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Abstract

A new method is proposed for the numerical thermal
analysis of three-dimensional large truss-type space struc-
tures exposed to solar radiation. Orthotropic truss mem-
bers with a closed thin-walled cross section of arbitrary
shape are considered. Three-dimensional thermal effects
are taken into account in the analysis. In the proposed
method, the governing equations are first put into a weak
form. Then the Galerkin finite element method is applied
with respect to the axial coordinate of each truss mem-
ber. The circumferential variation of the temperature is
treated by a symbolically-coded harmonic balance proce-
dure. The interaction between the various truss members
is controlled by an iterative scheme. The numerical ex-
amples include a comparison of the results obtained for a
three-dimensional model and those obtained by standard
one- and two-dimensional analyses.

Introduction

Thermal computational analysis has become an essen-
tial tool in the design process of large truss-type space
structures. The thermal problems involved are usually
highly nonlinear due to the presence of thermal radiation
and nonlinear material behavior. In addition, the three-
dimensional discretization of a large space structure would
typically require a very large number of degrees of free-
dom if accurate results are desired. For an overview of
the factors involved in this type of analysis see e.g. Refs.
1-3. Methods have been devised for the one-dimensional
thermal analysis of space trusses,(*%) and for the two-
dimensional (cross-sectional) analysis of frame and truss
structures.(7#) The review paper by Pinson{®) should also
be consulted.

The underlying assumption in a one-dimensional ther-
mal analysis is that the temperature variation within the
cross section of any of the rods comprising the structure
may be neglected in comparison with the variation along
the axial direction of the rod. This assumption is justified
for space structures composed of sufficiently slender rods
and made of thermally high-conductive materials such as
metals. If one proceeds to compute the elastic deforma-
tion and stresses generated by the temperature field thus
derived, the structural response in terms of tension, com-
pression and buckling of various truss members can be ob-
tained.
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A different approach is based on a two-dimensional
analysis, and in a sense is complementary to the pre-
vious analysis. This approach starts from the assump-
tion that the temperature variation along the axial direc-
tion of each rod is negligible with respect to the variation
through the cross section. This assumption has been shown
to be appropriate for structures with slender thin-walled
members made of laminated composite materials such as
graphite/epoxy.(1%) This type of response in a fiber/matrix
material originates from the low thermal conductivity of
the material in the axial direction. The temperature vari-
ation through the cross sections of the structural members
produces in turn elastic bending. The corresponding dis-
placements and stresses can be obtained by performing a
structural analysis on the basis of the results from the ther-
mal analysis.

The present paper proposes a numerical procedure for
the three-dimensional thermal analysis of truss-type space
structures. This means that both the axial and cross-
sectional variations of the temperature are taken into ac-
count. The proposed procedure makes an effective tool for
the analysis of both metallic and composite space struc-
tures with either long or short members. It can also be
used as a first step in a detailed three-dimensional ther-
moelastic analysis.

A straight-forward use of a standard numerical
method, such as the finite element method, for the solu-
tion of the governing equations in the three-dimensional
domain defined by the structure, typically requires a very
large computational effort, due to the tremendous number
of degrees of freedom involved (See e.g. Chin et al.(11)),
To avoid this aspect of the analysis, a special procedure
is adopted in this paper. First, the governing equations
are put into a weak form. Then a Galerkin finite element
discretization is applied, but only with respect to the azial
coordinate of each truss member separately. This results
in a non-standard finite element formulation. The circum-
ferential variation of the temperature is decomposed spec-
trally, and the Fourier coefficients of this decomposition are
found by a symbolically-coded harmonic balance procedure
developed in Rand and Givoli.('2) Finally, the interaction
between the various truss members is controlled by an it-
erative scheme, (13)
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The numerical examples presented here demonstrate
the performance of the proposed method, and include
a comparison of the results obtained by the three-
dimensional analysis to those obtained by the correspond-
ing one- and two-dimensional models. This comparison
shows that in some situations one- and two-dimensional
analyses do not provide sufficient or accurate information
on the temperature distribution, and a three-dimensional
analysis is thus required.

