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Abstract

An adaptive unstructured meshing technique for
thermal stress analysis of built-up structures has been
developed. A finite element formulation for a triangular
membrane element and a new plate bending element,
used for modelling such structures under both
mechanical and thermal loadings, is presented. The
associated finite element matrices have been derived in
closed form. The performance of the new plate bending
element is evaluated for a plate with temperature
gradient through its thickness by comparing the predicted
solution with the exact solution. The effectiveness of the
adaptive unstructured meshing technigue combining with
the finite element method is evaluated by iwo
applications: (1) a stress analysis of a panel with a
circular cutout, and (2) a thermal stress analysis of a
built-up structure with intersecting panels. The adaptive
mesh solutions for these two applications are compared
with an exact solution and a fine mesh solution,
respectively. These applications demonstrate that,
without a priori knowledge of the solution, the adaptive
unstructured meshing technique generates refined
elements only in the regions needed to provide accurate
solution at a reduced problem size and analysis
computational time as compared to the results produced
by the standard finite element procedure.

Nomenclature
A finite element area
[B] strain-displacement matrix
[C] material stiffness matrix
E modulus of elasticity
{F} load vector
h nodal spacing
K] stiffness matrix
M bending moment
[N] element interpolation function matrix
p pressure
{84}, {S2}  vector of stress components
T temperature
To reference temperature for zero stress
t element thickness
u, v, w displacement components
XV, 2 local coordinate directions
XY, Z global coordinate directions
o coefficient of thermal expansion
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{a} vector of coefficients of thermal expansion
{8} vector of element nodal unknowns
{e} vector of strain components

A eigenvalue

v Poisson's ratio

¢ key parameter for remeshing

Ox, Oy, Txy ~ Stress components

Gy, Op principal stress components
Subscripts

b bending

m membrane

p pressure

T thermal

Superscripis
T transpose

introduction

Accurate prediction of the structural response
induced by both mechanical and thermal loadings is an
important factor in the design of structures. Intense
pressure and heat transfer rates may produce severe
stresses that reduce the structural performance and may
cause structural failure. Research is underway to
improve the efficiency and accuracy of the thermal stress
analysis procedure.

An adaptive unstructured meshing technique! has
been shown to improve the efficiency and accuracy? of
the high speed flow analysis, the thermal and structural
analyses of continuum structures in two dimensions by
the finite element method. The technique generates a
new mesh based on the solution obtained from an earlier
mesh. The new mesh consists of small elements in the
regions with large changes in solution gradients and
large elements in other regions where the gradient
changes are small. Because the technique generates
proper element sizes automatically, it is especially
suitable for complex problems where a priori knowledge
of the solutions does not exist.

Currently, the technique has been extended to
construct adaptive meshes for structural analysis of "built-
up" structures. Such structures are commonly modelled
by using membrane and plate bending finite elements. A
new triangular plate bending element to be used with the
adaptive unstructured meshes for efficient thermal stress
solution will be introduced in this paper. The paper,
however, will concentrate on the evaluation of the
adaptive unstructured meshing technique for providing
solution accuracy as well as increasing computational
efficiency for thermal stress analysis of structures.




The governing differential equations for predicting
the structural response due to both thermal and
mechanical loadings will be presented first. The
triangular membrane element with temperature
distribution over the element and a new triangular plate
bending element with temperature gradient through the
element thickness will be described. The corresponding
finite element equations and the associated element
matrices will be derived and presented. The basic
concepts of the adaptive unstructured meshing technique
and the selection of the meshing parameters used for
construction of new meshes will be explained. Before
applying the adaptive unstructured meshing technique to
complex problems, the technique will be evaluated for
the stress analysis of a panel with a circular cutout where
the exact solution is available. The performance of the
new triangular plate bending element under the thermal
load will then be evaluated by an example of a plate with
temperature gradient through its thickness in which the
exact solution is also available. Finally the adaptive
unstructured meshing technique for built-up structures
will be evaluated by the thermal stress analysis of
convectively-cooled intersecting panels in which the
adaptive mesh solution will be compared with a fine
mesh solution.

