, the worst input gust
and response peak of a non —linear system can be obtained
under the spectral energy constraint with intensity parameter
Uo.

In the case of linearity according to superposition
theorem, one can let Uo=1, compute y.. then takes

Vim = Usg Yu torrremerereem e e (29)

But superposition theorem can’ntbe apply to & non -
linear system, So direct compute using U, should be
carried out,

Yitm = Yaas (Usg) rovisrermeomermss e (30)

As to U, , refering to equation (9), (20), and (29), it
is not difficult to see,

U,
G

Treersierras s venne

an=\/? (31)

Afterword

This paper proposes that the worst deterministic input
(WDI) analysis can be used as the dynamic basis of
continuous gust design rules to replace the current power
spectral density (PSD) analysis. It has been explained that
for linear time invariant system the WDI method can give
results agreeing exactly with that of PSD method. In fact,
WDI analysis covers PSD analysis, So the current criteria
and parameters of regulation can be used by new method,
and the continuity of development of design and
certification system is retained.

Also it has been pointed out that the new method has
many advantages, it gives the worst case with time
informations, its application is greatly expanded, it can
deal with linear time variant and non —linear problems

which are the challenge faced by aviation industry today.
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Therefore this proposal not only is easy to implement, but
also has great value for development of aviation industry.

Although the SDG mathod can deal with linear time
variant and non—linear problems, prescribed gust profile
and a numerical searching procedure are used to find the
worst gust. This makes not only the application complicated,
but also time expensive. The WDI method follows the basic
idea of SDG method, i. e. finding the worst gust from an
equiprobable gust family to study the stochastic response
of & system, but has exactly deduced the analytical formulas
for the worst case. Those formulas can directly compute the
worst gust profile and system response peak, making the
compute as precise and fast as PSD method does. Therefore
WDI analysis, in fact, covers the SDG analysis too, only
more precise and convenient, In the case that direct
computing is difficult, i, g. when the iteration procedure
for 2 non —linear system does'nt converge, the numerical
searching technique of the original SDG method can be
used as an approximate means of WDI analysis.

In current design and certification system, the continuous
gust loads and the discrete gust loads should be computed
respectively, and check each other. The discrete gust method
also prescribes gust profile (e. g.1 —cosin)® ?, In the United
States, 25 MAC is taken as gust length, the “resonance”
effect isn’t considered. In the United Kingdom, a “tuned”
gust length is chosen among gusts with the same amplitude,

“resonance” is only partly considered. The WDI method
chooses the exactly “tuned” worst gust from a more
reasonable equiprobable family, not only considers the

“resonance” effect perfectly, but also carries out a
discrete gust load analysis in fact, Therefore it is hopeful
that the WDI analysis would combine the continuous gust
load analysis and the discrete gust load analysis into an
unified procedure, making the design and certification
process greatly simplified. Of course, to change design rules
is a serious matter, many works should be done before
doing this, So although there is such unifying prospect,
this paper concerns only continuous gusi design rules first.

The proposed dynamic analysis can also be expanded
to deal with inhomogeneous turbulence problems, for
instance, the gust encounter during final approach, Ifa
corresponding Dryden spectral density function is adopted
for each altitude, an analytical expression of the
autocorrelation function along flight path can be obtained
(see reference (5) for detail). And the rms of system
response at any given point of the flight path can be
calculated.

Essentially, WDI method is an analytical method for
stochastic system. Its application, of course, does’nt be
limited to aircraft gust load analysis. In fact, the idea of
the worst deterministic analysis came originally from
Drenick’s study on asseimic structures®, While knowing the
spectrum or autocorrelation function of a stochastic input,
WDI method can be applied to analyse all stochastic

response, Therefore, it is worthy to study WDI method
further to make it more sophisticated.

Equiprobable Family and the Spectral
Energy Constraint Equation

Appendix 1.

