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ABSTRACT

This paper presents a Finite Element Tool, which has been
adapted to the requirements of integrated thermal and me-
chanical analysis of structures. Thus, nonlinear and insta-
tionary heattransfer as well as nonlinearities of the mecha-
nical system are considered. The associated basic equations
are given. To increase the efficiency of this finite element
approach, adaptive grids and sophisticated linear and non-
linear solution algorithms are used. The general strategy
is briefly outlined. Examples of instationary and nonlinear
problems with special respect to mechanically and aerother-
mally loaded structures demonstrate the capabilities of the
Finite Element Tool.

INTRODUCTION

The structure of vehicles cruising at hypersonic speed is
not only exposed to mechanical loads but also to inten-
sive aerodynamic heating. Apart from the selection of ma-
terials, which withstand such temperatures, the main in-
terest is foccused on determination of additional thermal-
mechanical loadings by reasons of thermal stresses or deg-
radation of material properties leading to a significantly re-
duced structural performance. Thus, the knowledge of the
thermal state becomes essential for the structural analy-
sis, which therefore includes the computation of heattrans-
fer with respect to conduction, convection and radiation.
Especially at high temperatures, radiation is one of the
main heattransfer phenomena. In the mechanical part, this
paper concentrates on thermal stresses resulting from an
increasing temperatures as well as temperature gradients
combined with a mechanical analysis considering nonlinear
deformations and buckling. The structural design requires
eflicient tools for the multidisciplinary task : an integrated
thermal and mechanical analysis [1].

INTEGRATED
THERMAL-STRUCTURAL
ANALYSIS

Traditionally, an aerodynamicist assumes a rigid isothermal
or adiabatic body in order to predict the surface pressure
and heating rate. The aerodynamic heating rate is used
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Fig. 1: The structural problems in hypersonic airplane
design

to compute the temperature distribution inside the struc-
ture by a heat transfer analyst. The structural engineer
uses temperature distributions and aerodynamic pressures
as inputs to predict the structural deformations and stres-
ses. Such an independent approach requires several itera-
tion loops between the different analysis methods and is
therefore relativly inefficient as the incompatible mathe-
matical models require extensive postprocessing for data
transfer. Moreover, the interdisciplinary couplings and in-
teractions are difficult to handle, because the iterative pro-
cess calls not only for several additional solutions, but also
for remodelling in each analysis.

To avoid these disadvantanges, an integrated thermal strue-
tural analysis is inevitable. Integrated thermal-structural
analysis means the efficient analysis of coupled thermal
and mechanical problems with one tool. The simultaneous
handling of the thermal and structural problem with one
computer-code eliminates not only the restrictions, addi-
tional computations and complex data-exchange procedu-
res of the traditional methods, but allows the application
of advanced analysis strategies with wellsuited methods for
different aspects with significant reduction of computatio-
nal effort at a desired high accuracy.

In case of a Finite Element Procedure the use of the same
grid for the thermal and mechanical analysis heavily redu-
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ces the modelling effort, but requires also compatible finite
elements, that means elements with similar meshing quali-
ties. Such a unified modelling method guarantees the com-
patibility between the thermal and the structural model
and a straightforward data transfer during the coupling of
the different physical systems.
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Integrated Thermal- Large Deformations

i 55!
Structural Analysis Thermal Stresses

« unified modelling methoa Finite Elernent Method

Adaptive Grids
Element by Element

« advanced analysis strategies
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Fig. 2: The strategy of an integrated thermal structural
analysis

BASIC EQUATIONS
THERMAL MODEL

The 3D formulation of the thermal model is based on the
energy equation, which is in general transient in time. The
strong form of this initial-boundary value problem for the
temperature distribution © with the initial state ®y =
O(t = ty) consists of the differential equation in the do-
main

(1) ,OC(;) + qlz = f

and of the essential and natural boundary conditions on the
boundary T'

8 -06=0
~g'ni — Gn = 0

on F@,

(2)

only.

The dot indicates the time derivative, ‘I,ii represents the spa-
cial derivative of the local heatfluxes, f the heat generation
per volume. The product pc - the heat capacity - can be
temperature and time dependent, as well as the tensor of
heat conductivity . This tensor is symmetric and provi-
des a linearized relation between the heatfluxes ¢* and the
temperature gradients @ ;, which is known as the Fourier
law :

(3) qi = ‘“l‘&ij ®,j .

