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Abstract

In this paper, the post impact compressive behavior of
polymeric composites is studied both analytically and
experimentally. In the analytical study, a closed-form
solution is obtained for postbuckling of composites with a
circular delamination. Using this solution, the reduced
stiffness of the impact damaged region is calculated and the
residual compressive strengths of quasi-isotropic laminates
are predicted as a function of damage size. In the
experimental study, in-plane displacements near the damaged
region are determined by employing a micro moire
interferometry technique. The strain concentrations as well
as the compression-after-impact strength have been
measured and compared with analytical predictions. Good
agreement between the predicted results and experimental
data was observed.

Introduction

An important issue in applying polymeric composites
to primary aircraft structures is the impact damage tolerance.
Typically a laminated composite absorbs impact energy via
fiber fracture, matrix cracking, and interface delamination.
The type and amount of damage induced by impact generally
depend upon specific material system used, layup
orientation, as well as the impactor geometry. When these
material and structural factors are kept constant, the impact
damage can be well characterized using a nondestructive
technique such as C-scanning. With the damage state
defined, the problem reduces to the determination of residual
strength of composites after impact, particular the
compressive strength. After that, guidelines for inspecting
composite structures containing impact damage can be
developed.

In this paper, the post impact compressive behavior of
polymeric composites is studied both analytically and
experimentally. In the analytical study, a closed-form
solution based on von Karman's nonlinear strain
displacement relations is obtained for postbuckling of
composites containing circular delaminations. Using the
developed solution, the reduced stiffness of the damaged
region is calculated. The compression-after-impact (CAI)
strength of composite is then predicted using the method
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proposed by Dost, Ilcewicz, and Gosse (DIG) in [1]. Inthe
experimental study, in-plane displacements on the impacted
side are measured using a micro moire interferometry
technique. The out-of-plane displacement on the opposite
side is measured using the shadow moire method. The
strain concentrations near the damaged region as well as the
CAI strength are then determined. The predicted results are
then compared with the experimental data.

P klin lution

In certain laminates subjected to impact, such as a
quasi-isotropic layup, a representative damage pattern exists
in the form of a sublaminate. This sublaminate often
buckles under a compressive load which can trigger
compressive failures. Thus, the stability and post buckling
behavior is important in order to develop a method for
predicting the CAI strength. The critical buckling load for a
circular sublaminate was analyzed in [2] using a simple
quadratic polynomial. In the following, a more general
approach is developed for analyzing buckling and
postbuckling behavior of a sublaminate. This analysis
procedure is based on the Rayleigh-Ritz method for
geometric nonlinear problems. The three-dimensional
displacements of a circular sublaminate are expressed in a
finite series so that convergence of the numerical solution
can be properly studied.

Consider a circular delamination as shown in Figure 1.
Using von Karman's non-linear strain-displacement relation,
we have
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Based on Kirchhoff's plate theory, the potential energy
of the composite laminate subjected to applied strain €y is

H:UL+UNL—V (3)
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[Po] is the applied load and [C] is the elastic stiffness
matrix. { }T means the transpose of { }.

To obtain an approximate solution for the problem, we
assume the in-plane displacements u and v, and the out-of-
plane displacement w in the following series:
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where @, & ,® . are basis functions which depend on
Wit o vt Wi

both r and 0 coordinates. The coefficients Ujj, Vij, and Wj;
are unknown constants to be determined from the analysis.
The basis functions for the displacements of a circular
sublaminate are chosen as follows
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wherek=1,2,3, ...

Note that the above assumed displacements satisfy all
the clamped conditions along the boundary r = R, that is

u(0,8)=0, v(0,6)=0, v(R,8)=0

w(R,0)=0, w,(0,0)=0, w_(R,6)=0 (15)

Substituting the assumed displacements in (9) into the
potential energy expression in (3), we obtain an expression
for @ in terms of unknown displacements Uyj, Vij, and Wi;.
Taking the first variation of IT and letting 8 II= 0, the
following governing equation can be derived:
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where the {U} vector contains the coefficients Ujj and Vj;
while the vector {W} contains Wjj. All the stiffness matrix




terms in Eq. (16) such as [Kyl, [Kuwl, [Kwl, etc. can be
calculated using the constitutive equation and geometric
relations. They are;
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By eliminating the {U} vector from Eq. (16), we obtain

(K. W} -2k wy=0 (19)

The matrix [Kywa] is a nonlinear term obtained from the
matrices [Kyl, [Kw] etcas:
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where

[Km]=%[BG]T[S][BG] ‘ [s]:[:" ixy]

The components of [S] are given by:

{s}:[s;, S, Sxy]T =[ale, }+[ale, }+[BH{x}
(22)

An iterative procedure was employed to solve the above
non-linear eigenvalue problem given in Eq. (19). The
numerical procedure included the following steps:

1. Calculate the bifurcation buckling load and the corres-
ponding buckling mode.

2. Assume an incremental deflection and use the stiffness
matrix from the previous step to obtain the next
post buckling load and displacement.