If the turbulence with power spectral density function
¢(m) is Gaussian, then all gusts satisfying equation,

,rf‘”lx‘(mw

W do =U§ Ceereevrerersbrenee

e (AT1)
constitute an equiprobable family. Equation (Al,1) is called
as spectral energy constraint equation with intensity
parameter U, , and x,(@) is the Fourier transfoerm of

x,(t) that is a gust sample of turbulence.

To prove this result is not a trivial matter, it concerns
path integral. What follows is an explanation which is
intuitive and, hopefully, easier to understand.

(1) Gaussian White Noise
Suppose x,(t) is Gaussian white noise with zero

mean value and autocorrelation function,

<X, (1) X, (> =Ka{—-t') oo (A12)
Dividing the time axis by equi-—spaced points t,, -, t,‘ﬂ.
where t,.,—t;=4, let the mean values be

Yer
Xy = %J. X (1) db e (A1L3)
e
which satisfy
<xf,,>=—§— : e e (AT 4)

Then x,, is a Gaussian random variable with probability

density
2
P (x,)= @5 ) Fexp [ 5= 8] s (ALS)

The joint probability density may be expressed as a
product:

P(Xuis Xuas™s Xyn) =P (Xo) ° P (Xg0) P (Xgn)

N 18

K
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Writing the summation as an integral, it is infered from

equation (Al,6) that the required probability functional is
of the form
-z S S
Plxw®]=Z"" exp [~ 3 ) x3(t) dt]
where v is the duration of the selected time interval and
Z is introduced as a normalising factor. In order to satisfy
the equation
J.P[xw(t) Td [, (A)]=1 v (A1,8)

Z can be expressed as
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The symbol d[x,(t)]is analogous to the expression dx in
the usual probability expression and has replace the volume
expression dx, dx,,*dx,y which is implicit in the defini-
tion of probability density in equation (Al,6). The d[x,(t)]
is obtained by applying a limiting process to the standard
(Lebesque) measuredx, dx,, dx,,, and may be refered to
as an infinite dimensional Lebesque measure.

Note that the integral in equation (A1,7) is the energy
of x,(t) over the interval {0,v] . The sample function of
interest concentrates their energy in finite time interval,

i.e. x, (t) > o as t = o, Thus for a Gaussian white noise,
the sample functions with equal energy have equal
probability of occurrence with respect to the measure
dix,®1.

So for Gaussian white noise the equiprobable family
constraint equation can be written as follows,

j P Xog (W2 dt=C weerrrvneeniniinn. (A1,10)
with C is a constant, x,4(t) is a particular realisation —
a sample function of white noise, a subscript d is added
to emphasize that this function is deterministic.
Specifically if
C=U? Ox, x, oo (AL1D
where @x, X, is the power spectral density of white noise,
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then the constraint equation in frequency domain can be
written as follows by Parseval’s theorem,

RESCD ] -
nJ; Dxox, dw =U}
here x,., (@) is the Fourier transform of x,, (t) .

Equation (Al1,12) is the special case of equation (Al,1).
In consequence, for Gaussian white noise, samples

s (A1,12)

satisfying the spectral energy constraint equation (AI,I)
constitute an equiprobable family,

(2) Gaussian Coloured Noise

Now let x(t) be a Gaussian stochastic signal having
power spectral density function @(m). First consider the
Dryden spectra composed of rational functions. It is well
known that such a “coloured” noise signal can be
generated physically by feeding a white noise signal x_ (t)
to a constant coefficient linear filter with transfer function
G, (s). The parameters of the linear filter can be so chosen

such that,

1deﬂP=é%%l e

Through such filter, there is a sample function x; (t) in
the output
function X.q(t) in the input white noise, and

X (@) =G(1 ) Xyq (@) rrvvrernnne

e (ALL13)

“coloured” noise corresponding to the sample

IR ITRTTRETRT

(A1,14)

where x.¢ () and x, (@) is the Fourier transform of
X.q(t) and x, (t), respectively. Then

Indmw=®mnl%%%iummmmmmm~muw)

Substituting this equation into equation (Al,12),

mlxd (@) dw =2 cerrrrvvrvvinean
HJ;‘T— @ [}

(2) oo (A1,16)

So, if any sample function x..(t) in input white noise
to the filter satisfies the spectral energy consiraint
equation (Al,1), then its corresponding sample function
X¢ (t) in the output “coloured” noise satisfies the same
equation as well,

Since the outputs of such constant coefficient linear
filter has a one to one corresponding with inputs, two
patterns of X _,(t) in inpuil white noise have equal
probability to occur, then the two counterparts of x((t) in
output “coloured” noise have equal probability too. That
is , an equiprobable family in input white noise will
correspond an equiprobable family in output “coloured”
noise.