Looking on the prescribed heatflux across the boundary g,
in detail, the subdivision into three parts is useful :

(4) qn:q-e“’q_c‘f'q_r-

The heatflux g, is explicitly given, while g. and . describe
the heatflux by convection and radiation on a free surface.
The formulations for these heat transfer phenomenas in-
clude the difference between the surface temperature O,

and the enviromental temperature ©, :

e = kc ( ®a - (:)oo ) 3
(5) qr = kr ( ®a - @oo )
with k, = orep(0, + 0,,)(0% + 02,) .

Additionally, the coefficient of convection k., the emissivity
¢, the view factor ¥ and the constant of radiation o, are to
observe. The handling of the radiation is difficult, because
strong nonlinearities originating from temperature to the
power of three in the generalized radiation coefficient k.

With regard to the semidiscretisation — this means the di-
scretisation in space only — the equations of heat transfer
can be rewritten in the weak form with the weightened fun-
ction w

/wpc(l)dn+/ w k70 ;dQ
(6) Q Q
:/wfdﬂ+/ Wi d .
Q Iy

Investigations of shell structures make it useful, to modify
the basic equations, describing the equations of such a 3D
structure with respect to an 2D reference plane (Fig.3). In

Fig. 3: Geometric description of shells

general, this can be done choosing a set of functions w; for
the weak formulation (6), which are only #* dependent. For
shell structures a heuristic choice is

(7) wi = (0°)

t=0,.u7n

and the resulting set of differential equations looks as simple
as (1) :

(8) “pe®) — ¢ + '¢®le = If

In this approach }(pc®), 'q and {¢™ are defined by
ped) = [ ped (99)) o a®
195
lqa — / qcx (193)1 I d’l93
1_93

’q=As ¢ () pdd® , Pg=0

{=1,.,n

(9)
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and represents 'moments’ of internal energy and ‘moments’

of heatfluz up to order I. The loadterm
_ 03

(10) = [ 1Y 8 - (2,0%) u Ve

includes the prescribed heatflux on the upper and lower

shell surface with the coordinates 92 and 3. For the trans-

formation of integrals over ¥ the determinant of the metric

9= in any point of the shell is shifted by p = 1/g/a into the

metric a,pg of the reference plane. The weak formulation of
this description

/wl(pcé) dF~/ wlg —w o'q* dF
F F

:/wlde-i—/ w'§i®ne ds .
F C,

q

(11)

includes the thermal loads by heatflux across the bound-
ary curve . Approximating the temperature in thickness
direction with

(12) O(F?) = Qg + 019 -+ ... + O (9%)*
and using the Fourier law, the constitutive relations are
gained :
(13)
lqa :/ q"‘(ﬂs)lpd193 — _/
938

93

Pl (ﬂ3)k+l p,d193 G)k,ﬁ
__/ KaSk(ﬂ:i)k-l-l—lqug?, Oy,
58
lq — / qa (193)1—1 l/,td193
98
— __/ K,3’B (ﬂ:?)k-l—l—l /,le’l93 G)k,[i
98
-AS &2 (O R pd® 0, %¢=0.

Using the shifter 4 in its exact form, this approch is appli-
cable without any restrictions to the curvature of shells. It
should further be mentioned, that x%/ represents the com-
ponents of the tensor of conduction, which can be calcu-
lated from the physical components by using the tensorial
relationships.

If the material properties are variable in thickness direction,
for example temperature dependent or if it is composite
material, the introduction of a layer model makes sence.
Assuming material coefficients to be constant in each layer
i the integrals of the constitutive relations are converted
into sums, such as :

8
(14) /;3 Kaﬂ(,ﬂ3)k+ld,l93 - Z Iﬁ?ﬂ k-{-}—{-l [(ﬂ.‘i)k-l—l-l—l]:;}}u .

il

k2

¥¥, and 9% denotes the upper respectively the lower 93
coordinate of the individual layer. This approach can be
interpreted as a lamina theory for heat transfer.

MECHANICAL MODEL

The equations of the mechanical model can also be deri-
ved from the equation of energy. Assuming a quasi-static
mechanical behaviour, the classical geometric nonlinear for-

mulation leads to the two groups of differential equations
of equilibrium and strain-displacement [2]:

' = (6] +u,jk) =0,

1

(15) .
Vi = 3(Uig + 5+ upiuy) .