Thermal Stress Analysis Procedure

Governing Equations

The equations for the in-plane deformation and
the transverse deflection of a plate that lies in a local x-y
coordinate system are briefly described herein.

In-Plane Deformation. The equations for the in-
plane deformation are given by the two-dimensional
equilibrium equations in the form,
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where the vectors {Si} and {Sj} consist of the stress
components given by,

{S1}T = [ ox Txy ]

)
ST = [wy o]

The stress components are related to the strain

components and the temperature by the generalized

Hooke's law,

{0} =

where {c} contains the stress components oy, oy, and 1xy,

[Cm] is the material stiffness matrix, and {a} is the vector
of the coefficients of thermal expansion. For the plane
stress case, these material matrices are given in Ref. 3.
The vector of the strain components is related to the
displacement gradients given by,
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Transverse Deflection. The equation for the
transverse deflection in the z-direction normal to the x-y
plane of the plate is given by the equilibrium equation4 in
the form
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where D = Et3/12(1-v?) is the bending rigidity and Mr is
the thermal moment defined by

1/2
Mr = Eaf (T@)-To)zdz (6)
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Derivation of Finite Element Equations

The Constant Strain Triangle (CST) and the
Discrete Kirchoff Triangle (DKT) finite elements are used
for the in-plane deformation and the transverse
deflection, respectively.

Constant Strain Triangle (CST). The three-node
CST element assumes a linear displacement
distribution3 over the element. The element equations
can be derived by applying the method of weighted
residuals to the governing differential equation, Eq. (1),
which leads to the element equations in the form,

[Kml{m} =

where the vector {8} contains the element nodal
unknowns of the in-plane displacements in the element
local x-y coordinate directions. There are two in-plane
displacements per node or six in-plane displacements
per element. The element stiffness matrix, [Kn], that
appears in Eq. (7) is defined by,

{F} + {Fm} @)

[Knl = [Bm]"[Cml[BmltA (8)
where the strain-displacement interpolation mattix, [Bm],
can be derived easily and is given in Ref. 3. The first
vector, {F}, on the right-hand-side of Eq. (7) contains the
applied mechanical forces at element nodes. The
second vector, {Fn}, consists of the equivalent nodal
forces due to the thermal load. This second vector is
defined by,

{Fm} = [Bu]"[Cnl{a}(Tag-To)tA ©)

where Tayg is the average element temperature.

Discrete Kirchoff Triangle (DKT). The three-node
DKT element assumes a cubic distribution of the
transverse deflection® over the element. The element
equations can be derived by applying the method of
weighted residuals to the plate bending equations, Eq.
(5), which leads to the element equations in the form,

[Kel{&} = {Fp} + {Fb} (10)

310




where the vector {8y} contains the element nodal
unknowns of the transverse deflections and the rotations
(slopes). Each node has a transverse deflection in the
element local z-coordinate direction and two rotations
about the element local x-y coordinate directions. Thus
there are nine degrees of freedom per an element. The
performance of the element has been evaluated
thoroughly in Ref. 6 using several benchmark problems
for bending of plates under the mechanical load.
However, the performance of the element under the
thermal load has not been evaluated. Without the
thermal load, only the element stiffness matrix, [Ky], and
the nodal force vector due to the applied pressure, {Fp},
that appear in the element equations, Eq. (10), are
needed. These matrices are defined by,

[Ko] a1

f{BblT[cbnebldA
A

{Fp}

]

f[NblTpdA (12)
A

where the strain-displacement interpolation matrix, [By],
the plate material stiffness matrix, [Cp], and the plate
element interpolation function matrix, [Np], are given in
Refs. 5-8. The above two element matrices, [Ky] and {Fp},
can be evaluated in closed form (i.e. numerical
integration is not required) and the details of the
derivation are given Refs. 6-7.

