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Abstract

In this paper,longitudinal equations of distur-
bance motions acting with unsteady aerodynamic
forces are derived. A method of analysis of the
effect of aercelasticity on the dynamic stability
of elastic vehicles by using a simplified mathe-
matical model of unsteady aerodynamic forces is
proposed. Synthesis of optimal design of the active
control system is studied from the point of view
for coordinations of design of active feedback
control,choose of positions of control surfaces
and sensors (gyros) locations from the stand point
for the efficient suppresion of elastic vibration
of the vehicle. Moreover,method of quantitative
analysis of the coupling characteristics of elas-
tic vehicles is developed.

I. Introduction

For studying the stability problems of elastic
vehicles, some literatures (1), (2) consider the
elastic vehicle as a combination of a rigid vehi-
cle and elastic modes link. This kind of model
neglects the aerody-namic coupling effect between
the rigid vehicle and elastic modes. Other lite-
ratures such as (3), (4) consider the aerodynamic
coupling, but the mathematical model is based on
steady motion with consideration of steady aero-
dynamic forces only.

Maneuvering flight, transient motion during
actuation of control surfaces,and flight in gust
wind of vehicles all belong to unsteady flight
conditions. In these cases, aerodynamic forces
acting on vehicles should be considered as unstea-
dy aerodynamic forces,which depend not only on the
instantaneous values of motion parameters,but also
on their time history of variations. For elastic
vehicles,aerodynamic forces due to elastic vibra-
tions of vehicles are also unsteady in characters,
therefore unsteady aerodynamic forces must
be well considered therein.

So far didn't exist very appropriate
mathematical model for the consideration
of unsteady aerodynamic forces for the
analysis of dynamic characteristics of the
unsteady motion of elastic vehicles. In
this paper,we utilize the concept of the
"indicial function" to establish practical
mathematical model for the consideration
of unsteady aerodynamic forces. Thus, by
using Duhamel's integral,the incremental
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1ift,pitching moment,and generalized force can
be obtained with the help of indicial functions
corresponding to unit step increases of angle of
attack, angular pitching velocity and modes of
elastic vibrations of vehicles. Then the longitu-
dinal equations of disturbance motions with unstea-
dy aerodynamic forces and n-orders of elastic mo-
des considered can be expressed in the form of the
integral-differential equations.

Thus far very few literatures concerned with
the coordinative design of active feedback control
and chocse of positions of control actuators and
sensors (gyros) . In this paper, synthesis of the
optimal design of active control system is dis-
cussed from the point of view for coordinations of
design of the active feedback control,choose of
positions of control surfaces and of sensors (gyros)
from the stand point for efficient suppression of
elastic vibrations of the vehicle. Furthermore,
sensitivity factor is introduced in the index fun-
ction, so that robustness of the active control
system to variations of flight parameters well be
improved.

In order to investigate the dynamic behavior of
vehicle in view of coupling effects, a method is
developed for gquantitative analysis of the coup-
ling characteristics of elastic vehicles.

I. Equations of Unsteady Disturbance Motion
of Elastic Vehicles

In general,the elastic vibrations of flight
vehicles consist of bending of wing, torsion of
wing, and bending of vehicle body along the longi-
tudinal axis.

The equation for elastic bending vibration of
wing may be expressed as:

2 2 ?
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For elastic torsion of wing:
2
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For elasticabending vibration of vehicle body:
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In these equations,y(z,t), ¢(z,t) / f(x,t) show
bending deflection, torsion of wing,and elastic
bending deflection of vehicle body along the longi-
tudinal axis; Y(z,t),M(z,t), Y, t)- aerodynamic
loading i.e. unsteady aerodynamic force on wing,
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moment about elastic axis of wing, and unsteady
aerodynamic force acting on vehicle body; F_(z,t),
Mg(z,t), Fg(x,t)— their corresponding aerodynamic

loadings due to external disturbance; Y . (t)-force
acting on half stabilizer at x=x ,_; Yz- centrali-
zed force acting on control surface at x= xy; 6(@) -
distance from c.g. of wing profile section to the
elastic axis of wing; EJ(Z),GJ (2) ,EJg4 (x)-bending
rigidity,torsion rigidity of wgng along z- axis,
and bending rigidity of vehicle body along x-axis
respectively; m(z)-mass of wing, mg(x)- mass of
vehicle body. All the above distributed forces

and masses are referred to units "per unit length"
§ - Dirac function.

