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ABSTRACT

The general equations for the static
aeroelastic behaviour of a general planform wing,
with an adaptive structural box in composite
material containing strain controlled fibers, are
written. Upper skin and lower skin fibers can be
controlled independently, giving both in plane and
bending strains. The expressions for strain-energy
associated with in plane active stresses and with
bending stresses respectively are computed, by
using a set of describing functions; for each of
them a modal amplitude is defined and it is ranked
among the unknowns. Thus a set of non-linear
finite equations is obtained. For practical
applications, the maximum value of the active
forces is prescribed and there results a set of
algebraic equations, from which the structural
response can be computed.

Numerical examples show the effect of the
activation upon structural deformations and upon
total aerodynamic forces.

1. Introduction

Materials capable of an active control via
the variation of a physical parameter (temperature,
applied electric potential) can be incorporated in
the body of composite materials as actuators, in
such a way as to produce controlled and reversible
deformations of structural elements. Association of
such actuators with sensors incorporated in the
material leads to the concept of "Smart
Structures", capable of adapt themselves and
respond to different operational conditions
[1)[2][3].

Several applications are possible: e.g,
plate-like structures can be deformed in bending,
twist and in-plane-stresses without exchanging
forces with the external environment, and without
experiencing inertia forces. It is thus possible to
control static and dynamic deformations of
aerospace structures: as an example, by employing
induced deformation actuators incorporated in the
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element of a lifting surface, it is possible to control
its aeroelastic behaviour [4].

Deformation control devices include (i)
piezo effects [5] (ii) shape memory alloys [6] (iii)
electro strictors (iv) magneto strictors (v) thermal
expansion, etc. Among them, (i) and (ii) are the
most widely used for structural applications; piezo
on account of the easiness of adjustment and
response, shape memory alloys on account of their
capability of inducing high stress levels.

Major drawbacks are associated with the
limitation of stress,(and, therefore, of the total
excursions) for the former, and with the
comparatively slow deformation velocity (very low
bandwidth) and with difficulties in controlling
temperatures for the latter.

In this paper, attention is focused on the
analysis of a lifting surface, whose structure may
be considered to consist of one or more boxes in
composite, having various layers, some of them
with control induced deformations. Planform of the
surface can be allowed to consist of several
trapezoids (differently than in some simple cases of
the current literature), and, also, skin thickness is
allowed to vary along the wing.

A computing technique, based on Gyles'
model [7] is presented in such a way as to account
for several activating policies. The model is
relatively simple, and it allows to use reasonably
compact symbolic expressions. It is thus possible
to have a better understanding of the effects
associated with the variation of parameters
defining  structure geometry and  material
properties.

2. Definition of parameters and unknowns

The structure of the wing box is represented
through an equivalent plate, following Gyles'
approach, here suitably modified in order to
account for active elements (shape-memory alloys).

The wing model consists of two "skins" (or
faces) symmetric with respect to the mean surface:
it is also assumed that the core is consisting of



weightless webs, having infinite in-plate-stiffness
and zero out-of-plane stiffness (Fig 1).

Each of the two skins consists of L, laminae;
note that L, is allowed to vary with the spanwise
coordinate y, Fig. 2. Therefore the total thickness
of the skin is given by:

=1y =L,) ts )

where tg is the thickness of a lamina.

A "lamina" consists of L, sheets (or plies),
each having thickness t_, so the total thickness of a
lamina is given by:

ts=L,t, 2)

In the following we shall regard L, as a
continuous function of y, although, as a matter of
fact, it is not continuous. Such approximation is
justified if t <<h and tg <<t, where h = h(y) is the
height of the wing box (Fig 1). The elastic
properties of the laminae and of the sheets are
defined in Appendix I .

For the definition of the wing planform, we
need a system of rectangular coordinates (x,y), Fig.
2. We define shape (or modal) functions F,(x,y), of
amplitude q;. In the general case q; are functions
time t; as a matter of fact, in this paper, we
consider only static problems, so g; is independent
of t. Therefore we may write the elastic
displacement of the plate under the form:

W(X:Y) = Z1 Ej qi FU(X>Y)>

®3)
i=0,...M, ; j=2,..M,
where the describing functions are taken as:
Fyx.y) = (¢ y)/bs @

and b is the wing-semispan, Fig.2..
The reason for starting with j=2 in the Eq.(3)
is in the need to cope with root conditions.
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3 The modified equivalent plate

For further developments, as said, we shall
use Gyles' model, applying the principle of virtual
work. For this purpose we must express (i) the
strain-energy of the structure, (ii) the work done
by the external forces and (iii) the potential energy
associated with fibers activation. Obviously we do
not calculate kinetic energy, since we are
considering static cases only.