With the presence of the thermal load, the vector of
the equivalent nodal forces due to the temperature
change, {Fp}, is included in the element equations, Eq.
(10). This additional vector is defined by,

{Fb} (13)

f[Bb]T{M}dA
where A

{M}' = [Mr WMr
In the above Eg. (14), the thermal moment My is defined
in Eq. (6). The vector of the equivalent nodal forces due
to the thermal load, {F»}, above can also be derived in
closed form. For an element with arbitrary temperature
distribution through the plate thickness, T = T(z), this
vector, {Fy}, is

0] (14)

{Fb} MT[G]T{1 (15)

|
0
where the matrix [G] has been derived and given in the
Appendix.

Note that, for general built-up structures, elements
can be arbitrarily oriented in three dimensions.
Transformation of these element matrices from a local x-
y-z coordinate system to, a global X-Y-Z coordinate
system is required prior assembling them to obtain a set
of simultaneous equations. In such the global X-Y-Z
coordinate system, each node has six degrees of
freedom which are the three translations and the three
rotations. The matrix transformation procedure, however,
can be easily worked out and is not presented herein for
brevity.
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Adaptive Unstructured Remeshing Procedure
Remeshing Strategy

The basic idea of adaptive unstructured

remeshing’ is to construct a completely new mesh based
on the solution obtained from the previous mesh. The
new mesh will have small elements (short nodal
spacings) in regions of large changes in solution
gradients and large elements (large nodal spacings) in
regions where the gradient changes are small. Proper
nodal spacings used for constructing a new mesh are
determined by following the solid mechanics concept of

finding the principal stresses, o1 and o2, from a given
state of stresses, o, oy, and 1y, i.e.,

Ox  Txy O 0

(16)

Txy Cy 0 G2

To construct an adaptive mesh for a structural
problem, short nodal spacings are needed in the regions
of large change in the stress gradients such as in stress
concentration regions. Large nodal spacings can be
used in other regions such as in the regions with fairly

uniform stress. The stress is thus considered as a key
parameter, denoted by ¢, for remeshing. At a typical
node in the previous mesh, the second derivatives of the
key parameter, ¢, (analogous to the stress components in
Eq. (16)) are computed and the two eigenvalues

(analogous to the principal stresses) are then
determined,

82¢ 82¢

o2 At 0

)

ox S (17)
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The larger eigenvalue, A = max (A4,A2), is then selected
for that node and the same process is repeated for all the
other nodes in the previous mesh. Proper nodal
spacings, denoted by h, used for constructing a new
mesh are then determined from the condition required to

produce an optimal mesh,

AR = Amax Nain

constant (18)
where Anmax is the largest eigenvalue of all the nodes in
the previous mesh and hp, is the specified minimum
nodal spacing for the new mesh.

The second derivatives of the key parameter, ¢, for
remeshing appeared in Eq. (17) are determined using
the following procedure. The first derivative (e.g. with
respect to x) is assumed to vary over an element in the
form,

% 3|
ax

N
" [N]

(19)

J

where the vector on the right-hand-side of the above
equation contains the unknown nodal values of the first




derivatives. These unknown nodal values are obtained
by solving,

f{N}[N]dA {a_q)}
A ox

where 0¢/dx is the computed constant element gradient.
The process is repeated to determine the second

f{N}dAa—q’ (20)
A

ox

derivative 82¢/ax2. Determination of the other second
derivatives which appear in Eq. (17) is performed in the
same fashion.

Remeshing Parameters

The adaptive remeshing technique described
requires a selection of proper key parameters (¢ in Eq.
(17)) for remeshing. For structural problems under the
mechanical load alone, stress is an appropriate choice
for the key parameter so that regions with high stress
concentrations will be captured. However, the key
parameter representing the stress should be a scalar
quantity (directionally independent) such as the Von
Mises stress defined in two dimensions by,

GVon Mises

= %«/(Gx—oy)2+6§+05+6’€§y (1)

For structural problems under both the mechanical and
thermal loads, the structure temperature and the Von
Mises stress should be used as the key parameters for
remeshing simultaneously so that the mesh generated
can accurately represent the prescribed temperature
distribution and capture the high thermal stress as well
as the mechanical stress concentration.

