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Abstract

In this paper an analysis is made in the small
perturbations approximation regarding the aerodynamic
force that acts upon 2-D vortex distributions in uniform
supersonic flow (i.e. the eguivalent of the
Kutta-JoukowsKi theorem for subsonic flows).

1t is shown that in the case of finite strength vortex
lines the induced velocity tends to infinity in the wave
front and is zerc elsewhere, thus infringing the perfect
fluid hypothesis. It results that only vortices of
infinitely small strength and distributions of these can
be accounted for, by means of the formula :

dF = S Upx dl
This result is proved to be completely compatible
with the small perturbations theory of Ackeret.

1. Introduction

The force induced on an infinite vortex line by an
uniform incompressible flow is given by the
Kutta-Joukowski thecrem :

F= S U xT

The aim of the present paper is to provide a formula
of the Kutta-Joukowski type that could enable the direct
calculation of the force that acts upon 2-D vortex
distributions in supersonic flow. The approach is based
on the small perturbations assumption and the results
are therefore limited to the supersonic linearized
regime, ‘

The most commonly used method for calculating the
loading on vortex distributions in supersonic regime
within the small perturbations assumption takes into
account that :
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and thus
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Linkowski! used this approach in order to evaluate
the lift on supersonic airfoils. The result is similar to
the subsonic flow one :

L= fuo\, T

The present paper intends to deal with the force in
its entirety, i.e. with both its lift and drag components.
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2. General

In the supersonic linearized flow conditions the
velocity induced by a vortex distribution can be
calculated according to the formula?

U =-Zf-n,~ curth S %ff)olzp (1

- M) — _
where V is the induced velocity : V= ul + vj+ wk

M is the point of coordinates (xy, 0, z)y) where the
induced velocity is calculated

P is the current point, of coordinates (tpy 0, 2p}

. is the vortex vector, given for a domain D (D/(M)
iz that part of domain D lying in the interior of the
upstream Mach cone with apex M) and zero elsewhere

(P2 = oy - p)2-(MZ, ~D Lty ~yp)2 +izy —2p)? ) (2)
K= P X=[- 25 }_xl-)_ -
curth X = Vx X ( 93+ 53 4
(3
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Vi= M5 agJ 5K (4)

3, The velocity field induced by
a 2-D vortex distribution in supersonic regime

The configuration of the 2-D domain containing the
vortex distribution is represented in Fig.l. The domain D
enclosing the vortex distribution is assumed to be
cylindrical. The intersection of D with the plane y=0 is
the surface S, bounded by curve Cy.
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In order to comply with the small perturbations
assumption, the surface S must be pointed at both
leading and trailing edges, such as to be contained within
the Mach cones issuing from the leading edge and the
Mach forecones from the trailing edge.

Although the principal characteristics in Fig.d depend
on the position of point M above or below surface § (e.g.
et), -in the following argument the absence of the
superscript ‘will denote that this position is arbitrary
and does not affect the reasoning.

Let us denote by glxp, zp) the local value of the
vorticity density , so that

Qepr = gixp, 200 T (5
By means of (5) (1) becomes
— - d,
U(M)=—2—4,I-rcurlh jg(xP, zpd) J dog Z4p L4
50D ~Yo
where 8/(M} is that part of S situated in the interior of

the Mach forecone with vertex M, and thus influences M.
In the fallowing we shall denote by

[

A2 = (xy-xp)2-B2(zy-2p)2 n
where

g2

i

MZ -1 {:))

Since the integration in (&) is limited to §(M), A2:0 ,
Introducing (7) and (8) in (2) it follows that

(rh2 = 42 - B2 yg’ (9

The ordinate yg in (é) indicates the point where rH
becomes zero, and thus
v
L
By means of (9) and (10), the induced velocity (8) can
be expressed as

om

A

- 1 g - dys
V{MI== —curlh (X 2p) J da ———y——. (11
o 9P 7P PR
S'(M) _A

B
Integrating with respect toc yp in (11) we
obtain

= 4 - ) \
U(M)=—2—B-cur}h J Sg(xp, zpi do; (2
s'(+)
The integral in (12} represents the sum of vortices in
§(M)

Mgy = S gtxp, zp) dop (13
s
The coordinate sy gives the position of M with
respect to the Mach front wave, measured normally to
the wave, see Fig.1.
QObserving that

4
gin M= — 14
' e
cos/A= % (15
0

sy can be expressed as

A B
= Xy = |zl —= (18)
We shall notice that sy and hence r'(sM) display
different properties above (sy+) and below (sy-) S.
From (12) and (13), by taking into account (3), it
follows that

— 4 P > —
R s [ e T 2.
V== 5 152 Cesyd T+ B2=Tegy 1 (17
Introducing (18) in (17) it results
Ty = 4 s (e
2 bsM

where W is the unit vector mormal to the wave front
giving the orientation of the induced velocity

W= sonizy) AT - 2R (19

Moo o0

The flowfield due to the 2-D vortex distribution is
depicted in Fig.2. Contrary to the source case? the
induced velocities have different signs with respect to
the Mach waves above and below surface S,

Fig.2

1t will be observed that for sy »e, it results r(sM)=
=[(e)= T':}'i.e. a constant circulation; so that (12) implies
R

ViM)=0. Thus there are no perturbations behind the Mach
cones issuing from the trailing edge of a supersonic
airfoil. The same result is obtained in Ackeret’s theory
of 2-D supersonic small perturbations flow.

