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Abstract

The definition of Crack Extension Energy
Rate G for elasto-plastic materials with
hardening is given here as a generalization
of the Energy Release Rate; it 1is obtained
by substituting the strain energy density
with the work done by the internal forces.
A procedure for the computation of G,
starting from a finite element analysis of
then
The results
loads, a

is produced and a

a cracked body, is described in

bidimensional problems. show
that,

certain decrease of G

in the case of cyclic

crack closure 1s present with positive
tensile loads, independently of the
kinematics of the c¢racked faces; the

results obtained depend on the constitutive
characteristics of the materials.

I. Introduction

body, which is

subject to quasi-static

For a hyperelastic

homogeneous and
small deformations, and in the absence of
the energy absorbed at the

called

body forces,
crack tip for unit crack extension,

Energy Release Rate, is (1)/(2)

G = - %cha +J Tvauards (1)
B 2B

and u are the crack
length, the the
Cauchy stress, the outward unit normal to
2B and the field,
respectively. Moreover, in a bidimensional
if ¥ is a path around the tip,

where 1, o, T, Vv,
strain-energy density,

displacement

problem,

that 1s, a smooth non—intersecting path

Copyright © 1992 by ICAS and AIAA. All rights reserved,

and ends on the crack and

(Fig. 1),

that
surrounds the tip

starts
the quantity

J(b’)=e'J(GI~VuTT)n ds (2)
tef

and n are the direction of
propagation of the the identity
tensor and the outward unit normal on ¥,
respectively, is the J-integral
corresponding to ¥ . The tensor (OI“VUTT)
is called the Energy Momentum Tensor(3). as

where e, |
crack,

is well known, in this case we have

div(ol-vulT) = 0 (3)

and, thus, if the crack is straight,

G = J(@). (4)

A definition of G for elasto-plastic

materials undergoing infinitesimal

deformations is obtained by substituting
the strain energy density O with the work

done by internal forces W, (4)/(5), (&)

G() = - %J wda +J Tv.urds (5)
B 3B
G(l) is called, 4in this case, Crack

Extension Energy Rate and, i1f the crack is

(6)

straight, we have

G(Y) = J(¥) - e 'Jdiv(wl -vu'T )da (6)
L

In the previous relation, ¥ is a path
L is the set enclosed by ¥

where plastic deformations have taken place

around the tip,

and
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J) = e‘J (Wn-VulT n) ds (7)
]

A closed-form computation of G is, in

general, not ©possible; a numerical
assessment of G
element analysis of the cracked body has

and a brief description

starting from a finite

been carried out(7)
of it will be given later on in this paper.

The possibility of computing G in general
load useful for
applications in the design of structures.

conditions is very

Besides, it seems to be possible to collect
in the same mathematical framework both the
according to
load
and

qualification of materials
which the
increases,

fracture mechanics, in
applied

fatigue crack growth in bodies subjected to

monotonically

cyclic loads.

In the application of fracture mechanics
to fatigue crack propagation, the crack is
zero—-width saw cut;
show that a

also exists under

considered to be a
experiments on real cracks
phenomenon of "closure"
cyclic loading with small tensile load; the
phenomenon was attributed by Elber(® to the
presence of residual tensile strains along

the crack faces during the crack growth

process.

The analysis carried out with the present
method shows that the closure depends
primarily on the effects of residual
strains in the ligament of the cracked
body, during the phase of decreasing

When the load applied increases
yvielding
produces a small modification of the Energy
Release Rate. In the cyclic
loading, during the unloading phase, the
residual strains formed after a maximum of
the load applied is reached give rise to a
of the
field around the crack tip; consequently, G

loading.

monotonically, small scale

case of

significant modification strain
vanishes at a tensile non-zero load.

So the presence of plasticity can never

be disregarded, independently of the
extension of the plastic region;
significant effects on the propagation and
retardation of the cracks can alsc be

present in the case of small-scale yielding
under cyclic loads.