Applications

Two applications are presented to demonstrate
the effectiveness of the adaptive unstructured meshing
technique and an example problem is presented to
evaluate the performance of the DKT plate bending
element under the thermal load. The capability of the
adaptive unstructured meshing technigue for providing
accurate analysis solution is demonstrated in the first
application for a panel with a circular cutout subjected to
an in-plane force. The capability of the technique for
reducing the problem size and the analysis
computational time is demonstrated in the last
application for the thermal stress analysis of a
convectively cooled intersecting panel structure under
severe temperature gradients.

Panel With Circular Cutout

A panel with a circular cutout, shown in Fig. 1, is
an ideal structure to demonstrate the capability of the
adaptive unstructured meshing technique because
closed-form solutions8 are available. The panel is
subjected to an applied uniform stress (c,) of 10 ksi in the
longitudinal y-direction (see figure). The exact normal
stress (oy) distribution along the x-direction at y=0 is
given by,
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2 4
oy = 922(2+§5+3%) (22)

where a is the radius of the circular cutout. The peak

stress (3o,) of 30 ksi occurs at the edge of the cutout
(point A in the figure).

Due to symmetry, a quarter of the panel can be
used in the analysis. An initial mesh was constructed
which consists of 184 nodes and 306 triangles as shown
in Fig. 2(a). Detail of the mesh near the cutout is shown
in Fig. 2(b). With this mesh, the structural analysis (plane
stress analysis with CST elements) was performed to
predict the panel deformation and the stress distributions.

The contours of the normal siress (o) distribution in the
longitudinal y-direction near the cutout are shown in Fig.

2(c). The peak predicted stress (oy) at the edge of the
cutout obtained from this initial mesh is 19.5 ksi
compared to the exact peak stress of 30 ksi. The 35%
error in the peak stress is due to the coarse elements
used near the cutout region.

The stress distribution in form of the Von Mises
stress, Eq. (21), obtained from the initial mesh is used as
the key parameter for remeshing to construct a new
adaptive mesh. The new adaptive mesh, shown in Fig.
3(a), has fewer nodes and elements (149 nodes and 250
triangles) than the initial mesh (approximately 20%
reduction in the number of unknowns). However, finer
elements are concentrated in the region of high stress
gradients near the cutout (shown in Fig. 3(b)) to provide a
more accurate stress solution. The structural analysis is
then performed and the contours of the normal stress (oy)
distribution near the cutout are shown in Fig. 3(c). The
peak predicted stress (oy) at the edge of the cutout is now
28.5 ksi which only 5% lower than the exact level of 30
ksi.

The normal stress (oy) distributions along the x-
direction at y=0 obtained from the initial and the adaptive
meshes are compared with the exact stress distribution
as shown in Fig. 4. By defining a percentage error based
on the L norm in the form,

b
(f [(oy)Exact - (O'y)F.E.]?' dx)”2
a x 100 (23)

b
( f [(oy)Exact]” dx)2

a

% error =

the figure shows that the solution error was reduced from
17% to 2% with one adaptive mesh. In addition, as the
solution accuracy increased, the number of unknowns
decreased, because finer elements are concentrated in
the region of high stress gradients near the cutout where
as large elements are used in other regions.

It is important to note that the adaptive meshing
technique automatically generates refined elements in
the regions of high stresses. A priori knowledge of the
solution to the problem {e.g. high stress regions that
require refined elements) is not needed before
performing the analysis. The technique thus provides an
advantage over the standard finite element procedure
especially for more complex problems or larger
structures (such as the structure which will be presented
in the last example) where a priori knowledge of the
solution does not exist.