For (i) we have the surface density of the
strain energy expressed by

e = (D, W+ 2D, W_W_+D, W +4D,
W, W, +4D, W W_+4D, W* /2 5)

where D, are the constants of each skin, defined in
Appendix II, and subscript preceded by a comma
denotes differentiation with respect to the relevant
variable.

For (i) we have the work of the external
loads p=p(x,y) per unit area:

L=pW ' (6)

As far as (iii) is concerned, let P, denote the
number of active elements in the upper skin; so the
in-plane total active forces (per unit length) are
given by:

Nu = zk [Gu*x ' Gu*}” Ou*xy]k tSa
k=1,..P, )

where the o, *'s denote the control stresses induced
in active layers. By the same token we may define
the total active forces in the lower skin:

N| = Zk [Gl*x/ OI*Y’ c‘*x?/]k tSa
l( = l)""Pau (8)

We shall consider, in the following,
symmetric shells only, so we can split (7) and (8)
into a symmetric (or membrane) component:




Ny = (N, + N)/2 ©)
and an antisymmetric (or flexural) component:
N, =(N,-N)/2 (10)

which causes a bending moment Nh.
The work per unit area associated with the
membrane component N, is given by:

P, =N, W2, +2 N, W W, +N, W,
(1)

and the work associated with the flexural

Component N‘:
HNI = 1/2 h ( le W,)o(+ 2 ley W,XY + NIY W:”’) (12)

Let the activation level be defined through
parameters ‘¥, and ¥,, equal to the ratio of current
values to maximum values:

N,=Y¥, N,
(13)
Nz = \Px N]max

The generation of the control forces is discussed in
Appendix IIL

Thus, by using the principle of virtual work ,
we obtain the solving equation for the structural
response as:
(K, +AK,+ K, ¥,) q=R, ¥, + Q (14)
In eq. (14):
- K, is the stiffness matrix for the whole structure,
as calculated from the modes (4);
- AK, is the change in K, due to the change in the
modulus of elasticity of the active fibers (we shall

neglect it in the subsequent numerical
developments),
- K, isthe matrix associated with the work done

by N,;
- R, is a vector associated with the work done by
N;
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- Q is the vector of external forces.

We note that each term in (14) is obtained by
writing Lagrange functionals upon integration of
the relevant expressions per unit area , (i) (5) (11)
(12) over the planform area occupied by the
structural box and (ii) (6) over the area of the
lifting surface, which is in general wider. The
expression of K, and R,, are given in- Appendix
II.

4, Aerodynamic forces

At this point we introduce aerodynamic
forces into the term Q. For this purpose we must
write the well known integral equation of the
lifting surface theory:

(15)

w(x,yYU=(/ (8n))ﬁC(x0,y0)K( X,¥,Xq.Yo)dxdy

where X is the wing surface, and the kernel is

given by

K(ny’xoaYQ)z{(l+(x'xo)/ v[(x-xo)2+ﬁ2(y-y0)2] }/ (y - y0)2
(16)

Furthermore, U, is the free stream speed, f3
is Prandtl-Glauert parameter, % denotes the
principal part of an integral, w(x,y) is the
downwash at (x,y) and C = C(x,y) is the local

pressure coefficient. As well known, an
approximate expression for C is
C(x,y) = l/e(y) V[(1-u)u] Z, 2, v B_ sin[(2m +1) 6]

(17)

m=0,..,m' ; 1n=0,..,n
where u and n are defined in Fig.3, and 6=cos'(n),
according to Multhopp's well known rule. The
integers m',;n' are chosen on the basis of the
required accuracy. The constants B_  are the
unknowns of the aerodynamic problem, and can be
ordered into a single vector B.




A collocation method is used, consisting in
imposing tangency condition at m* = (m'+l)
(n'+1) control points on the wing area. The wing
planform is divided into m" n" panels; in each panel
C is considered constant. For computational
efficiency:

m" n">> m*

Relevant singularities are duly treated. The
numerical computing technique is straightforward
[8] and it is not recalled here. Suffice to say that, at
the end, a set of linear algebraic equations is
obtained
AB=1J (18)

where J is the vector of the angles of attack at the
control points. Thus, if J, is the given (or
imposed) angle of attack at the r-th control point,
we shall have

J,=Jy - VU, @W/0%), ; T=1,..,m* (19)
or
J,= o - (1U,) B q (OF/0x), 3 r=1,...m*
i=0,.,.M,
770, M,
(20)

If we condense the subscripts (i,j) into a
single index s ,as described in Appendix I, and we
introduce the matrix J, whose elements are given
by [1/U, (6F/0x),] , we can solve Eq.(18) for B,
obtaining;

B=A"(J,-J, q) 1)

At this point, in order to compute the

generalized aerodynamic forces we use the
formula:
F, = (0/9q) (py I}: C(x.y) wix,y) dZ) (22)
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where p, = dynamic pressure. It is very simple to
obtain the final expression:
F,=p,(R,+R, q) (23)
The coefficients of the aerodynamic matrix
R, and of the vector R, are given in Appendix IV.
The solving equation (14) can thus be
explicated in the following way, assuming that the
only external forces Q are the aerodynamic loads
F,:

a

(Ko+ AK5+KN0To'pd Rq)q:Rﬂl\P1+pd R() (24)

5. Method of solution

In general, the problem is well posed if one
ranks ¥, ¥,, q among the unknowns, In this case,
one must specify further conditions, e.g., control of
angle of attack, or of total lift.