For most of space vehicle,the body is of slen~
der shape, with small aspect ratio.The predominent
elastic effect for this type of vehicle is elastic
bending of vehicle body along the longitudinal ax-
is. In the following, we deal with this
type of vehicle mainly for longitudinal motion.

Let the elastic bending deflection of the vehi-
cle' be expressed by:
N

tay= L @& 0

lo =1

(2.4)

where ¢.(x) are functions of elastic modes, and
73(t) aré the generalized coordinates.

The equations of unsteady disturbance motions
of elastic vehicles with unsteady aerodynamic
forces and elastic modes considered may be exp-

ressed in the form of Duhamel's integral:
&(t) *J 3 [1(t~r)X(r)dr
=AY(t)4th (t-r)U(r)dr+Bu(t)
’ 0-2

(2.5)
Here state vector X{t) includes state variables
for motions of vehicle— velocity U, angle of at-
tack<(,pitching velocity g, and generalized coordi-
nates iz.(t), and their derivatives, u(t) is con-
trol variable, e.g. control surface deflection
d(t), A- coefficient matrix, B- control matrix,
Il, 12— unsteady parts of aerodynamic forces and

moments expressed as indicial functions.

Longitudinal equations of disturbance motions
with unsteady aerodynamic forces and n~ orders of
elastic modes considered are expressed as follows:

M, (Va = W)= [ WEOHRY (t - 1)dr + [, d@H} ¢ - )de
+ gf;ﬁ,(t)H:,' {t—o)dr + éj’;;i(f)ﬂg (t~1)de
+ W @B (- odr+ [ W (HL (t—1de
+ L SHY (¢ - v)de

(2.6)
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Tod= [, WEH (t — vde + [ gOH? (t - v)de
+ ‘):‘J;ﬁi(r)H;; (t—v)de + Zj;r;i(r)Hf“ (t—)ds
+ I; W’ (r)H::.' (t—1)de + f; Wn(r)H:;‘ (t—t)dr
+ [ 8H] (t— 1)

(2.7)
; . .
M 2o+ opn = —(, W(OHY, (t—0de
T, X t
+] AOHY, (t—nde+ Y Joﬁi(r)H:,‘o, {t—v)dr
i =1
-
+'Z‘I;m<r)H$;°J<t—r)dr+J;Wy(r)H§’g; (-nae o
- i 2.

I W @HGS (6= 0)de+ [, S0HY, (- )]
(i =1,2,5,N)

where W- punching velocity ( W= UX), H(t)-indici-
al functions of the whole unsteady aerodynamic

forces or moments for unit step increases of angle
of attack, pitching velocity, generalized coordi-
nates etc.,with their corresponding unsteady part

I(t); e.qg. Hf&t)- unsteady aerodynamic force for

unit step increase of 7i, and I&Xt)— its corres-
ponding unsteady part. -

M. Simplified Mathematical Model

For the convenience of calculation, we put the
longitudinal equations of disturbance motions in
Laplace transform in standard matrix form in order
to be easy to use the standard computer programs.
In doing this,we use polynomial exponential func-
tion expressions to represent the above indicial
functions in the time domain, then the correspond-
ing Laplace transforms are rational fractions.

In general, we may take e.qg.

2 -b.t
Wiy =Y (lL+S>ae i)
Y v izo *

When only one term of exponential function is
introduced, i.e.