Finite Element Formulation

Consider a composite truss-type structure where each
truss member has a uniform thin-walled closed cross section
of an arbitrary shape. Fig. 1 shows a typical member in
the structure. The axial coordinate is denoted £, and the
circumferential coordinate along the midline of the thin
cross section is denoted s. The latter coordinate starts from
an arbitrary point on the midline and measures arclength
along this line. The maximal value of s, namely the cross
sectional perimeter, is denoted p. The member’s length is
L and the thickness of the cross section is . The exterior
surface of the rod is exposed to solar radiation.

Some simplifying assumptions are made in the present
model. The edges £ = 0 and £ = L are assumed to con-
verge geometrically to fit into the joints which connect the
rod to other structural members. In these edges the cross
section is characterized by a single temperature, assumed
to be identical for all the rods connected to the same joint.
In other words, the joints are considered perfect conductors
and lacking any heat capacity. In addition, it is assumed
that two usually weak effects can be neglected, namely heat
exchange through radiation between different truss mem-
bers, and the thermodynamic influence of the elastic strain
rate on the temperature field.

The equation of steady-state heat conduction and radi-
ation which holds in the three-dimensional domain defined
by the rod is

V- (#Vu)—Cput+g=0. (1)

Here u(¢,s) is the temperature, & = [k;;] is the thermal
conductivity tensor for the anisotropic material under con-
sideration, Cp is the radiation coefficient, and ¢ is the given
solar incident flux. The coefficient Cp is given by

o€
Cr=— (2)
1
where o is the universal Stefan-Boltzmann constant, and ¢
is the surface emissivity of the member. The incident flux
q is calculated by

afs) = LeLele) g (3)
Here gsun is the absolute value of the solar radiation vec-
tor, o is the surface absorptivity, 3, is the “view factor”
associated with the orientation of the rod with respect to
the solar radiation vector, and §,(s) is the “view factor”
depending on the direction of the normal T2 to the outer

surface of the cross section at each point on the surface.
(See Fig. 1.) Both “view factors” can have values between
zero and one.

solar radiation

Figure 1. A typical member in the structure, exposed to
solar radiation.

Equation (1) is supplemented by two boundary condi-
tions at the edges £ = 0 and ¢ = L and also by the require-
ment that the temperature u(¢, s) is a periodic function in
s with period p. The two boundary conditions at the edges
are Dirichlet conditions, namely

u(0,s) = T4 ; u(L,s) =Ty (4)

where T and T3 are regarded, for the time being, as given
temperatures.

For simplicity, it is further assumed that the conduc-
tivity tensor K in (1) has its principal directions along the
¢ and s axes. In other words, the composite fiber-matrix
configuration of the rod is such that each rod is associated

“with two effective conductivities: the axial conductivity re

and the circumferential conductivity &,. Also, it should be
noted that for thin-walled members the exact shape of the
cross section is irrelevant as far as heat conduction is con-
cerned; the detailed cross sectional geometry is important
only for the determination of the radiation view factor 3,
in (3). In this light, the first term in eq. (1) becomes

8 Ou 8 Ou
V- (kVu) = 5 (IﬂE%) + 55 (EQE> . (5)

Now the Galerkin finite element is applied to egs. (1)
and (4) with respect to & only. Thus, each rod is divided into
one-dimensional finite elements in the £ direction, whereas
variation with respect to the variable s remains continuous.
This results in the following system of ordinary differential
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equations in the variable s:
Md,.(s) + Kd(s) + R (d(s)) = F(s)  (6)
where
M = Allime

€

N, :
R = A e ;

K = ANt ke )
F=afe.