In the absence of volume forces the Cauchy stress tensor
s vanishes and the strain tensor of Green-Lagrange v;;
is defined by a nonlinear relation of the spacial derivatives
of the displacements u;. The coupling between the strain
tensor and the second Piola-Kirchhoff stress tensor ¢/ is
established by the constitutive law. Thermal effects are in-
cluded by the tensor of thermal expansion «;;, respectively
its inverse 8%, and the temperature difference A® related
to the thermal expansion free state. Then the constitutive
relations can be cast in the linearized form

1) ol — Bkl gUAE |

Vi = Fijuo™ + 000

since in this paper the mechanical properties are assumed
temperature independent. E%* represents the tensor of
stiffness, Fj;p; its inverse. Finally the two types of boundary
conditions should be mentioned :

u;—%; =10 onT, ,

() b
8n; -8 =10 onT, .

Both are parts in the mixed work principle (16), which is
used for discretisation. The principle is based on the princi-
ple of Hellinger-Reissner, in which displacements and stres-
ses are independent variables. This formulation needs no
postprocessing to calculate the stresses, which are inter-
polated here with the same quality as the displacements.
Therefore it has advantages in nonlinear applications.

- /(; 6310 (wi g + uji + up,uly)

(18) +/ 5%[0'”}7‘1‘]'“0‘“](10 -+ / §j5Ude‘
ﬂ s

+/ 876u; -+ (uj — @;)687dl = 0
The derivation of the equations for mechanical behaviour
of shells can be done analogous to the shell theory for heat-
transfer. In this paper the assumptions of the Kirchhoff-
Love theory with respect to the kinematic state were used.
The resulting theory is valid for moderate rotations inclu-
ding the classical lamina theory and thermal expansion ef-
fects; for details see [3].

FINITE ELEMENT TOOL FiPPS

The thermal and structural model in combination with fast
and stable numerical algorithms is the first step to an in-
tegrated thermal-structural analysis. The resulting tool
should fulfil the following requirements :

o consistent finite elements for thermal and
mechanical analysis

o models of geometric and physical nonlinear
behaviour
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o fast solution algorithms for linear and nonlinear
systems of equations

o solutions with a controlled high accuracy
in time and space

With respect to large systems, vectorization has be consi-
dered, to achieve the best performance on supercomputers.
This was realized using the finite element package FiPPS of
the Institut fiir Flugzeugbau und Leichtbau (IFL). FiPPS§
was developed in the last decade to conduct different scien-
tific investigations with finite element methods. FiPPS has
a shell-structure and consists of a system-kernel with gene-
ral software, an inner shell containing problem independent
finite element software and an outer shell containing finite
element software for special problems. The modular con-
cept of FiPPS makes it easy to configure a new finite ele-
ment tool with the FiPPS modules and specific extensions.

The configuration of the presented integrated thermal-struc-
tural analysis is shown in Fig. 4. Nonlinear material models

Grid Adaption Methods— Grid Generation

Iterative Solver

System—Kernel
inner Shell
Outer Shell
User Surface

Thermal Structural Analysis
Interface for Interdisciplinary Links

MS = Structural System
TS = Thermai System

Time Integration TS
Nonlinear Iteration
Time Integration MS

Nonlinear Material Models TS
Nonlinear Material Models MS
FiPPS Basic=Software

Finite Elements TS
Finite Elements MS
FiPPS FEM-Software

oo

Fig. 4: The finite element program package FiPPS

are located in the system-kernel, the finite element matri-
ces in the inner shell and time integration and iteration
algorithms in the outer shell. Furthermore the user-shell
is the users’s interface for the thermal-structural analysis
and represents the interface for interdisciplinary links. The
latter is an interface to a Navier-Stokes code, to investigate
fluid-structure interactions.