W " Ve = oy
Hym Y, (A% agertn I lt)=ay .o
take Laplace transform
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then we have the relation between the unsteady ae-
rodynamic coefficient HY and the corresponding
steady aerodynamic coefficient Y in Laplace tran-
sform: ’

as + b

RIS =

which corresponds to consider the unsteady tran-
sient process as nonperiodic character.

If two terms of exponential expression are
considered, then
e52+fS+ g

w = 7—‘2——
HY(S)' Y s%7cs +a

As a preliminary calculation, we choose one
term of exponential expression for the unsteady
aerodynamic coefficients, and take bi: b, then the
corresponding Laplace transforms for equations(2.5)
(2.6),(2.7) will be:
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+[~w:"§":b’ ’71*’[7.},":5‘1':2)—' N+ F

d,S+b

i §+b"l)

(=1,2,3) (3.3)

In equations (3.1),(3.2),(3.3), only the first
three elastic modes of the vehicle are considered.
Finally we may obtain the linear system of

equations of states ln matrix form:

A(s) A(s),W gs),&s S ERACY
ﬂﬁs) 23 7235) —EIS )+ E 3\

where Z&(s) is the coefficient matrix for the
left side.

3.4)
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Iv. Stability Analysis

In order to analyse :the stability of the elas-
tic vehicle, we must solve the characteristic
roots of the matrix determinant:

1A ts) |

In equation (3.4), if we choose b=eC, a;=c, =

(4.1)

=di=ei=fi:l’ it corresponds to case with steady

aerodynamic forces.

For an investigated vehicle, the characteris-
tic roots with 3-modes of elastic vibrations con-
sidered have been calculated respectively for case
with steady aerodynamic forces, and for case with
unsteady aerodynamic forces considered.

A (unsteady) B(steady)

-3.546134. 7770
-4,5844321,192/
-31,47 2761 22i
-20,646+1177,87¢
(-0, 0, 0, 0, 0, 0

-3.012434,960¢
-4,929+321,10i
-32.244760, 2i
-20,584+:1178 ,0¢

(-598.,2, 0, 0, 0,1627x10"%!
40,1627 % 10771)

For the complex roots of these two cases, the
the first pair corresponds to natural short pe-
riod motion, 2,3,4-th pair roots correspond res-
pectively to first, second, third modes of elastic
vibrations of the vehicle. From data, we see for
the investigated vehicle the consideration of un-
steady aerodynamic forces has some effects on the
magnitudes of amplitudes and frequencies of the
elastic vibrations of the elastic vehicle. More
calculations show the effect is more serious in
transonic flight.

V.Synthesis of Optimal Active Control S =tem

We now consider the optimal design of active
control system.

Let the equations of state of the elastic ve-
hicle in closed loop system be expressed by:
= AX + BU
= CX (5.1)
= KY

[ I

If there are m— active control surfaces situ-
ated along the longitudinal axis of the elastic
vehicle at x = s,,5.,8.,...5_, then the correspo-
nding deviations™of “thé control matrix B:

=(by by by...b)

due to deviations of the positions of active con-
trol surfaces are

by 3Py B0, 3b
_ _”l . Toma N
dB = @ sl ax ’bx (&,3)...%}( (sm)l/

+ diag ('dsld52d53d54..dan

]

Bx.ds (5.2)




Furthermore,if there are L-sensors(rate gyros)
situated at x = r ,r2,r ;e 2., the corresponding
variations of the obSerVation matrix

(.mTT  T3T
c -[ C,CCy -0 ] (5.3)
will then be
dry r;%l(rl)w
dr, .
ac = . : i = dr.C
! .. c X
! Tt ||y
~ B (5.4)

We treat the optimal active control synthesis
for suppressing elastic vibrations as follows:
i,e. we need to find factor K of the feedback
control, positions of control surfaces s =

(51’52’53"'sm) and positions of sensors (gyros)

...rl), so that index function

T o(EeTyiTy
J = %JIT‘%TQ X + U'R U)dt (5.5)
to be minimum.? .