It has been discussed that all sample functions x4 (t)
satisfying spectral energy constraint equation constitute an
equiprobable family in Gaussian white noise, It is not
difficult to infer that all sample functions x,(t) satisfying
spectral energy constraint equation also constitute an
equiprobable family in Gaussian “coloured” noise.

As to von—Kdrmgn spectra, it is possible to approximate
a von— Karman spectrum by rational function to any
required precision,™ For the rational spectrum obtained, it
is possible to design a linear filter so that the

“coloured” noise can be generated from Gaussian white
noise. Therefore the argument presented above can be ap-
plied to such a rational spectrum. So spectral energy con-
straint equation (At,1) defines an equiprobable family not
only for Dryden specira, but also for the approximate
von - Ketmen spectra, finally for von —~ Karman spectra.

Appendix 2, The Worst Deterministic Input (WDI) for
Linear System

This Appendix will explain how to deduce the worst
case for linear system under spectral energy constraint by
variational principle.

Consider a general linear system with input x(t) and
output y(t). Assume that the input x(t) is a stationary
stochastic signal having power spectral density function
) (w). The spectral energy constraint equation can be
written as

© 2
"I | ¢ (m)] da =1 e i
o

@y weee (A2,

where x((w) is the Fourier transform of input X,(t), here
the subscript “d” is added to emphasize that such a sample
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of x (t) is & deterministic function, According to definition
equation (A2,1) can be rewritten as

7 L Bﬁ (o L"‘ W) o J XD Jdo = 1

or

% j ) f m[ f i 3(%5 e el Ix, (1)x, (A dt’dt=1

On the other hand, the zero initial value response of a
linear system at instant t, to an input x (1) can be
written as

y(tm)=J. h( t, tm—t)X(t) dt (A2,3)

[y

where h(t, tn—t ) is the value of the impulse response at
instant tn to the unit impulse input at instant t. Since

h(t ta=t)=0 for t>ta, (A2, 4)
{A2,3) can be rewritien as
Vs (te) =J. h{t, ta— ) xg{t) dt reererrerirni (A2,5)

Only sample functions of which energy is concentrated
in a finite time region (i.c. they go to zero quickly as time
goes to infinity) are to be considered. From the view of
variational approach, the objective function (A2,5) and the
constraint equation (A2,2) compose an isoperimetrical
problem. The Hamiltonian function of this problem is as
follows,

F =f h(t, t= —t)x,(@) dt

w0

—% J—m.[:.,,[.[m_QS—Zw) e el da Ix (1) x, ()t dt
e (A2,6)
where 4 is a Lagrange multiplier which is a constant for
isoperimetrical problem.
Noting that the second term of F is, in fact, a quadratic
function of X, (1), then

a = © w© et , ,
D {?‘n— LL[L 6—(‘(9) e = elotda x ()X, (H)dt'd)

AT netecgia .
. J;Jim[m §25(m)xd(t)e edewdt'dt

Therefore the Euler equation for this problem can be

written as
EVIOIRY S Y A g -8t i 4 oy o=
h(t, ta—t) = Jiwf_mwx‘(t)e e'dt'dew =0
e (A2,7)
or more simply
h(t, t‘rt)—/lj‘°u —’c%‘(L) e dm =0 e (A2,8)
- Q@)

here x,(@) is the Fourier transform of x,(t') . Let G{w,tz)

be the Fourier transform of h(t, t=—1) with respect to t,
Take Fourier transform of equation (A2,8), then

xg(®) =0

Glw, tn )24 = = G (A2,9
(@, t=) =20 40 (A2,9)