3. Use the Newton-Raphson method to modify the
stiffness matrix and update the post buckling load.

4. Check the convergence of the solution. If the method
has not converged, go to step 3. If converged, go to
step 2.

The above formulation was used to determine the
postbuckling behavior of an orthotropic layer at an angle 8
from the loading direction. The material properties used in
the analysis are: Ej=17.57E2,v;2=0.28, Gj2=0.5E2. The
plate is subjected to a uniform compressive strain of € in
the x direction and a tensile strain of 0.3€y in the y
directions. The biaxial strains were applied for comparison
purposes. A convergence study was first conducted to
determine the number of terms that was required in the
series. It was found that the solution converged with N;=4
and Nj=8 terms. Next, the post buckling solutions of

circular sublaminates with 8=0° 30°, and 45° were
obtained. These results are plotted in Figure 2 in the form
of normalized maximum deflection, w/h, versus the applied
strain €, . Note that the present solutions compare well
with those obtained by Yin, et al [3] using a different set of
basis functions.

Analysis of CAI rength

Dost, Iicewicz, and Gosse (DIG) proposed a method for
predicting the CAI strength of composite laminates[1].
Their approach was based on the assumption that the
compressive failure of a composite was triggered by the
strain concentration near the damaged zone where the
stiffness is reduced due to local buckling. The damaged
zone was assumed to follow a linear load-deflection path
until it was buckled. After buckling, loads carried by the
sublaminate became a constant, as in the Euler buckling




case. The reduced stiffness of the buckled damage zone was
calculated at failure point by ensuring a strain compatibility
at the boundary between a damaged and an undamaged
laminate, that is,

* &€
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where E* is the reduced stiffness and &, is the critical
buckling strain and €, is the failure strain of undamaged
laminate.

Since the sublaminate can further carry loads after
buckling occurs, the reduced stiffness is actually a function
of the transverse deflection w. In order to accurately
calculate the reduced stiffness, postbuckling solutions of a
. sublaminate must be obtained as was done in the previous
section. Using these solutions, the reduced stiffness can be
calculated as follows.

If the laminate has a linear load-deflection path, we
have

P
Ul=k‘— (24)
E

where Uj is the maximum inplane displacement, P is the

axial load and k is a geometric parameter which is a
constant.

In a nonlinear postbuckling solution, the maximum
inplane displacement is

‘P
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where depends on P. If the gecometric parameter k is
considered to be a constant and the material parameter E is
changing during postbuckling, the relation can be written as

P
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Thus, the reduced stiffness E” can be defined as
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Eq. (27) has been used for calculating the reduced
stiffness of (45/0-45/90)3¢ graphite/epoxy with a circular
delamination. The results are shown in Figure 3 for
different damage sizes and compared with those obtained by
the DIG model.

After the reduced stiffness is obtained, the stress
concentration factor K can be found using the finite
element method by treating the sublaminate as a-soft
inclusion. The residual strength of the laminate, Gy, is then
calculated from

5 =2 2
Tk, (28)
where g is the strength of undamaged laminates.

Experimental rificati

Experiments were conducted to gain further insight into
the behavior of impact damaged composite panels under
compressive loads. The test samples were made of
IM7/8551 graphite/epoxy with a (45/0/-45/90)3¢ layup.
The dimensions of specimen were 4 in. (10.16 cm) wide by
6 in. (15.24cm) long with a nominal thickness of 0.18 in.
(0.457 cm) (24 plies). Each specimen was impacted with a
Dynatup drop weight impactor to create a damaged zone in
the center, After the specimens were impacted, the damage
state of each specimen was analyzed using the ultrasonic C-
scan. The effective damage radius of these specimens was
found to be in the range of 0.328 in. to 0.642 in. (0.833 cm
to 1.631 cm).

The impacted specimens were tested in static
compression to determine local damage region behavior as
well as the residual strength. In-plane displacements (u,v)
on the impacted side were measured using a micro moire
interferometry technique[4]. The grating used was a 4
in.(10.16 cm) by 4 in. reflective, phase type diffraction
grating with a frequency of 600 lines/mm (15,240 lines/in)
in both vertical and horizontal directions. This grating
yielded a resolution for the displacement of 0.833x10"%m
(3.281x1072in). Application of the grating required
extensive specimen preparation. The impacted side was
sanded until flat and relatively smooth. The grating was
then mounted to the specimen using an epoxy adhesive. A
small reference line was scored onto the grating to provide a
length scale in the photographs of the fringes.