Plate Bending Due To Thermal Load

A free aluminum plate with temperature gradient
through its thickness, shown in Fig. 5, is a simple
example that can be used to measure the petformance of
the DKT plate bending element. The exact solution4 for
the transverse deflection is given by,

wixy) = -%Ml(xhyn (24)

Et

where My is the thermal moment defined in Eq. (6). For
a linear temperature distribution through the plate
thickness with the temperature Tt on the top surface and
Tg on the botiom surface, the thermal moment is given
by,

= Eat? -
Mr 20-v) (Tr-Te) (25)

Due to symmetry, a quarter of the plate can be
used in the analysis. The finite element model consists
of 32 DKT plate bending elements and 25 nodes with 5
nodes equally spaced in each x and y direction (shown
in Fig. 5) is used to predict the plate bending response.
By assuming the top and bottom surface temperatures of
630°R and 530°R, respectively, both the predicted finite
element and the exact transverse deflection solutions
along the x-direction at y=0 are compared in Fig. 6. The
figure shows that the DKT plate bending elements
provide exact transverse deflection solution to the
problem.

It should be noted that, as described earlier in the
finite element formulation section, all the DKT plate
bending element matrices can be evaluated in closed
form (i.e. numerical integration is not required). This
simplifies the programming task, reduces the
computational effort and eliminates nurmerical error that
may occur in generating such element matrices. In
addition, reference 6 has demonstrated the effectiveness
of this element for providing solution accuracy for plate
bending problems under different types of the
mechanical load. The example presented herein
endorses the performance of the DKT element and
demonstrates its capability under the thermal load. The
next example will combine the CST elements (used in
the first example) and the DKT elements (used in this
example) with the adaptive unstructured meshing
technique for thermal stress analysis of a more complex
built-up structure.

Thermal Stress in Intersecting Panels

To demonstrate the capability of the adaptive
unstructured meshing technique for thermal stress
analysis of more complex structures, a three-dimensional
structure which represents a scramjet engine inlet is
considered. The structure experiences high heating from
the impingement of an oblique shock from the vehicle
forebody as illustrated in Fig. 7. The localized heatings
result in high temperature gradients and their attendant
thermal stresses in the engine panel. A typical "built-up”
engine inlet structure, shown in the lower right corner of
the figure, may consist of panels and stiffeners and may
be actively cooled. To perform the thermal stress
analysis of such structure, a finite element model
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consisting of plate bending and membrane elements for
the panels and the stiffeners is required. Note that, in
constructing such a finite element model, the same nodal
discretization is also required along the interface
between the stiffeners and the panels. Such task,
combining with the requirement of placing refined
elements at the high thermal stress regions for accurate
thermal stress solution, is tedious. Furthermore, several
modelling iterations may be needed before achieving the
desired finite element model for solution accuracy.

For the purpose of demonstrating that accurate
thermal stress solution can be obtained by using the
adaptive unstructured meshing technique, both the
structure temperature and the structural boundary
conditions are prescribed as shown in Fig. 8. The
prescribed temperature distribution simulates the
structural temperature response from the high localized
heating due to the shock impingement illustrated in Fig.
7. The peak temperature of 700 °R is assumed at the two
"hot spot" regions with temperature distributions that
exhibit high temperature gradients on both the panels
and the stiffeners. Away from these two hot spot regions,
the structure temperature is closed to the coolant
temperature of 50 °R used for cooling the structure.

For most of the thermal stress problems, high
compressive stresses normally occur at the high
temperature and temperature gradient regions. Refined
finite elements are thus needed in these regions. For
more complex structures, high thermal stresses may also
occur in other regions that have lower temperature or
temperature gradients depending on the complexity of
the structures and how they are constrained. Thus, in the
standard finite element analysis procedure, a relatively
fine finite element model is normally employed first to
identify such high thermal stress regions. Because the
thermal stress solution for this probiem is not known and
because a reference solution is needed for comparing
with the adaptive mesh solutions (which will be
presented later), a greatly fine finite element model was
constructed as shown in Fig. 9(a). The model consists of
3,168 nodes (19,008 degrees of freedom) and 6,114
triangular elements.

The predicted thermal stress distribution in the Y-
direction superimposed on the deformed geometry
(greatly exaggerated), obtained from this fine finite
element model, is shown in Fig. 9(b). As expected, high
compressive stress with a magnitude of 25 ksi is at the
two hot spot regions. However, a quite higher tensile
stress with a magnitude of 54 ksi occurs between these
two hot spot regions. Such phenomenon may not be
anticipated prior analyzing the problem or before
constructing the finite element model. This example
demonstrates a need for an automated analysis
procedure that can provide accurate solution without a
priori knowledge of the solution to the problem.