Hence the worst deterministic input obtained is
x{®, ta )= % ¢(w YG(@, tn ) rorrrererireen 0 (A2,10)

Since the worst input is a function of both argumets w
and ta, X.(@) in (A2,9) is replaced by x,(w,ta) in (A2,10),
Substituting (A2, 10) into constraint equation (A2,1),

it is obtained that

1 1
—— = e (A2,11)

[ﬂf B(0)IG(®,ta)dw ]

And the worst response peak will be

ym(tm)=f h(t, ta—t) X,(t, ta) dt

= N l ° ! @'t / i
—J;[ 3 J;G(m ota de e’ I 5 f

xg(@ tz ) dew ]dt

=71;f f G(a' ,ta )xa(m,tm)[f @ *Mdtlde' de

o

=—g—f J G(@' ta X (@ ,ta )8 (0 + 0 )do’ do

= 2lf G(-0 1) X0 ,ta) do
Since h (t, ta—1t) is real, so
G(~-0,ta) =G (@,ta)
here G'(w,ta ) is the conjugate of G(@,ta ) .Therefore
if the worst response at tn exists, then

Yaulta)= —g- fmG'(w.tm )711— B(@)G(,ta ) do

That is

Yauslta) = [n fm«» )G (@ ,ta )? der] T A2,12)
and

Xy(®,1a )= 'y:.,—I(E-T D(@)G(@ ta) werrreeerees (A2,13)

Equations (A2,12) and (A2,13) describe the worst case
under spectral energy constraint for linear system at in-
stant t, in the form of frequency domain.

In time domain, the worst deterministic input x, (1, ta)
can be obtained by inverse Fourier transform from
Xg (@, ta ). Also an analytical expression of x; (1, tz) can
obtained. Noting that @(m) is the Fourier transform of
autocorrelation function R(£), consider the following
expression,
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f(t, tu)= }l-f h(v, ta —v )R(t—v) dv

©

L5 (T o PV
=__,I—Jim[-2“J’—mG(a),tm)e‘ da)][—-z-‘[wgb(m YT I e’ [dy

- = f G(o ,ts )¢(m')[[ @ e rdyle t der do

—©

- %J B(@)G(®,ta ) & do

It i3 obvious that f(t, ta) is the inverse Fourier transform
of ¢(w )G(w,ta ) . So the worst deterministic input x,{t,ta)
can be directly written as (noting condition (A2,4))

1 -1
X(tta)= —————— | h{v,ta=V)R{—V)dy - A2,14
(tta) ny,,..,nm)L( YR(t=V) (A2,14)
Also the worst response peak can be writlen as
tm
Ymu(“m):f h(ts tm”t)xd(t!tm) dt
or
1 ta qtm
tn)= ———— 2~ s ta—
en)= ot [ [ nteonon
R@i-v)dvdt s (A2.15)

Consider the variance of response at ta,

<y (ta)>= <{ h(t,ta— t) x(t) dt f h(v, ta-V) X (V) dv>

V-

tm plm
=J' j h(t,ta —t)h(v, ta— v) <x (1) x(v)>dvdt
That is

<yi(ta)> = J' J' h(t, ta—tOh{v, tn — V)R(t—v)dvdt-- - (A2,16)

- V-©

Comparing (A2,15) and (A2,16), we have

2
Vi (ta)= ﬂ»%m_ﬁ e s (A2,17)

The results obtained above can be deduced by different
approach — Filter Method, see reference (9) for detail.
Also in reference (9), some examples are given and it is
demostrated that the WDI method described above can
determine the worst case precisely.

Appendix 3. The Worst Deterministic Input (WDI) for
Non - Linear System

The worst deteministic input analysis for a general linear
system presented in Appendix 2 provides a basis for an
iteration method to obtain the worst case for non - linear
problem.