Here N, is the total number of elements in the rod in the ¢
direction, Ai&’l is the assembly operator, and e, k¢, 7€
and f¢ are the element matrices and vectors corresponding
to the global matrices and vectors M, K, R and F.
The subscript ss in (6) stands for the second derivative
with respect to 5. In (6), d is the global solution vector
containing the nodal temperatures, and R is the radiation
vector which depends nonlinearly on d (see (10) below).
The expressions for the element matrices and vectors are:

my = — N, ks Np dE (8)
QE

f= [ Mg 9)
New 4
re = / N, Cr (ZTW)N;,(s)) i (10)
Qe b=1

Nen
fiZ/ Na.qdé—ZTlfkab (11)
i b=1

Here Q¢ is the element domain, N, is the element shape
function associated with node a, N, is the number of ele-
ment nodes, and

fe=1landb=1

Ty
Tf={T, ife=N,andb=N,, - (12)
0 otherwise

The prime in (9) indicates differentiation with respect to

¢

The finite element matrix formulation (6)—(12) is
clearly non-standard is some aspects, although it has a re-
markable resemblance to the standard semi-discrete formu-
lation in the one-dimensional time-dependent case, where s
is analogous to {ime (see e.g. Hughes.(!*)) Explicit expres-
sions for (8)-(11) for a specific choice of shape functions
can easily be obtained. For example, in the case where
Nen =2 and N, (a = 1,2) are the linear shape functions,
and assuming that «, has the constant value &§ in element
e, eq. (8) gives

. keh® 2 1
m :'T[l 2] (13)

where h® is the element length. Fuller details on the finite
element formulation can be found in Rand and Givoli.(13)

The Harmonic-Balance Procedure

The solution of the system of ordinary differential
equations (6) has to be considered next. The method of

solution of this system is based on the spectral method
devised by Rand and Givoli®® in the time-periodic one-
dimensional context. In this method, each s-dependent
function in (6) is decomposed, using the discrete Fourier
transform, into a finite number of harmonics, N, and the
Fourier coefficients are found using a nonlinear harmonic
balance analysis.

To be more specific, consider any vector g(s) appear-
ing in eq. (6). This vector is approximately represented by
the finite Fourier expansion,

N
g(s)~go+ Z(gcn cosng + gynsinng) . (14)

n=1

Here go, gcn and g,n (n = 1,..,N) are real constant
vectors, and ¢ is the circumferential angle defined by
¢ = 2ns/p. All the variables in eq. (6), namely all the
entries of the vectors d, R and F', are expanded via
(14). The Fourier coefficients Fy, F,, and F}, associated
with the thermal load vector & are found using a Fast
Fourier Transform (FFT) scheme. All the calculations in-
volved have been performed symbolically by the computer
code itself. We have used the symbolic manipulation pro-
gram described in Ref. 12 which is particularly suitable for
harmonic-type calculations.

After the Fourier expansions of d, R and F are sub-
stituted in (6), one obtains a nonlinear coupled system of
algebraic equations for the unknown coefficient vectors dy,
d., and d,,. Again, the formation of all these algebraic
equations is performed symbolically by the code(*®), The
algebraic system of equations thus obtained is solved via a
modified Newton-Raphson iterative procedure.

Joint Temperature Updating Scheme

In the solution procedure outlined above for the tem-
perature variation in the { and s directions it was assumed
that all the joint temperatures were given. These joint
temperatures were used in the boundary conditions (4) pre-
scribed at the edges of each rod and appeared in the finite
element formulation in (11), (12). However, the joint tem-
perature are in fact unknown, and therefore an iterative
scheme is needed to update them. The scheme starts from
an “initial guess” for all joint temperatures. Based on these
data, the finite-element spectral analysis is performed for
each rod separately, and the temperature field in the en-
tire structure is found. Next all the joint temperatures are
updated, according to the guidelines given below, and the
finite-element spectral procedure is repeated. This yields
a better solution, on the basis of which the joint temper-
atures are updated again, and so on. This process stops
when convergence is achieved, namely when the differences
between joint temperatures obtained in two successive it-
erations are sufficiently small.

The scheme adopted here for updating the joint tem-
peratures is as follows. Consider a certain joint which con-
nects together J rods. It is clear that the net amount of
heat flux entering the joint from all J rods must be zero.
This can be stated by
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J *

Z/ nf% dd; =0, (15)
j=174i

where A; is the cross-sectional area of rod j, and u* is the
approximate solution near the joint obtained by the finite-
element spectral method. Now for the thin closed cross
section considered here we have dA; = (¢;p;/27)d¢, where
t; and p; are respectively the thickness and perimeter of
rod j. Also, we replace Ou*/J¢ by the finite difference
approximation (u*|¢e=a; — U) /Aj. Here Aj is the length
of the first finite element belonging to rod j and starting
from the joint, and U is the value of the temperature at
the joint, which is common to all the rods 7 = 1,...,J.
For simplicity we assume that x¢ in rod j has the constant
value k¢; in the first element near the joint.

