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Abstract

The suggestion has been made by Hounjet [1] and Hounjet
and Eussen [2] that aecrodynamic forces for harmonic
motions may be obtained from analytic continuations of
approximations to the aerodynamic forces for exponentially
diverging motions. The forces are
approximated by rational polynomials in the frequency
parameter s, based on the assumption that any unsteady

aerodynamic

parameter of interest can be represented in this way.
Although the assumption was substantiated by numerous
examples, no physical explanation or justification was
given. In this study, the procedure was applied to the
unsteady subsonic kernel function, being a more basic
unsteady parameter than generalized forces, to gain a
better understanding of the approximation and its analytic
continuation. The results obtained support the concept of
analytic continuation, but also shows that the form of the
approximation used here and by Hounjet and Eussen [2]
can suffer from numerical instabilities. The techniques of
this study can be applied to test the reliability of the
application of analytic continuation to other unsteady
parameters.

Introduction

Padé approximations to aerodynamic data for harmonic
motions and their analytic continuation to oscillations of
increasing or decreasing amplitude is routinely used in the
design of active control systems [3]. Hounjet [1], Hounjet
and Eussen [2] and much earlier Jones [4], suggested that
the analytic continuation of the approximations is valid
over the entire complex plane and that aerodynamic forces
for harmonic motions may be obtained from analytic
continuations of approximations to the aerodynamic forces
for diverging motions. This would be very useful to extend
the applicable frequency range of some iterative methods
which show improved convergence for diverging motion as
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compared to harmonic motion.

The use of the kernel function rather than generalized force

in a study of this nature has the following advantages :

1) the kernel function is cheaper to compute, making it
possible to generate more data points in a given period
of time,

2) the averaging effect of integration over a configuration
is avoided,

3) the attenuation by distance in the calculation of
influence coefficients is avoided,

4) high frequency behaviour can be investigated free from
the influence of panel size.

In any given configuration, the kernel functions that are
computed are much more numerous than the generalized
forces. It would be a huge task to study a complete range
of kernel function parameters. In stead, a set of parameters
was chosen that is likely to occur in most configurations.
The geometric parameters can be reduced to a radial
distance in terms of wave lengths and the ratio of the
x-coordinate to the radial distance. Since the wavelength
was varied over a wide range, it was only necessary to
select the ratio of x-coordinate to radial distance. It was
taken as unity to correspond to two of the three kernel
function evaluations used according to the method of
Rodden et al. in [5] to calculate the influence coefficient of
a square box on itself. A moderate Mach number of 0.5 was
used throughout.

Nomenclature
K, Co-planar part of the kernel numerator
I Radial distance y%z2
X,Y,2 Cartesian coordinates
k Reduced frequency iwc/V (Note that k is imaginary

for harmonic motion.)

1043




s Frequency parameter kr/c

w Angular frequency in rad/second
0 Argument of frequency parameter defined by
s = |s|exp(if)
c Reference length, usually the semi—chord of a wing
v True air speed
fx F(sy)
Analysis

The kernel function was evaluated at 51 equally spaced
values of radial distance from zero to 5/2x wavelengths.
This maximum value corresponds to a radial distance of
five times the reference length and a reduced frequency of
unit magnitude. The approximations were performed not
only for exponentially diverging motions, but also for
harmonic motions and oscillatory motions of exponentially
increasing amplitude.  The expressions of [2] for the
weighted error and the linear system had to be modified to
make this possible. ~ The unknown coefficients were
restricted to be real to be compatible with approximations
for exponentially diverging motion. The approximation is

of the form

F(0) + _)I_ilAi st
G(s) = —=— (1)

where F(s) is the function to be approximated and G(s) is
the approximation. To be able to solve the coefficients
from a linear system the error, i.e. the difference between F
and G, is {veighted by the denominator. The resulting

expression for the weighted error is

ndata m n 9
E =2 l (1+§:Bjskj)fk—f1—2Aiski
k=1 j=1 i=1
ndata n

= ) {(Relf) + ) B; Re(syd i) — Re(f)) = ). A; Re(sy ) )?
k=1 j=t1 i=1

m n

+(Im{fy) + ) Bj Im(syd ) - I(f)) = ) A; Im(s ) )2} (2)
j=1 i=1

From this expression for the error, the linear equations
from which the coefficients are solved are derived by
differentiation of E with respect to each coefficient.

ndata

2 Re(s, ) Re(s}) + Im(sy 3) Im(sy ) }

n
1A
i=1 k=1

- 2 B; { Re(syJ fi,) Re(sy}) + Im(syd 1) Im(skl)}
j=1

ndata
= 2 {(Re(fk) - Re(f))) Re(sy!) + (Im(fy) ~ Im(f,)) Im(skl)} (3)

k=1
from the differentiation of © with respect to A; for 1= 1...n,

and

ndata

EM

Re(s 1) Re(sy! f}) + Im(sy i) Im(sy L £,) }
k=1

m
+ E B, { Re(syd f,) Re(s, b ) + Im(sd £,) Im(s ! £}) }
i=1

ndata

=- 3 {(Re(fk) - Re(f,)) Re(s,! )
k=1

+ (Im(fy) ~ Im(f,)) Im(s, ! fk)} (4)

from the differentiation of E with respect to B, for 1= 1..m.