Here we present another approach,
consisting in a parametric study of Eq. (24), where
Y., ¥, are given, and the.values of q, together
with the other relevant quantities, are deduced [9].
For this purpose, symbolic calculus, despite its
inherent limitations, has proven quite successful.
This means solving Eq. (22) as an analytical
expression involving ¥, ¥, and p,, and providing
all other useful quantities. Another parametric
variable which may be of interest is the imposed
angle of attack, included in term R,

In the following, numerical developments,
the values M,=2 and M,=4 were taken; they
correspond to a parabolic chordwise variation and
to a fourth order spanwise variation of W(x,y).
Therefore the order of the system (24) is 9.

6. Numerical example

We consider the untapered wing illustrated in
Fig. 4, having the following geometry:

112 m2
9.1

- wing surface
- aspect ratio




- wing chord 35m
- shell height at root 0.525m
- shell height at tip 0350 m

Shell height is linearly varying along the wing
span.

The sheets have the following characteristics
(see App. I):

E,, = 181000 MPa
E,, =E,, = 2900 MPa
E,, = 10300 MPa
E, = 7170 MPa

As far as the structure is concerned, let us
define laminae. Each of the laminae consists of 12
sheets; the six external ones are made of carbon
fiber composite (CFC), and the six internal sheets
are made of NiTINOL; the latter are the active
elements. Tab. I defines the angles of the various
sheets with respect to the longitudinal axis of the
aircraft to which the structure is supposed to
belong.

TAB I
outer sheets |internal sheets
1 45° + o o ta,
2 135°+a o +a,
3 90° + q a t+o,
4 90° + o -0,
5 90° + o Q. -0l
6 90° + o Qo -0t

Here a is the angle of which we may rotate
rigidly the lamina for tailoring purposes. Each
sheet has a thickness of 0.1 mm.: each skin consists
of 23 laminae at the wing root and 12 at the wing
tip.

A first investigation was conducted on-a
simplified model (M,=2, M,=3) in order to
determine which angle o could give the best wing
stiffness , for three angles of sweep. It has also
been checked which value of a, could give the
maximum angle of twist by activating the fibers.
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The following results were obtained:

TAB I
angle off o a,
sweep
-30° 19° 19°
0° -26° 30°
30° -19° -12°

Fiber activation was considered as described
in App. III, with 6 *max = 500 MPa, and V= 0.5.
Furthermore, flight conditions of U, = 0.75 at the
altitude of 25000 fi, were considered
corresponding to p, = 14700 Nm=2,

Some results are presented in the following
illustrations. Note that, in order to give a better
engineering feeling of the results, the absolute
values of the activating uniform ¢ *, as defined in
App. II1, and not the dimensionless values defined
by(13) are used; they are still denoted by ¥=¥ =
Y.

Fig. 5 provides the elastic displacement w
along the leading edge for different levels of fibers
activation in an unswept wing (A=0). The effect of
reduction of the wing deformation by activating
fibers is very clear.

A similar diagram is represented in Fig. 6,
giving the chordwise distribution of w for the tip
section, where it is seen that not only
displacements, but also slope (which is by far the
most important quantity from an aerodynamic
standpoint) is controlled through activation.

A better understanding of the stabilizing
effect of activation is gained by looking at Fig. 7,
where two significant parameter are plotted vs.
activating intensity: (i)tip-chord leading and
(in)trailing edge respectively.

In Fig. 8 the torsional deformation of the
wing is represented as a function of the distance
along leading edge (equivalent to a spanwise
coordinate). A conclusion that can be drawn, is
that at height values of W, the increase in




stabilizing effects with increasing ¥ is rather slow.
Equivalent results are given in Fig 9. From a design
viewpoint, lift distribution along the wing is of
paramount importance,

Fig 10 provides the lift distribution vs. non
dimensional spanwise coordinate 1 (0 < n<l1). The
shape of the curves is similar and it was also
obtained by other authors [10] for the non active
case. Again activation reduces load. The results are
summarized in Fig. 11 providing the lift slope
coeflicient k vs. activation.

Fig. 12 illustrates the effect of activation
upon the moment coefficient, note that here the
moment is taken with respect to the leading edge
point of the root section of the wing., S (Fig. 3). In
Fig. 12 the values of dC,/d(angle of attack) , and
in Fig 13 the values of dC,/dC,, are given again vs.
activation.