IT. Constitutive relations

In this section we briefly present some
results on the infinitesimal theory of
plasticity which will be useful later on{1®

A "deformation process" or, more briefly,

a history of duration T is a continuous and

continuously pilecewise differentiable
mapping, defined on the closed real
interval [0, T ] with values in Sym, the
space of all symmetric, second~order

tensors,
£ : [0, T) -»Sym , v E(T) , (8)
such that
E(0) = 0 . (9)
value E(7T) at instant T of a history E is

the infinitesimal
the symmetrical part

interpreted as
deformation, that 1is,
of the displacement gradient, starting from
a fixed reference configuration, at a fixed
material point. At each instant T in which
E is differentiable, E represents the value
of the derivative of E at instant 7T.

The materials being considered here are
elasto-plastic isotropic solids whose
deformation

frame-—

response to
described Dby a

mechanical
processes is
and

indifferent rate—~independent

constitutive functional. For each history E,

TE(t) denotes the stress at time T
associated with history E by the
constitutive functional.

"Elastic range" E(7z) at time T

corresponding to history E is the closure
of an arcwise connected open subset of Sym,
whose boundary is attainable from interior
E(z) and its
points are interpreted as the infinitesimal
deformations the
configuration to configurations which are
current

peints only; it contains

from reference
elastically accessible from the
configuration.

Plastic history EP corresponding to £ is
a history such that, for each T ¢[0, T,
Ep(t) is a traceless tensor, belongs to E(t)
and corresponds to an unstressed
configuration,

As usual, it is then supposed there exist
two material constants A and [l such that,
if E ana EP the
corresponding history,

are a history and
plastic

respectively, we have, for each T € [0,7T ],
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Te(r) = TIE(T) - EP(7)] =
= 20(E(7) - EP()) + (AtrE(T))] (10)
For each history ﬁ and for each
z€e[0, T ]
T
o) = [JErelor )
0

is the length of the path described up to
instant T by the plastic deformation tensor
in Sym,, all traceless element of Sym. (
is called the Odgvist parameter.

'In view of the applications we have in
mind, we accept the von Mises criterion,
that 1is to say, we suppose that for each
5 each T € [0,T ] the
corresponding elastic range is the cylinder

history E and for

E(t)={E € sym | [|Eq(z) - Ce(o)| < p(t(z))}, (12)

: R+ » R+ is a differentiable and
non—decreasing material function, Eo(t) is
the traceless part of E(7) and Cp(7) is a
traceless,

where p

symmetric tensor.
Moreover, we suppose that a non-negative
constant T such that for

history E and for each T €[0, T] we have

exists each

Celz) = (0 + MEP(T) . (13)

The
completed by the flow rule which states
that, when EP(%) is different from zero, it
is parallel to the outward unit normal on

set of constitutive hypotheses 1is

the elastic range at E(t)o.

For each history E and for each Te[0,T],
the work done by internal forces in the
deformation process £ up to time T, is

T

We(r) = JTE('C)~E(”U)G’C"

. o]

‘Ng(t) can be expressed as an explicit
function of E(T), EP(T) and C(zt)(6):

(14)

We(T) = 172 (E(x) - EP(2)) - TIE(T) - EP(2)] +
HNIEP(IZ + 2pw(Ce(z)) (15)

where W 1s the primitive of p such that
W0y = 0.

III. Numerical computation of the crack
extension energy rate

Let us suppose that body B contains an
edge crack, represented at every instant 7
by the image of a smooth non-intersecting
curve X,‘[OJ]* B, a- XKGL parametrized by
arc length a. The length | = I(r) of curve Xl
is a non-decreasing function of time v
therefore, it
can be used as a time scale; e(a) = dXMda
denotes the unit vector field tangent to
and n is the outward unit normal

during the motion of B and,

the crack,

to J.
Fig.l The plastic region By and the L
domain.
Moreover, we assume certain regularity

conditions of wu, EP, ¢ and W, that body
forces are absent and that the crack faces
are traction free(2),

For each path ¥ around the tip, let F be
the subset of B enclosed by ¥, Br=(x€B
{#0} the plastic region and let L =F N Br
that is the subset of F
where plastic deformations have taken place.

If the crack 1s straight, we have (®)

as shown in Fig.1,

G(¥) = J&) - e -Jdiv(wl -vulT )da. (16)
L

Assuming e 1is parallel to the x; axis,
because divT = 0, we can write

G = J(Wn,—tium Yds - J(W,1 - &5,103;) da (A7)
¥ L

where g;; and ¢;; are the total deformation
and stress components.