This formulation will be referred to as the complex
formulation and the formulation of {2] for diverging
motions as the real formulation. Where and error is shown,
it is the root mean square value

¢ = JB/ndata (5)

The selection of the of the
denominator polynomials is clearly a trade—off between the

order numerator and
freedom required to represent the original function and
There
is no reason why the numerator and the denominator
should be of the same order, but it is assumed to be the

case here to limit the number of variables that need to be

roundoff errors in the calculation of the coefficients.

investigated. The roundoff error was investigated by using
both formulations where they are both applicable and by
using single and double precision. The original data was
always calculated using single precision and the 121

approximation of Desmarais [6].
Results

First, were used to

approximate the kernel function for diverging motion by a

the methods described above
fourth order approximation as was used by Hounjet and
Eussen [2]. The original function and the approximations
are presented in figure 1, and the values of the coefficients
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as determined by the the four calculations in tables 1 and 2.
Although the
approximations are all very accurate.

coefficients are very different, the
This indicates that
more freedom was allowed than is actually necessary to
represent the data. The complex formulation was used to
approximate data for harmonic motion, also using a fourth
order approximation. The original function and the
approximations are presented in figure 2, and the values of
the coefficients as determined by the the two calculations in
table 3.

accurate as those presented in figure 1, but there is little

In this case, the approximations are not as

difference between the coefficients calculated using single
and double precision. The approximation to the harmonic
data was also performed using a sixth order approximation.
In this case there was an appreciable difference between the
single and double precision results as presented in table 4,
but both approximations as presented in figure 3 are
fourth
Second order approximations were

improvements on the order approximations
presented in figure 2.
also made to the diverging motion data. The results of the
four calculations are presented in figure 4 and tables 5 and
6. There is little variation in the coefficients, but the
approximations are not as accurate as those presented in

figure 1.

Analytic continuation of the fourth order approximations
from diverging motion to harmonic motion is presented in
figures 5 and 6. Although the agreement of all four
calculations with the direct calculation is good up to
|kr/c| = 0.7 and reasonable up to 2, the variation among the
calculations is considerable and the overall agreement is
poor. The behaviour of the single precision calculation of
the complex formulation is due to an almost imaginary root
of the denominator at kr/c=-0.0088 + i3.8707. The
continuation of the fourth order approximations of the
harmonic data to diverging motion, presented in figure 7,
shows good agreement with the direct calculation up to the
maximum value of |kr/c| considered. The continuation of
the second order approximations of the data for diverging
motion to harmonic motion is presented in figures 8 and 9
and shows that the agreement with directly calculated data
is poor, much worse than the original fit to the diverging

motion data.

Approximations of three different orders were performed at
31 values of 0 equally spaced from 0 to 90 degrees. The
in the
approximation was calculated. Double precision calculation
The

variation of the coefficients and the error

of the complex formulation was used throughout.

variation of the coefficients of the second order
approximation is presented in figure 10, of the fourth order
approximation in figures 11 and 12 and of the sixth order
approximation in figures 13 and 14. The variation of the
error of all three approximations is presented in figure 15.
The random variation in the coefficients decreases with
increasing 0 while the error increases. This is consistent
with the earlier observations. The ideal situation would be
for all the coefficients to have constant values over the

whole range of 0.

To verify that the approximations to geueralized forces
behave in the same way, a simple model of a 45 degree
swept wing with aspect ratio five was used. Two modes
were considered, pitching about mid—chord and parabolic
bending. The generalized force term Q,,, i.e. displacement
mode two and pressure mode one, was approximated.
Fourth order approximations were made using single
precision calculations at 0 values of 0, 3, 6 and 9 degrees.
The coefficients are presented in table 7. 'The results of
using these coefficients o calculate Q,; as a function of k
for diverging motion are presented in figure 16. Despite the
large differences in the coefficients, the approximations are
all quite accurate apart from local deviations in the vicinity
of denominator roots. The same was done for harmonic
motion using approximations at 90, 87, 84 and 81 degrees.
The results are presented in figures 17 and 18 and table 8.
In this case the variation in coefficients is small and all the
approximations are accurate. This suggests that the
approximations to generalized forces behave similarly to

the approximations to the kernet function.
Conclusions

The assumption that any unsteady parameter can be
described by a rational polynomial in s was investigated by
studying approximations of the unsteady subsonic kernel
function. The analytic continuation of the approximations
seems to be valid up to high values of kr/c, based on the
satisfactory continuation from harmonic to diverging data.