The solution for this refine finite element model
requires quite a large computational time (approximately
13 CPU hours on the VAX-8550 computer). This
computational time can be reduced significanily by
placing larger element sizes in the regions away from the
hot spot regions. As mentioned earlier, construction of a
finite element model with different element sizes while
maintaining the same nodal discretization along the
interface between various structural componenis is
difficult. Furthermore, it is also difficult to construct a finite
element model using all the four-node quadrilateral
elements to satisfy such requirements and to achieve
smooth transition of element sizes from the refined to the




coarse mesh regions. These difficulties can be alleviated
and the analysis computational time can be reduced by
the use of the adaptive unstructured meshing technique
as will be described next.

Application of the adaptive unstructured meshing
technique starts from constructing a fairly uniform mesh
as shown in Fig. 10. This initial mesh consists of 547
nodes (3,282 degrees of freedom) and 994 triangular
elements.  With this mesh and the prescribed
temperature distribution as shown in Fig. 8, the structural
analysis was performed to predict the structure
deformation and the stress distributions. The predicted
thermal stress distribution in the Y-direction
superimposed on the deformed geometry is shown in
Fig. 11. The peak predicted compressive stress at the
two hot spot is 20 ksi while the peak predicted tensile
stress between the two hot spots is 33 ksi (approximately
40% lower than the fine mesh solution shown in Fig. 9).
The computational time required by this initial mesh is
about 15 minutes on the same VAX-8550 computer.

The temperature and the stress distribution (in
form of the Von Mises stress given by Eq. (21)) obtained
from the initial mesh are used as the meshing
parameters to construct a new adaptive mesh. The new
adaptive mesh, shown in Fig. 12, has slightly fewer
nodes and elements (528 nodes and 989 efements) than
the initial mesh. However, finer elements are
concentrated in the high stress regions on both the
panels and the stiffeners to provide solution accuracy.
Coarser elements are generated in other regions fo
reduce the problem size and thus the computational time.
The predicted thermal stress distribution in the Y-
direction superimposed on the deformed geometry is
shown in Fig. 13. The figure shows that the adaptive
mesh model can provide the same stress solution
accuracy as those obtained from the fine mesh model
shown in Fig. 9 (i.e. the peak predicted tensile stress of
54 ksi is between the two hot spots that have
compressive stresses of 25 ksi). However, the
computational time required by the adaptive mesh model
is only 15 minutes on the same VAX-8550 computer, a
factor of 50 CPU time saving compared to that required
by the fine mesh model.

The adaptive mesh model shown in Fig. 12 also
highlights the ease of constructing a finite element model
by using triangles. These triangles provide smooth
transition of the element sizes from refined to coarse
mesh regions. The smooth element transition enhances
the thermal stress prediction with a more realistic
distribution. This can be seen from the close resembling
of the stress solution contours obtained from the adaptive
mesh model (Fig. 13) and the fine mesh model (Fig. 9).
This last application demonstrates the capability of the
adaptive unstructured meshing technique that can
provide accurate thermal stress solution at a reduced
analysis computational cost without the knowledge of the
solution prior performing the analysis.

Concluding Remarks

An adaptive unstructured remeshing technique for
thermal stress analysis of built-up structures has been
developed. The technique generates a new mesh based
on the solution obtained from a previous mesh. The new
mesh consists of small elements in regions of large
change in the stress gradients and large elements in
other regions where the gradient changes are small. The
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finite element thermal stress formulation for the triangular
membrane (CST) and plate bending (DKT) elements
under both mechanical and thermal loadings is
presented. All the element matrices were derived in
closed form to simplify the programming task, reduce the
computational time and eliminate error associated with
the numerical integration. The adaptive unstructured
meshing strategy was described and the procedure for
determining nodal spacings needed for constructing a
new adaptive mesh was explained. For thermal stress
problems, both the temperature and the Von Mises stress
are used simultaneously as the meshing parameters so
that the new mesh generated can capture the high
thermal stress as well as the mechanical stress
concentration.