In order to evaluate G for elasto-plastic
computer code GJINT2D

has been implemented at the Department of

hardening materials,

Aerospace Engineering of the University of
Pisa. The code 1s set up for bidimensional

problems.
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The computation of G with the GJINT2D
code can be summarized as follows:
(i) a finite

analysis

bidimensional element
of the body 1is
node

finite element code used is NO.S.A. (%),

performed using

eight isoparametric elements; the

(11) The integration paths are defined
along the Gauss points of the elements, as
shown in Fig.2. The integration paths can
the

shown in fig.3.

cross elements in the various ways
For any type of crossing, a
new element 1s defined as the portion of
the element inside the path and with the
Gauss points positioned in accordance with
the new boundary.

(ii1) The line and surface integrals are
computed along the integration paths ¥ and

over the previously defined surface L,

respectively. The line and surface
integration functions are:
F¥(x,)) = Wn, -
Z(x, ) n, ()'ijnjui,k ’
k=1,2 (18)
k
FL(XI]) = Wlk_(ul kTij)’j
respectively, where:
2 2 2
2 A
W(x,l) = Zp (eij - e'iDj) +—2— Zeii +
ij i
s 2pw(l) + mZ(sp )? (19)
i3
and
p
€
2 Je, . h
- _ P Zon _,HM)
;2“ C¥ Ehj)(ax. ax, /
] i 1
2 2 3¢ dw dC
Kk
*“[‘é%j@a aC dx,
k=1 k=1 !
aeP
hj
(20)

2
p
+ }mézeij axi .

The surface integral is computed in the

&,y ; it f
subset R of the

isoparametric space is a
function defined on the

(x,y) plane, we have

(21)

Jf(x,g)dxdg = J(p(&,n)det(J)dédn )
R A

where Q&) = f(x(EN), uEn)), A =J(R)

and:

8 8
DN &M %y = INJEM v,

i=1 i=1

with N, (§,n) the shape functions.
The field
derivatives are obtained by means of the

displacement and its

shape functions,

8
w(&m) = XN &M u; (22)
i=1
iaNi@,n) B
= axj YT
8N( ) 3 ON.(E,m) 3
—Z( f‘;n O AEW Y g
axj an axj i
At the Gauss points, the stresses,

strains and Odgvist parameter are obtained
along the lines
connecting the Gauss points, the
(§,M) plane are obtained
So the strain

by finite element analyses;
strain
components in the
by parabolic interpolations.
derivatives are obtained by means of the
derivation rules,

8f(l) af(z)
o, . _ i 3¢ N ij on
dx 9E  Bx an 8x’
(24)
af(l) af(z)
Je, , _ 4 & . i3 9n
3y 3E 3y 3n 9dy’
where ‘1 (&,m) ana f{%)(ﬁ,n) are the
by 1
interpola%ion functions o% strain €,y along

the £&=cost and mnN=cost directions,
respectively.

The derivatives 9§/dx and dn/dx in (24)
are elements of the inverse of the Jjacobian

matrix
8% an
dx 3x

8gan |’
dy 3y

(25)

the expressions of the components of the Jt
matrix are obtained explicitly by means of
an appropriate proceduref’).

The computation of the surface integral
is rather critical when high gradients of
straln are present in the crack-tip region,
the the

because of difficulties in
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interpolation of strains by means of second
order polynomians. The numerical analysis
performed with the theory of infinitesimal
plasticity is valid only when small strains
are present at the crack tip.

In the examples shown in this paper, G is
computed by applying only small values of
the external load in order to avoid the
presence of large strains at the crack tip.
The external load is applied step by step
to the cracked body; at any loading step,
the 0Odgvist parameter, the total and
plastic strains and the Cauchy stress are
computed.

In this paper we assume that the radius
p of the elastic range is a linear function

of C,

p(C)=2%/2_(1+BC) (26)
and, then,
2
w(C)=2%/7(C+B%). (27)

The constitutive parameters T and B are

obtained by uniaxial cyclic tests (10)

IV.Examples.

we shall consider a
Cracked

As a first example,
unstiffened Center
Panel made of steel, 1600 mm long, 800 mm
wide and a crack 1length of 200 mm; the
finite element mesh of a quarter of the
together with the
integration paths used for the computation
of G. The of the

rectangular

panel is shown in fig.4,

stress—-strain curve

material is approximated by a bilinear

function; isotropic hardening is assumed
with M=0,$=25.0, T,=165.8 MPa, E=214000 MPa
The loaded
with the constant cyclic stress in fig.S5,
with R=0pi,/ Omax=0.