FINITE ELEMENTS

Up to now isoparametric finite elements for 2D-problems
and shells were implemented. Within the element area the
state variables are approximated by means of linear res-
pectively bilinear shapefunctions in a triangle respectively
quadrilateral. The choice of such simple elements makes it
possible to achieve a high vector performance. The mecha-
nical state variables are displacements u; and stresses P
for 2D-elements or stress resultants for shell elements. In

the 2D thermal model the state variable is only the tem-
perature. For the thermal shell element the temperature
is approximated in the direction of thickness with a kubic
polynom. In this formulation it is possible to fulfil the es-
sential boundary conditions on the lower and upper shell
surface better than with linear functions, because the heat-
flux is coupled with the temperature gradient, so at least
two degrees of freedom are necessary for the gradient. Also
for curved shells a nonlinear approximation makes sense.
All thermal finite elements include additional terms to the
conductivity matrix, which result from the boundary condi-
tions of the convection and radiation type, this has proven
benefits in the convergence of such nonlinear problems.

SOLUTION ALGORITHMS

The assembling process of the finite element concept yields
the general nonlinear system of ordinary differential equa-
tions for the discretisized state z with time as independent
variable :

(19) Mi + Kz = f .

K represents the matrix of conductivity respectively of stiff-
ness, M the massmatrix — in this paper present only in
thermal problems. The initial state zp = 2(¢ = %) com-
pletes the problem description. To handle such equations,
time integration methods as well as iteration algorithms are
components of the finite element tool.

For time integration implicit schemes are prefered, making
use of their advantages in stiff problems, which arise for
example in the presence of radiation or from very different
element sizes as a result of an automatic mesh adaption
process. The general scheme of the predictor-corrector me-
thod of order p < 1 comsists of two phases. The first phase
uses the previously computed results at time ¢ — these are
the nodal temperatures and time derivatives up to order p
stored in the hypervector v

T
(20) t+Atv — t+At [Z,Ati,.--, _A;’t!_PZ(P)]

— to predict the state at £+ At :

(21) thaty () = Aty

Matrix A is the Pascal triangle matrix. The second phase
then corrects successively, until convergence is achieved by
satisfying the differential equation system.

(22) HALL() o tHAL (=D | Az

In the correction term, the matrix L, is the matrix of rele-
vant integration coefficients. The calculation of the incre-
mental solution vector Az is carried out with Newton-like
methods. In connection with direct solution scheme for
linear systems quasi-Newton methods are used, which per-
form a modification of the iteration-matrix by an updating
procedure, Davidon-Fletcher-Powell- (DFP) and Broyden-
-Fletcher-Goldfarb-Shanno-updates (BFGS), to avoid the
costly reformation and inversion of the iteration-matrix.
Another approach is the use of Secant-Newton methods
first presented by Crisfield, which can be considered as me-
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moryless single cycle versions of the DFP and BFGS for-
mulas. Scaled error estimates for neighboured integration
orders determine the optimal step-size and order for the
next timestep.

Direct elimination methods are limited by storage and com-
putational time, which are increasing superlinear with the
number of equations. Furthermore, mesh adaption methods
generate new nodes, which can blow up the storage of the
systemmatrix, if no expensive renumbering of nodes is per-
formed. Therefore, the idea of the alternative to the direct
solvers namely the iterative technique was followed. Of
major interest are conjugate gradient (cg) methods with an
element-by-element (EBE) preconditioning technique. The
preconditioned cg-method includes the system with the pre-
conditioner matrix P. P should be a good estimate of the
inverted original systemmatrix A, but has to be inverted
easily. In the EBE-approach introduced by Winget and
Hughes [4] from the representation of A

A =D} [I+D“%(A - D))D—%] D}
with D = D(A)

(23)

the one-pass-product form of P follows with a product over
all element contributions
(24)

P=D} [H(I+D”%[AG»D9] D—%)—l] D%,

The nature of this approach, which is based on many sepe-
rate element contributions, makes EBE methods ideal for
vector processing and there is a great potential for paral-
lel processing. The rate of convergency is highly depends
on the ratio of massmatrix to matrix of conductivity and
therefore dependent on the timestep size for many time-
integration schemes. The following example shows this ef-
fect.