Suppose a non —linear system is described by an
ordinary differential equation
Q:F(y, X, 1) oo e (A3,1)
where vy is the state output vector, x is a single input
which can be regarded as a function of time with a group
of parameters a, (K =1, 2,~~ ), The zero initial value
solutions of problem (A3,1) are functions of both x ()
and t,
YZY[X(t), t]:Y[a“ a, ', t] baeraseasavetariva ey (A3,2)
Now assume that the functions HY, x, t) are continuous
and that the derivatives F, and F, exist. By formally
differentiating equation (A3,1) with respect to any one
parameter, say a,, and reversing the order of
differentiation, the derivatives Y,, satisfy the following
linear differential equation
Yo=F IY@, x(0.41 Yo +FIYQ), x@t1xy woeoveeree (A3,3)
A linear equation from a non —linear one in this
manner is refered as & variational equation of the original
non —linear equation (A3,1)%%,
Let
A (O=KIY{®), x(tht]
and
B (£Y=F[ Y1), X{{),t] ++rrerrrreremrermrnienn
then (A3,3) can be written as
Y= A(t) Y“+ B(t) K,y rrererereereessciioe (A3’6)
On the other hand, consider an associated linear

e (A3,4)

e (A3,5)

system described by equation

Z=A(Z+B®) x1) v (A3.7)
where Z is the state vector for this associated linear sys-
tem, Its variational equation is

Za= A1) Z,+B () x, v (A3,8)
which is the same as equation (A3,6). Since the solution
of ordinary linear differential equations exists and is
unique, hence

Y, = 2, (i=1,2, ) e (A3,9)
Thus it can be said that the variationals of both

system relative to input x are the same, 1. e,
GY= 62 oo e (A3L10)

If an input x(t) and its corresponding trajectory Y(t)
could be found such that the variation of the associated
linear equation (A3,7) satisfies the Euler equation (A2,7),
then the variation of the original non— linear equation

(A3,1) along this trajectory satisfies the Euler equation
(A2,7) as well, Therefore this x(t) is a possible worst
deterministic input to the non— linear system.

Such an input can be found by the following iteration
procedure:

(1) Assign some initial values to matrices A(t) and B (t),
either give some constant values to A(t) and B(t),
or assume an initial input x,(t) and then calculate
the corresponding trajectory Y (t) via numerically
integrating the original non —linear equation (A3,1),
then according to equation (A3,4) and (A3,5)
determine the values of functional matrices A,(t) and
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2)

B.(t).

The values of the impulse response of the associated
linear system (A3,7) at time t. are calculated for a
sequence of instants beforet. , at those instants the
unit impulse is input to the system. The sample
points are chosen to get the required precision. The
time extent covered should be such that outside it
the impulse input has negligible effect on the response
at tn .
points should be so small that the Fourier
fransform will be precise enough.

And the interval between neighbouring

3) In the i* (i=1, 2,) circle of the iteration, the

4

I

)

~

i** approximate worst deterministic input x,(t) is
determined by the technique presented in Appendix2
for the associated linear system (A3,7).

The i* approximate worst response trajectory Y(t)
of original non —linear system produced by x,(t) is
calculated via numerical integration of the original
non—linear equation (A3,1), and the i approximate
maximum peak value of the objetive function y,(tn)
is obtained.

Using x,(t) and Y,(t) obtained in steps (3) and (4),
calculate A,(t) and B,(t) from equation (A3, 3) and
(A3, 4), and repeat steps (2), (3), (4) until the final
approximate maximum peak of the objective function
satisfies

ot )=y, (ta ) | S2

where & is a specified tolerance,

oo (A3 11)

If the above procedure converges, then the input x(t)

and response trajectory Y(t) found in this way for the
original non —linear system will give a variation of Y(t) rela-
tive to x(i) satisfying Euler equation (A2,7). Thus this x(t)
is possibly the worst deterministic input for the original
non - linear system,

In reference (9),an example of non —1linear system was

(1)
@
3

)

%)

()

given, For the most cases calculated the iteration procedure
do converge quickly and interesting results are obtained.
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