The out-of-plane displacement in the opposite side of
the specimen was measured by employing shadow moire
interferometry. The specimen surface was also sanded to
achieve a smooth surface, but then spray-painted with a self-
priming metallic silver paint. A reference cone with a
height of 0.077 in. (0.196 c¢m) and a base diameter of 0.485
in. (1.232 cm) was then attached to one corner of the
painted surface. Fringes were created by placing a 60
lines/cm (152 lines/in) glass mounted grating in front of
this surface, and illuminating and then viewing the surface
from specified angles.

Compression testing was accomplished by clamping
the specimen into a fixture designed to stabilize it against
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global buckling{5], and placing the fixture in a static test
machine. An 8-mirror interferometry setup was used to
generate fringe patterns for axial and transverse
displacements in a circular region of approximately 3.25 in.
(8.225 cm) in diameter. Light was directed from the 35
mW He-Ne laser into the spatial filter and aspherical lenses.
The collimated light went through the interferometer set and
produced fringe patterns on the specimen. The fringe
pattern image was reflected by another mirror through a
lense and into the camera. The measured u, v fringes were
then scanned into a Macintosh IT computer and differentiated
into a strain field from which the strain concentration
factors were obtained. Out-of-plane data were analyzed by
viewing the negatives of photos taken by the camera with a
microfiche projector. The height and base diameter of the
reference cone were used as length scales for measuring
buckling area diameter and maximum out-of-plane
displacement. Details of the experimental setup and
procedure can be found in [5].

Typical moire fringe patterns for axial (1) deformations
in the loading direction at four different percentages of the
failure load are shown in Figure 4. The resulting ex strain
data are shown in Figure 5. Note that the magnitude and
areas of strain concentration increase with applied loads.
Numerical values for the strain concentration factors are
plotted in Figure 6 and compared with those predicted from
the soft-inclusion model. Since the severity of impact
damage varies in the damaged region, a wide range of strain
concentration was found. However, the predictions
generally fall within the upper and lower bounds of the
measured value.

The CAI strengths for specimens with different damage
radius were also measured and were plotted in Figure 7.
These data were compared with analytical predictions using
the DIG model with critical buckling loads and the present
postbuckling solutions. While both the DIG and the
present solutions agree well with the experimental data, it
appears that the present solution yields better predictions,
particularly for a large damage diameter.

nclusion

An analytical solution has been obtained for the
postbuckling of composite laminates with a circular
delamination. Using this solution, the reduced stiffness of
the impacted region and the compression-after-impact
strength have been determined as a function of effective
damage diameter. The predicted strain fields and
compressive strengths compare well with the experimental
data. In addition, experimental results indicate that static
compressive failure is triggered by the strain concentration
of the damaged region rather than the growth of impact
damage.
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Fig.3 Residual Stiffness versus Damage Radius
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Bl stratn = 0.11796-02 to 0.1908£-02
B strain = 0.1508E-02 to 0.2636E-02
B stratn @ 0.2636£-02 to 0.3364E-02
B stroin = 0.3364E-02 to 0.40925-02

B stratr = 0.40926-02 10 0.4820£-02
B strain = 0.4820£-02 to 0.5548E-02
B straty = 0.55468-02 t0 0.6277E-02
B stran = 0.62776-02 % 0.1 13701

At 55% of Failure Load (10,000 Ib)

Bl strain = 0.5024€-03 10 0.163%E-02
B strain = 0.163556-02 to 02407602
E  strain = 0.24076-02 to 03159602
B strain = 0.3159E-02 10 0.3911E-02

stratn = 0.3911E-02 to 0,4664E-02
strain @ 0 4664E-02 to 0.5416E-02
stroin = 0.3416£-02 to 0.6168E-02
strain = 0.6168£-02 to 0.1219€-01

At 83% of Failure Load (15,500 Ib)

Fig. 5 Axial Strain Fields vs. Applied Loads

strain = 0.9200£-03 b 0.1 7228~02
strain = 0.17328-02 to 0.2536E-02
strain = 0.2336E-02 to 0.U340E-02
strain = 0.3240E-02 to 0.4143E-02

BE0O

strain = 0.4145E~02 to 0.4949€-02
strain = 0.4949€-02 ts 0.5753E-02
strain = 0. STSIE-02 to 0.6557E-02
strain = 0.6SSTE-O2 to 0,1215€-01

At 70% of Failure Load (13,000 Ib)

Ol strain = 0.10096-02 to 0.195%-02
B strain = 0.1553€-02 to 0.26966-02
B stroin = 0.20966-02 1o 0.3840£-02
B strain = 0.39406-02 to 0.479-02

B strain » 0.47836-02 to 0.57266-02
B strain = 0.5726E-02 to 0.66705-02
strain = 0.66708-02 to 0.7613£~02
strain = 0.7613E-02 to 0.14226-01

At 98% of Failure Load (18,200 Ib)
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Fig. 7 Comparison of Predicted Residual Strength with Experimental Data
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