Relatively low orders of approximations are required to
approximate the data for diverging motions. Using higher
degrees lead to large roundoff errors. Higher orders are
required for harmonic motions, but roundoff errors are
much smaller. This implies that it is fundamentally
difficult to obtain the coefficients of the higher degree
polynomials necessary to represent the data for harmonic

motion from data for diverging motion.
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The accuracy of the analytic continuations is much better
than one would expect from the results presented in figures
10 to 14. No explanation for this arose from the present
study.

It was shown that approximations to other unsteady
parameters behave in the same way as the approximations
to the kernel function. It would be interesting to subject
the application of analytic continuation to other parameters

to the same tests for reliability as was used here.
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Tables 1 to 8

Table 1 Coefficients of a 4th order real formulation
approximation to diverging motion data
Single precision Double precision
A0 ~1.755929 -1.755929
Al -1.476338 -0.918890
A2 0.061581 0.296288
A3 -0.084753 -0.0565261
Ad 0.019944 0.020295
B0 1.000000 1.000000
B1 1.221243 0.912482
B2 -0.156320 -0.428725
B3 -0.039565 0.029719
B4 0.004647 0.000099
Table 2 Coefficients of a 4th order complex formulation
approximation to diverging motion data
Single precision Double precision
AD -1.755929 -1.755929
Al -0.170438 -1.133942
A2 -0.452986 0.193147
A3 0.046697 -0.066940
Ad -0.027296 0.016396
BO 1.000000 1.000000
B1 0.440550 1.035640
B2 0.015315 -0.326791
B3 0.029264 0.013321
B4 -0.003467 0.000754
Table3  Coefficients of a 4th order complex formulation
approximation to harmonic motion data
Single precision Double precision
A0 -1.755929 -1.755929
Al ~0.577598 -0.584281
A2 -0.122310 -0.123522
A3 -0.012346 -0.012662
Ad 0.000140 0.000139
BO 1.000000 1.000000
Bl 0.631858 0.635822
B2 -0.106269 -0.104490
B3 ~0.003743 -0.004315
B4 0.001352 0.001411
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Table4  Coefficients of a 6th order complex formulation Table 5  Coefficients of a 2nd order real formulation
approximation to harmonic motion data approximation to diverging motion data
Single precision Double precision Single precision Double precision
A0 -1.755929 -1.755929 A0 -1.755929 -1.755929
Al -1.594918 -0.842063 Al -0.173792 -0.175097
A2 2.363206 3.181038 A2 -0.208869 -0.208970
A3 0.715709 0.991180 Bo 1.000000 1.000000
Ad 0.228105 0.292891 Bl 0.399781 0.400860
A5 0.020584 0.027703 B2 -0.056739 -0.056882
A6 0.002149 0.002670
BO 1.000000 1.000000
gé _ii?g‘é;% ggg%%g Table 6 Coefficients of a 2nd order complex formulation
B3 —0:908566 _1:031111 approximation to diverging motion data
B4 0.104160 0.113406
‘B5 0.004099 0.008369 inel isi | i
B6 ~0.000887 0.001435 Single precision Double precision
A0 -1.755929 ~1.755929
Al -0.172762 -0.175116
A2 -0.208790 -0.208971
BO 1.000000 1.000000
B1 0.398930 0.400875
B2 -0.056625 -0.056884
Table 7 Coefficients of a 4th order approximation to Q,, for almost purely diverging
motion
0 0 deg 3 deg 6 deg 9 deg
A0 20.4581 20.4581 20.4581 20.4581
Al -142.9770 -17.4181 -169.3163 59.6590
A2 -45.7469 57.0835 ~26.4926 49.0871
A3 -69.8963 6.5446 -4.7482 -15.8744
A4 54.1931 14.6839 37.0794 10.4362
BO 1.0000 1.0000 1.0000 1.0000
Bl -7.5071 -1.0195 -9.0951 3.0501
B2 0.2407 2.3956 3.3190 ~0.7268
B3 0.0878 -0.0901 0.0054 0.3907
B4 0.5832 0.1845 0.4185 0.0478
Table 8 Coefficients of a 4th order approximation to Q,, for almost purely harmonic
motion )
0 81 deg 84 deg 87 deg 90 deg
A0 20.4581 20.4581 20.4581 20.4581
Al 81.3256 80.3423 80.9829 80.7179
A2 97.4547 94.1549 93.9493 96.9731
A3 24.3588 20.0884 18.4428 24.7064
A4 -9.1733 ~11.3806 -13.2105 -8.1168
BO 1.0000 1.0000 1.0000 1.0000
B1 4.1133 4.0583 4.0940 4.0804
B2 1.5903 1.4419 1.4031 1.5849
B3 ~-0.1022 -0.2161 -0.2943 -0.0613
B4 -0.0976 -0.1147 -0.1297 -0.0890
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Figure 1  Fourth order approximations to the kernel

function for diverging motion using the real and complex
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