Subject is a thermal problem : a square with the dimensions
z1,z2 € [0,1] (conductivity k** = 20, capacity pc = 2000)
is cooled down from the inital state ®(z,) = 1000 by the
boundary condition ©(zq,0) = ©(0,z3) = 0. Meshing was
accomplished with 80 x 80 quadrilateral finite elements with
one degree of freedom per node. The calculation was per-
formed with the classical Euler-Backward scheme using a
controlled time-stepsize. Fig. 5 contains the total CPU-
time — including formation of the matrices and solving the
system in every timestep — of the solution up to ¢t = 1ls
at every time-step, measured on the IBM 3090/600J for
the one-pass-EBE preconditioned CG-method in compari-
son with the GaufB-factorization, for which a subroutine of
the highly vectorized ESSL-Library was used. It is obvious,
that the cg-approch has benefits with respect to the direct
solver, when the time-step sizes are small and as a con-
sequence, the massmatrix dominates over the conductivity
matrix. This can be seen at the initial gradient, which is
constant for the Gaufl-factorization and nearly one half of
the cg-method. This is caused by a relativly small num-
ber of iterations, which are plotted against the time-step
size in Fig. 6. In accordance with increasing time-step
size the number of iterations grows up to 38. The decrea-
sing number of iterations behind the maximum is caused
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Fig. 6: Number of iterations of the EBE-cg-method

by the activation of an absolute convergence criteria, which
finished the iteration, if the temperature increment is lower
than 5K.

ADAPTIVE GRIDS

To increase efficiency and accuracy of the finite element
solution, the thermal-mechanical grid is adaptively refined
and coarsened. Fig. 7 shows the integration of the grid-
adaption method in the time-stepping sequence. After se-
veral time-steps an error estimation is carried out for the
state, that has been reached. Controlparameters and the
calculated error estimations indicate a reiteration of the
time-steps with a refined grid or a continuation of the time-
stepping with a refined and coarsened grid.

For error estimations, the residuum- and postprocessing
methods are applied. Error estimation in thermal analy-
sis with postprocessing methods is done with the Zienkie-
wicz-Zhu estimation. The results of this estimation techni-
que are proven to be reliable. In the mechanical analysis,
the error estimation is derived from the difference of the
direct calculated stress-field — assumed to be exact — and
the stress-field, calculated indirectly from the differentiated
displacements. With respect to refinement and coarsening
tolerances, the calculated error estimates determine the ele-
ments, which shall be refined or coarsened.
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For the examples given in this paper, the classical h-adap-
tion is employed in conjunction with triangular and quadri-
lateral discretization in two dimensions. In the refinement
of an indicated element, only a division into four child-
elements is allowed [5]. The new nodes are created on the
midpoints of the element sides. Particular in the case of
triangles in the transition element layer, triangles are divi-
ded into two, to avoid irregular grids. These halves are not

. allowed to be refined, but the basis element. The local co-
arsening is possible if the four child-elements are indicated
for coarsening. Then the child-elements are deleted and the
parent-element is activated. This strategy stores the data
of the whole grid hierachy, but is very fast in transient pro-
blems, where local grid modifications are performed in a
few percents of the computational time.

ment
iening

refinement

, time-
coarsening

i ) error-
ime-s T
eps estimation

refinement

Fig. 7: The grid adaption strategy

NUMERICAL EXAMPLES

Subject of the first examples is a square plate with a geome-
try depicted in Fig. 8. The material properties are those of
fibre reinforced ceramic. Thermal loads come from a uni-
form heatflux gp and additionally from a heat load peak
20 times higher than gy, which goes along a line slightly
rotated against the symmetry line (2; = 0.4z, + 75). The
shape of the heatload was assumed as a (1 + cos) distribu-
tion in the cross-section and constant along the line. Such
a heatflux peak can be a consequence of an aerodynamic
shock and represents a loading causing high temperature
gradients. The first set of boundary conditions is shown in
Fig. 8. All edges of the plate are kept at 270K . The upper
surface emits heat by radiation, while the lower surface is
insulated. It should be emphasized, that in this example

the prescribed temperature at the edges of the plate is a
very strong condition,

2.5mm m
q]'ﬂa)(ZBOqO
kW
qo=20();'2-5‘
4mm /
4} 0 =.270K
2560 mm

250 mm %
q =0

Thermal Properties ?

k = 20 W/mK Mechanical Properties
¢ = 620 J/kgK E = 200 GPa
p=25g/cm3 o= 2.0-1076K"1

Fig. 8: The geometry and thermal loads of a shock-heated
plate

STATIONARY TEMPERATURE DISTRIBUTION IN A
CROSS-SECTION

In the first investigation the problem is reduced to fwo
dimensions and the resulting model represents the cross-
section at the symmetry line of the plate. Adaptively refi-
ned regular triangle-grids are used for idealization. Fig. 9
shows the initial uniform mesh with 303 nodes and the 4 ti-
mes refined mesh with 817 nodes for the stationary solution
of the temperature. Error criteria was the heatflux, which
was reduced from 15% up to 4%. The grid adaption process
indicates very well the zone, where a fine grid is necessary
to calculate the exact solution. In the particular case the
refinement is done in the area of the heatload peak, where
the inital grid is not able to represent such a temperature
distribution, as it can be seen at the isotherms in Fig. 9.