Similar results are plotted in Figs. 14 through
22 for the 30° sweptback wing, and in Figs. 23 to
31 for the 30° sweptforward wing. In comparing
the results, however, one must consider that the
structure is not the same for the three cases, since
the angle o and o, are varying according as
described in Tab I, II. Detailed comparison of the
various results would be too lengthy and beyond
the scope of this paper. We can only say that fi,
the results prove the capability of the chosen
structure and of the activation to control inherently
unstable wings such as, fi., a sweptforward wing.

7. Conclusions

Analysis of a plate-like wing has been
conducted in aeroelastic steady conditions, with
active fibers providing controls. Amplitudes of
degrees of freedom and activation parameters are
the quantities of major interest entering the frame
of the problem. The resulting governing equations
can be solved parametrically by using, fi., symbolic
computer programs yielding analytical (although
very complicated) expressions for the unknowns
(modal amplitudes). Numerical results carried out
for several wing geometry's and activation
parameters have shown the adequacy of the
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method proposed in the paper to serve as a useful
tool in the design of active control smart structures
systems.
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APPENDIX I

In Art. 2 we have introduced the concepts of
“sheet", "lamina", "skin"'. A sheet is an orthotropic
element of composite with one-directional
filaments, so its constitutive matrix will have the

form:

l |
l |
Es = : EZI E22 O I
lo 0 E, |

defined by a set of four parameters.

A lamina will consist of L, sheets each at
different angle with respect to one of them taken as
reference. Finally, the skin will consist of L,
superposed laminae joint together..

As a conclusion each of the skins can be
considered as a single laminate, consisting of
L=L *L, sheets, each defined by the above matrix
and by an angle o, Well known rules [11] allow to
pass from the intrinsic reference to the fixed
reference for each of them, thus obtaining a matrix
E; . Furthermore we define the thickness t and the
distance d; from the mean surface.

So we may write the total stiffness matrix
as:

D=3, (E)t & ;j=1,.L

In the case under concern, we have t = t, and
we may assume dj = const. = /2, so the rule for
obtaining the coefficient of the matrix D, Eq. (4) is
self-evident.

APPENDIX II

Let us consider Eq. (11) of the main text, where W
is defined by (3). Furthermore we use Eq. (13) by
assuming that the components of the vector N
are known functions of (x,y), and denote them, for
sake of simplicity, by n, n, n_. Thus we have for
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the work associated with the membrane
components:

HNO = \IIO Zm Zn Z, Z: qmn qnG;m_n;
mr=1..M,;ns8=1,..M,
where, recalling the assumed shape functions (4):

G,..,,= n(OF./x) (OF Jox)+2n,_(OF, /ox)(OF Joy)+
n(3F. /dy)(3F,/dy)

A suitable subscript condensation is necessary at
this point. Thus we must define two indexes:

m, =(n-1) M, +m
m,=(r-1) M, +s

and, thus, we may re-write G, .as G, ..

By integrating the expression of G, m all
over the wing area we obtain the coefficient
(m,,m,) of the matrix K, of (14).

By the same procedure, by denoting the
components of N asv,,V,, v_, we obtain the
components of the vector R,, as the integral over
the surface of the quantities:

r,=v, (OF,JOx) +2 v, (FF,/0x Oy y+v,(OF, /oY)

again by using the above rule for subscripts
condensation.

APPENDIX I

Active fibers are plastically deformed
(generally, via axial elongation strain) and
imbedded into a matrix (e.g. epoxy), in such a way
that they cannot come back to the initial condition.
When heated (via Joule effect), the fibers tend to
come back to the condition previous to their
deformation, but they are prevented to do that by
the matrix.




As a consequence forces will arise in the
plane of the sheet (and of the lamina), which are
referred to as "recovery forces".

In order to compute this forces appearing in
Egs. (5) (6) one must known the field of the

stresses arising in the active fibers, say ¢ *; then, if
V, is the percent of active fibers, and T is the

rotation matrix relevant to the theory of lamination
[11], we w ill have:

[0,*,0,*0,*] =T [V,0,*,0,0]

APPENDIX IV

In order to calculate the expression (23), let
us firstly define the vector Z(x,y) of the describing
functions (4), ordered as said in App. II, and the

vector H(x,y) of the functions appearing in Eq.
(17):

H(m,n) = 1/e(y) V[(1-w)/u] u"sinf(2m +1) 6]
Thus we may write :
Cxy) =, -J)" (A)"H
and finally :
J; Crey)wxydE =(3,-J)T (AT M q
where :
M= [, HZ" d3
In the foregoing expression T denotes
transpose of a vector or a matrix. From the above
expression, one as clearly:
R,=JT (A M

Rq =. JqT (ANYT™M
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Fig 26 Torsional deformation of wing
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