Now recall that u*(¢, ¢) is composed of NV ¢-harmonics
as in eq. (14), l.e.:

N
u® =ug + Z(u:n cosng + ul, sinng) .

n=1

(16)

Only the zeroth-order harmonic u§ will contribute to the
integral in (15), the average of all higher harmonics being
zero. Thus (15) gives

J

$° LRI (4o n, - U) =0
- Aj 0lé=A;

ji=1

(17)

Eq. (17) can be solved for the joint temperature U, i.e.
J
2= (tipinei /D) ugle=a,

U= i
D=1 tipirei/ A;

(18)

This formula holds for every joint separately. Thus, eq.
(18) is used for updating all the joint temperatures on
the basis of the results obtained from the preceding finite-
element spectral analysis.

Various numerical experiments show that the iterative
procedure outlined above which incorporates the updating
formula (18) converges rapidly if the initial guess for the
joint temperatures is reasonably close to the exact solu-
tion there. However, when the initial guess is significantly
different from the exact solution the process may diverge.
This divergence can be prevented by limiting the allowed
change per iteration for each joint temperature.(!)

Numerical Examples

We first consider the graphite-epoxy parabolic dish
structure shown in Fig. 2. The thermal and geometri-
cal data are: a = 0.28, By = 1, ¢ = 0.015m, gsun =
1300W/m?, k; = &, = 10.1W/m °K, and Cr =9.1.
107"W/m?® °K*%. The radii of the inner and outer rings
are 5m and 20m, respectively, and the depth between these
rings is 6m. The global cartesian coordinate system z—y—=z
is introduced as shown in Fig. 2. All the truss members
have a thin circular cross-section of radius 0.lm. Each
member in the structure is divided into seven finite ele-
ments with linear shape functions. These elements are not
equally spaced, but rather graded using a cosine distribu-
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Figure 2. The parabolic antenna dish model.

tion in which the density of the elements is larger near the
two edges than in the middle of the rod. In Fig. 2 the
rods numbered 1, 16, 22 and 61 are indicated for future
reference. We use 12 harmonics in the Fourier expansions
of all the variables.

The solar radiation points in the —z direction. The
dish is assumed to have a constant orientation with respect
to the radiation vector, or else its orientation is assumed to
change in time sufficiently slowly so that the response can
be considered quasi-steady. We use the procedure proposed
previously to obtain the three dimensional distribution of
temperatures in the structure. Based on the results of this
analysis, Fig. 3 shows the average temperature in the cross
section (u§ in eq. (16)) as a function of the axial coordinate

¢ for rods 1, 16, 22 and 61. Fig. 4 shows the temperature

distribution around the cross section for the middle sec-
tions (§ = L/2) of rods 1, 16, 22 and 61. The results
demonstrate that the position of the rod in the structure
and its orientation have a significant influence on the tem-
perature distribution both in the axial direction and in the
circumferential direction.
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Figure 3. Three-dimensional analysis: average cross-
sectional temperatures along the axes of rods 1, 16, 22 and
61.
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Figure 4. Three-dimensional analysis: mid-rod tempera-
ture along the cross-sectional perimeter of rods 1, 16, 22
and 61.

Next we compare the results obtained above to
those which may be obtained by simpler one- and two-
dimensional analyses. The one-dimensional approach ig-
nores temperature distribution through the cross section.
The results for the temperature as a function of the axial
coordinate £ for rods 1, 16, 22 and 61 obtained from a one-
dimensional analysis turn out to coincide with those for
the three-dimensional average temperature shown in Fig.
3. This is in fact expected since the one-dimensional model
is supposed to describe the average behavior in the cross
section of the three-dimensional model. However, the one-
dimensional approach does not provide any information on
the cross-sectional temperature variation.