Two applications were presented to demonstrate
the effectiveness of the adaptive unstructured meshing
technique and an example problem was presented to
evaluate the performance of the DKT plate bending
element under the thermal load. The latter example
problem demonstrates the capability of the DKT plate
bending element that can provide exact transverse
deflection solution for a free plate with linear temperature
through its thickness. The two applications of a panel
with a circular cutout (using CST elements) and a built-
up structure with intersecting panels (using both CST
and DKT elements) demonstrate the capability of the
adaptive unstructured meshing technique that can: (1)
help analysts to perform the analysis and achieve
accurate solution without a priori knowledge of the
solution; (2) alleviate the tedious, time-consuming task
for analysts to construct suitable finite element models for
complex built-up structures; (3) minimize the problem
size by generating small elements in the regions with
high solution gradients and large elements in the other
regions automatically; and (4) provide smooth transition
from refined to coarse mesh regions with the use of
triangular elements that will further improve the stress
prediction with a more realistic distribution.

The result from the examples presented in this
papet have demonstrated the viability of the adaptive
unstructured meshing technique combining with the finite
element method to reduce the analysis manpower and
computational effort as well as to provide accurate
solutions to complex structural behavior.

Appendix
The vector of the equivalent nodal forces due to
the thermal load, {Fy}, for the DKT plate bending element

given in Eq. (15) can be evaluated in closed form. This
vector includes the matrix [G] given by,

ya1 [G11] + v12 [G12]
-Xa1 [G21] - X12 [G22]
-X31 [G11] - X12 [G12] + Y31 [G21] + Y12 [G22]

[G]:é_

The coefficients x; and y;, i, j=1, 2, 3, are defined in terms
of the element nodal coordinates by,
Xij = Xi-X%; Yi = Yi-Y

The row matrices, [Gy], i,j=1,2, appeared in the matrix [G]
above are given by,




[Gi1] [ ps -0s -Is
Pa Q4 7
Pa-ps G4-0s5 Tars |
[Gi2] [-ps -G -tg
P4+Ps 94-Ce 4T
-Psa Qs T4
[Ga1] [ s 3-15 g5
7] 341y -C4
415 fa-rs -Q4+Qs]
[Gz2] [-te 3-rg Gs
s r4-re ~04+0e
4 -3+ Q4]

The coefficients px, gk, '« and t, are defined in Ref. 6.
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Fig. 2 Initial finite element mesh for the panel with a
circular cutout and the predicted stress
contours.
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Fig. 3 Adaptive finite element mesh for the panel with
a circular cutout and the predicted stress
contours.
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Fig. 4 Compatrison of the predicted finite element and

the exact stress distributions along the x-
direction at y=0 for the panel with a circular
cutout.
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Fig. 5 Schematic of an unconstrained plate subjected
to linear temperature distribution through its
thickness.
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Fig. 8 Comparison of the predicted finite element and
the exact transverse deflections along the x-
direction at y=0 for the plate with linear
temperature distribution through its thickness.
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Fig. 7 Schematic of high heating and thermal stress
regions on a scramjet engine inlet represented
by a structure with intersecting panels.




Fig. 8  Structural boundary conditions and the
prescribed temperature distributions for the
intersecting panels.

3,168 Nodes
6,114 Elements

Fine mesh

(b) Predicted axial stress contours

Fig. 9 Standard fine finite element mesh and the
predicted axial stress contours on deformed
configuration.
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Fig. 10 Initial finite element mesh for the intersecting
panels.
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Fig. 11 Predicted axial stress contours from the ini'tial
finite element mesh on deformed intersecting
panel configuration.
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Fig. 12 Adaptive unstructured finite element mesh for
the intersecting panels. )

Fig. 13 Predicted axial stress contours from the
adaptive finite element mesh on deformed
intersecting panel configuration.