Since X contains state variables?, 77, rela-
ting to elastic vibrations,therefore the “above
criterion is in some sense related to the suppre-
ssion of the elastic vibrations of the vehicle.
(see fig.l,2)

The following relations can be obtained final-
ly after some tedious derivations:

dg T T T T

3% = RKCT) '+ BIP) Ty \C (5.6)
A _ ain inT T

g = vaiag (8P, Ty,C K ] (5.7)
. T T . T.T T

S = vaiag (K'RKCT  Clv KB PllTlle](s .

in which Tll’ Pll satisfy Lyapunov equations:
T -
(A+BKC) P11+P11(A+BKC)+Q =0 (5.9)
(A+BKC) T11+T11(A+BKCT+I =0 (5.10)
and \
I ©
Vm“(o J

With g%, .g-g— ,%%, by applying the usual optimi-
zation methog with constraints, we can find opti-
mal values K*,s*, r*, corresponding to J=min. For
our investigated vehicle, we have after 80-th
optimization search:

g = (0.2776 0.2452 0.23331
-0.2069 -0.0914 -0.0492

1f sensitivity factor e =dX/df is introduced
in the index function, wnere f is parameter con-
sidered, then

&G
J = %?;{(XTA X + U'R U +e's e)at  (5.11)
(1]

let it be called LQS(linear quadratic with

sensitivity) feedback design as compared with the
former case IQR(linear quadratic regulator}.The
resultina IS control system will be less sensi-
tive to external parameters f (e.g. flight Maxa
No., height), i.e. the robustness of the active
control system for case LQS is improved as com-
pared with case IQR as calculations indicated (see
fig.2) for different M.
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Vi . Dynamic Coupling of Elastic Structure with the
Control System

We now turn to consider the dynamic coupling »f
elastic body with the control system.

For Simplicity, we consider the guasi-steady
case, and the equations of state of elastic vehicle
in closed loop system are expressed by the superpo-
sition of vehicle body motion plus elastic vibration
of the vehicle:

xl= Alxl+ BIB (6.1)
Yl= Cle. . (5.2)
xl=}w 9 9 {6.3)
. . I
Mg n#DyM+Kyh=——PV?Q(t)+Hy3 (t)
2 (6.4)
T2 =0Ca2%, (6.5)
. . ° T A « T
Xea=01 neeeslpm, ngees ) =0 n)
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Us—KY (6.6)
Dutput of sensors: Y= Y1 +Y ;= CyX;+C X,

f’ N
01 01, ' (Xgp) 0 ",
= 5 -
00 1) 0 ' (Xgpd) | n

where Xsp_ position of angular senzor, (6.7)

L ¢ o positior of amgular velocity sensor,

s
and (6.8)

3=u+Beoom
in which 8 o ComtEnd signal.

Then

=(k; kyJ)C Xy+ks$ ' (Lgp)Mtk,$' (Xgrdu,

+3conm (6.9)
Substituting expression 3 into equations of
state of the elastic vehicle in closed loop system,

we can get finally:

K(S)X(S)::BBCOID(S) (6.10)
where '

Azi(s) Aiz(s)] X (S)\- /31]
A(s)= - 1 —
P Aaae) ) <1 [’h(s)J,B—LHB,
inw?i(g?= SI—-A;+B;(ky k;)Cy

Aga(9)= (B k8" (Xgp)+B k8" (Xsr) S
Ay g(s)=MyS2+(Dy~Hyk,9' (Xgr) s+ Q(s)
Agi(s)=Hglk, k3] Cy +H(Ky-Hpks8 ' (Xsp)

Then we can get the following conclusion:

The stability of the whole elastic vehicle in clo~
sed loop system will be determined by matrix A ins-
tead of matrix A,. Therefore,even if the rigid vehi-
cle system is stable, the whole elastic vehicle in
closed system may be unstable due to coupling of the
elastic body with control system.Only under suitable
choises of positions of sensors(X_,X )and actuator
(Hy) ,and feedback coefficients k. rk ?rthe whole

I
elastic vehicle system will be s%ablg.
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