Finally we consider the two-dimensional approach,
which assumes uniformity of the temperature field in the
rod axial direction. In Fig. 5 the temperature around
the cross section (at any location) of rod 61 obtained by
the two-dimensional analysis, is compared to the temper-
ature distribution obtained by the three-dimensional anal-
ysis around the cross sections at eight locations of rod 61.
These eight locations on the axis of the rod are the locations
of the finite element nodal points. It is apparent from Fig.
5 that the two-dimensional distribution coincides with the
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PFigure 5. Comparison between the temperature distri-
bution along the perimeter of rod 61 as obtained by the
two-dimensional analysis and that obtained by the three-
dimensional analysis at eight axial locations.

three-dimensional distribution at nodes 3-6 (in the central
region of the rod), but that at the other four locations the
results of the two analyses differ significantly. Moreover, in
the two-dimensional approach information regarding the
variation of temperatures or thermal stresses in the axial
direction is unavailable.

As a second example, we apply the numerical method
to the multi-bay structure illustrated in Fig. 6. The global
Cartesian system of coordinates (z,y,2) is also shown in
the figure. All the members have a thin-walled circu-
lar cross section of radius R = 0.0045m and thickness
t = 0.00lm. The global dimensions of the structure are

2mx2mx5m. The thermal material properties are: a =
0.018, kg = K, = 10.1W/m °K, e = 9.1 - 10~ 1"W/m?°K*.

The structure is exposed to solar radiation of magni-
tude gsun = 1300 W/m?, directed in the —z direction. The
structure material is opaque and self-shadowing effects are
taken into account. Thus, half of the entire structure and
also half of the outer perimeter of every cross section are
hidden from the incident heat flux. As before, each mem-
ber was divided in its axial direction into 7 finite elements,
using a cosine-type distribution. In the harmonic-balance
procedure used in the circumferential direction, the first 12
harmonics were taken into account.

As already mentioned half of the structure is in the
shadow. However, one should note that the 10 members
lying in the ¢ = 0 plane (arranged in two columns of
five members each) are exactly on the boundary line be-
tweent the exposed and hidden regions of the structure.
Whether they are themselves exposed or hidden is there-
fore extremely sensitive to small geometrical perturbations.
Here we consider two cases: the symmetric case in which
both columns of beams are exposed to the sun, and the
asymmetric case in which only the left one (see Fig. 6) is
exposed whereas the right column is hidden.

Figure 6. A multi-bay frame structure, exposed to solar
radiation coming from the z direction.
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Figure 7. The temperature distribution along the right
column of beams at ¢ = 0° and ¢ = 90°, in the symmetric
and asymmetric cases.

Fig. 7 shows the temperature distribution along the
right column of beams at two cross-sectional circumferen-
tial positions, namely at ¢ = 0° and ¢ = 90°. Results
in both the symmetric and asymmetric cases are shown.
In the latter case the right column is entirely in the shade
and hence the temperature is circumferentially uniform. In
the symmetric case, the temperatures at the two circum-
ferential locations differ by more than 10°K. The average
temperature in the asymmetric case is smaller by about

70°K.

Concluding Remarks

In this paper we have proposed a special numerical
procedure for the solution of thermal problems of truss-
type space structures, which takes into account three-
dimensional effects. The proposed method avoids the need
for a large number of degrees of freedom which is typi-

cal when using the standard finite element and finite dif-
ference methods in three dimensions. It was shown that
in some situations one- and two-dimensional analyses do
not provide sufficient or accurate information on the tem-
perature distribution, and a three-dimensional analysis is
required. Another important advantage of the proposed
method is that it can serve as a first step in producing

detailed three-dimensional thermoelastic information. See
Ref. 13 for fuller details.

An important addition to this work would be the ex-
tension to the dynamic case, and in particular to the case
of periodic motions. It seems that an application of the
harmonic balance procedure with respect to both the cir-
cumferential coordinate (s) and time (¢) may be beneficial.
We hope to report on progress in this direction in the fu-
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