SRR

e

Isotherms
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N EAVARR R 7
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Fig. 9: Solution with adaptive grid refinement
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INSTATIONARY TEMPERATURE DISTRIBUTION IN A
CROSS-SECTION

To demonstrate the capabilities of the grid adaption stra-
tegy, in the second example the shock moves. The mo-
vement happens with constant velocity of 7.5 from the
midpoint of the plate 75mm to the right hand side. The cal-
culation was performed with a slightly smaller refinement
tolerance as in the stationary analysis, to get the tempe-
rature peak within a greater refinement zone. As a conse-
quence of the moving heat peak the temperature follows the
heat peak as shown in Fig. 10, where the temperature dis-
tribution of the upper surface is plotted against the z;-axis
at different times.

@ 2000
E 1800
1600

1400

1200 +

1Q00

Fig. 10: Transient temperature distribution at the upper
plate surface

Fig. 11 shows the corresponding isotherms { A® = 25K)
and grids belonging to the different time steps :

o at 0.3s, the moving of the heatload peak is indicated
by the eccentricity of the isotherms and in the grid
refinement

o at 5s, induced by the heatcapacity, a zone of higher
temperature behind the shock can be recognized as
well as a decrease in the maximum temperature. The
grid at the initial heat peak position is fully coarsened,
and caused by the mesh strategy, local grid refinements
of foregoing timesteps forms an unnecessary zone of
refinement behind the shock.

o at 10s, the heat source arrives at its endpoint. The
maximum temperature decreases up to 1605K. Again
a temperature and refinement drag can be observed.
Up to now, the right area is nearly undisturbed of the
moving shock.

o at 20s, this state can be assumed as the stationary
one, where the maximum temperature increases up
to 1812K. The grid adaption strategy eliminates the
unnecessary grid refinements of the moving shock

STATIONARY TEMPERATURE DISTRIBUTION OF THE PLATE

Considering the 3D-structures of the whole plate, the fol-
lowing calculations were performed with the thermal shell
element. To avoid too much refinement levels in the finite
element model, the width of the heatload peak was spread
from 2.5mm to 5mm and the intensity was halved, so the
results are comparable with the previous discussed. Star-
ting with a 2 x 2 finite element grid, the adaption process
forms the grid shown in Fig. 12 for the stationary solution.
The isotherms belonging to the temperature distribution of
the upper and of the lower surface are depicted in Fig. 13.
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Fig. 11: Transient temperature distribution in the plate cross-section
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Significant is the influence of the heatload peak cauéing a
line of maximum temperature, whose amplitude is nearly
constant.

Compared with the temperature distribution in the cross-
section the isotherms of both plate sides show the same cha-
racteristics : sharp gradients at the edges and in the area of
the shock. These gradients force a grid refinement and so
the solution becomes smooth. The reached maximum tem-
peratures of 1787K on the top and 1679K on the bottom
of the plate are good result, in comparison with the results
of the cross-section., In the areas, where the shock cross
the plate boundaries, the grid is specially densed, since the
temperature distribution is more complex.

Fig. 13: Temperature distribution at the upper (left) and
lower (right) plate surface,
dots : ® = 1000K, A® = 100K

STATIONARY DEFORMATION OF THE PLATE
CROSS-SECTION

Now the mechanical analysis as part of the integrated ther-
mal-structural tool will be demonstrated at the 2D cross-
section of the plate. The edges of the model were assumed
to be clamped and the load consists of a pressure of p =
0.2N/mm? on the top of the plate and the temperature
distribution of the previously discussed stationary solution.
The temperature-rise forces a pressure stress ¢!, which
leads to a nonlinear behaviour : the plate buckles. The
angle of deflection increases at its maximum up to 4°, which
may influence the aerodynamic flow-field.