Fig.6 shows the G values obtained versus

(Young modulus). specimen is

the applied stress. The values of the line
the
phases are nearly the same and,

of small scale yielding as in the present

integral in loading and unloading

in the case

example, they are very close to the elastic
On the other side,
values of the surface integral are very

case. even though the

small when the load is increasing, they are

very significant when load is decreasing
(fig.7); the contribution of the surface
integral to G is negative, in accordance
with the fact that the energy absorbed for
the formation of the yielded region BC is
not available for the extension of the
crack.

Fig.6 shows that,
contribution of the surface integral, G
becomes negative during the first unloading
when the load increases in the

owing to the negative

phase and,
G becomes positive only when
is exceeded.

second cycle,
a certain load, Pg.,, in fig.6,
The same happens in the next cycles due to
the contribution of the surface integral.

In the {0,Pg=g] no energy
is available for the propagation of the

loading range,

crack, as if the crack were closed; this
phenomenon can be defined as "Closure".
According to Elber!8) the closure

phenomenon depends on the residual tensile
strains 1n the wake of the plastic region
around the crack faces when the crack 1is
growing. According to the present results,
a crack closure is obtained independently
of the presence of residual strains behind
the crack propagation is
simulated here); the crucial factor seems
to be the formation of the region Bc in the
independently of the kinematics

crack tip (no

ligament,
of the crack faces.

The second example is a C.C.P. specimen
with the same geometry of the first panel,
made of 2024-T3 alloy, in the hypothesis of
pure kinematic hardening, B=0, M=0.1
T,=187.1 MPa, E=73000 MPa. The specimen is
subjected to the sequence of cyclic loads
shown in fig.8, with two groups of five

constant amplitude and an

group
about 380 increments of load have

cycles

intermediate of three overstress
cycles;
been applied to carry out the computation
of G.

Here again we have a crack closure, even
though the crack faces are always open. The
shape of the crack opening at the end of
the fig.9,

appears to be similar to the one observed

overstress cycles, shown in
in experiments.

The G values versus the load increments
A retardation effect

is produced by the presence of the overload

are shown in fig.10.

cycles, so that the active G values in the

final group of cycles are significantly

lower than those of the first group.

The third examples concern the same

1471




C.C.P. specimen, but with the constitutive
constant PB=0, M=0.28 subjected to loading
histories consisting of three groups of
three stress cycles, in order to obtain
both R = Opin / Opax = 0.0, 0.3 and 0.5, Opayx
11), and R = 0 with

The computations of

being constant (fig.
variable Oy., (fig. 12).
G are carried out in the
kinematic hardening and combined hardening.

With the kinematic hardening model and
for the 1loading hystory 11, a

virtually constant decrease of G is present

cases of pure

in fig.

at every cycle of the first and second

group (R=0.0, R=0.3), as shown in fig.13.
In fact, the elastic stress range cannot
widen and, then, the energy available for

the crack growth decreases at every cycle
virtually by the same amount. The decrease
of G at every cycle equals the increase of
When

the energy absorbed in the BC region.

the range of the applied load becomes
sufficiently small, as in the case of
R=0.5, the stress remains internal to the

elastic stress range and the rate of energy
absorbed at every cycle vanishes.

With the same material, but with the load
history shown in fig. 12, the G values in
the second and third block of cycles are
negative (fig.14), small
positive wvalues in the second block and,

apart from

therefore, are not available for producing
propagation of the crack.

The results shown in fig.1l5 concern the
three blocks of loading at R=0.0, 0.3 and
0.5 (fig.11l), and a material with combined
hardening (B=25.0 and 1=0.28). The
decrease of G for every cycle is lower than
the decrease observed for kinematic
hardening; after the first three cycles,
the second and third blocks fully
active and no further decrease of G is

present in these two blocks.

are

All the numerical results presented in
this paper show that the computation of the
Crack Extension Energy Rate 1s greatly
dependent on the constitutive model.
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made with 2024 Aluminum alloy.
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