Stress component ol!

It should be mentioned, that in this example the nonli-
near analysis is necessary, because buckling produces higher
stresses and the material may fail. If a linear calculation
is performed, the stress component ¢! will increase up to
—270N/mm?, but the superposition of the nonlinear de-
flection results in a maximum pressure stress, which is four
times higher. Fig. 14 shows the stress component o', It
can also be seen, that the disturbance by the local heating is
small. As a consequence of the last example, it is necessary
to perform a mechanical analysis of the whole plate.

NONLINEAR BEHAVIOUR OF SHELLS

Studies of cylindrical shells made with the mechanical shell
element without coupling were carried through. The nonli-
near behaviour — that means bending and buckling —is an
essential aspect of thin shell structures. The studies were
performed with material properties such as carbon reinfor-
ced . carbon, geometry and material data are depicted in

V2 o

clamped

Temperature Distribution

maz

€]
Geometry and
Material Properties: a = b=500mm
t = 1,lmm
[+a/ —a/ —a/+a R = 5000mm
By = 165000 N/mm? E; = 6000 N/mm? v = 0,23
Gi = 5670 N/mm? oy = —0,30 1078K~" @y = 4,30 -107°K!

Fig. 15: Geometry and material properties of a cylindrical
shell

ﬁ ol = —1200N/mm?

ctamped

& O = 667N /mm?

clamped

Deformation state

Fig. 14: Nonlinear deformation under thermal loads and stress component o?
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Fig. 16: Nonlinear behaviour of a cylindrical shell under thermal loads

Fig. 15. The temperature is a linear approximation of the
shock-induced one.

Fig. 16 shows the nonlinear deflection of the centerpoint of
the shell plotted against the maximum temperature for dif-
ferent lamina-orientation-angles « and the corresponding
deflection patterns for symmetric laminates. The main
buckle-orientation changes within a limited range from the
circumferential direction (o = 40°) to the meridian direc-

tion (a = 60°). Details of this investigations are presented
in [6]

FLUID STRUCTURE INTERACTION

An essential aspect in investigations of hypersonic vehicles
is the determination of the heatflux into the structure, which
depends on the aerodynamic flow-field. The aerodynamic
flow field itself is influenced by the thermal and mechanical
response of the structure. If such strong fluid-structure in-
teractions occur, for example in the stationary case, the ap-
pearance of hot spots or in the dynamic case, panel flutter,
an integrated fluid-thermal-structure analysis is necessary.
To make such investigations the thermal mechanical tool
FiPPS was extended with an interface to the finite element
navier-stokes code of the Institut fiir Strémungsmechanik
of the Technical University Braunschweig.

Subject of the example shown in Fig. 17 is a stiffened plate
with parallel hypersonic flow, which causes a temperature
maximum at the plate tip. The boundary layer is obviously
altered by the stiffeners, acting as heatsinks. The aim of
this testcase, to demonstrate the coupling of the computer
codes, was successfully reached.
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1151924+
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— T T 773 77
Temperature Distribution { T[\ ] { ﬁ

in Structure

x-coordinate Structure

Fig. 17: Temperature solution of a computed fluid-struc-
ture interaction

CONCLUDING REMARKS

The structural design of hypersonic vehicles makes efficient
analysis tools necessary, including interdisciplinary aspects.
The concept and realization of an integrated thermal-struc-
tural analysis tool is described in this paper. It combines
methods for thermal and mechanical modelling based on
finite element methods. An effective solution is possible,
using powerful finte elements in connection with sophistica-
ted algorithms, like grid adaption. With respect to large sy-
stems of equations and strong nonlinearities, modern linear
and nonlinear solution techniques as well as special time in-
tegration schemes have to be parts of such a tool. The tool
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was configurated out of the finite element package FiPPS.
The presented examples show the functionality of the code
in solving thermal-mechanical problems at high tempera-
tures. It could be demonstrated, that the tool handles
nonlinearities and local effects with its fast solution- and
grid-algorithms in a very efficient way. Furthermore, for
coupled fluid thermal structural analysis in cases of strong
fluid-structure interactions the tool can be interfaced to a
navier-stokes code. The way realizing such a tool is proven
to be successful and will be pursued.
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