Let us denote by d the "thickness" of S along the line
s=constant, see Fig.l. Then, by applying the mean value
theorem for the integration along the line sp=tonst., (13)
vields

Sm

My = g gtsp> d (sp) dsp (20)
0
where,
J(Sp)
gisp) Cr(SP) = S gixp, zpd dt
0

Finally, the sum of vortices in 5(M) takes the form
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Sm

Mgy = S PP dsp ¢21)
0
where
PPy = glxp, zp> d P (229
By means of (22), (18) becomes
UM = —4— o w (23

Let us calculate mow the mean value of the induced
velocity
e

Y

=L\
mean = 5" \ UePy dsp (24

o
Taking into account (13) the integration of (24) yields
g -

mean - 2 e 25
where rt is the total circulation :
My =T
Similarly, one can obtain from (23) and (24)
n (26

m =m
l"mean "_2" Fmean

In order to obtain the result concerning vortex lines
we must take the limit of § for e = 0. In this situation
(23) becomes

For the case of a vortex line of finite strength

H"t # 0) it results an infinite mean induced velocity
Vmean® 1his Kinematic solution would contradict the
perfect fluid assumption, since the pressure equation can
be expressed asd

A o2

-2 3 ==

7 Ve ¢ by constant (275
relation that cannot account for infinite velocities .

Therefore we shall consider only vortex lines of
infinitely small strength (e.g. dl=}dx) so that, according
to (25) and (26)

s

= i —
Ymean é_,'g )

From the small perturbations assumption it follows
that Kkmean {4 Ugge

In addition it will be supposed that Y satisfies the
necessary continuity and boundedrness conditions that
enable the extension of all the properties of X‘mean and
Vmean discussed above to y and V(M).

4, The calculation of the force acting on

a 2-D vortex distribution in supersonic regime

In order to determine the force acting on a vartex line
under the assumptions considered, we shall apply the
momentum theorem to the configuration depicted in Fig.3.
As opposed to the arrangement used in3, the leading and
trailing edges of S lie no longer on the same axis Ox.

Let L and D be the components of the force with which
the flow acts upon the vortex distribution alomg the axes

X
Fig.3
Oz and Ox; respectively. Then, we can write3
DT+LK = g (ppoo? T ds + | SUL (Uy) ds (28)
$c s$c
where Vt is the total velocity :
Uy = U7 + V (29)

and V is the induced velocity.
Next we shall observe that on Cy, Cq, Cg and Cy the
induced velocities are zero, which leads to

P
SQUmT)(U,osin/t)ds - EL(LLQT)(U,Qsln/u)ds
CitCy €+ G,

DT+LR= €30)

- {[(Umw\u)T-l-w—Lf](Uwcos/u)ds + J(p-pw)ﬁ ds

\ C5+Ce s+ e

Since

5 (U YU #ud Tk IRY ds = 0
$c
the drag D component along the Ox axis becomes

M,
C5+C C5+Cg
D= (31
B
- u —ds
[ron
C5+C

In the small perturbations approximation the
following formulas apply

(3D
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§ -, =~ =M (33
oo
By means of (32) and (33) the drag D can be expressed
as

D= S fu B ds €34)
C5+Cq
Taking into account (19} and (23), (34) becomes
foo B
= == — (P12 (35
D=z g | 1§ P12 dsp ’
C5+CG
Integrating (35 one nbtains
fo B
= 2= (34>
D= bl
where
2
[ Coeds,
¥, = Sl (37)
s ¥(P) ds,
Gyt
Finally, the drag takes the form
p=-fuw [y €38)

where wy represents a mean downwash associated to )4
(37 by means of (19) and (23) as follows

Wi = - ‘%‘ %Xi (3%)
Equation (22) vields by projection on Oz axis
A 4
- | (p-py—ds + (p-p, ) — ds
Meo Meo
5 C
L= (40>
B
+ U,,—d
Sﬁw T
C5+Cg
From (40) we obtain
B U, —- §¢P> dsp +
2 Mo
s+
L= (413
+ S P01~ L M2) Uy -2 BCP) dsp
U 2Me
G5+ Ce
Since as discussed previously ud<l,, (41) vields
L= ful, [y €42)

The same result has been obtained by Linkowskil for
airfoils in linearized supersonic flow using a different
approach, mentioned in the introduction.

From (34) and (42) it can be inferred that

(43

The same ratio of drag to lift can be expressed by
taking into account (32) and (42) as

%:-lﬂ (a4)

Vo

3. Conclusions

It must be observed that the force exerted by a
supersonic uniform flow under the small perturbations
assumption on a 2-D vortex distribution has a wave drag
component directed along the freesiream velocity, unlike
in the incompressible case, From (43) and (8) it results
that the wave drag tends to zero for Meo= 1. This shows
that for scnic speeds the drag cbtained for the
supersonic regime is in good correlation with the Known
result of zero drag (D’Alembert’s paradox) characteristic
for the subsonic regime.

We shall notice that according to formula (35) the
drag is positive for any non-zero distribution of
vorticity.

In the derivation cf the above mentioned formulas it
was assumed that the freestream velocity and the
vorticity are perpendicular. If the angle V=4, ¥) # 90°,
the freestream velocity can be decomposed in a velocity
rmormal to the vortex line, U,sinVy, and arother one along
it. Obviously only the velocity normal to the vortex lime
interacts with it so that the lift and drag become,
respectively

L= Ll sind

and

D - K,OWI rt sin\)

Thus, it is possible to express the {force on the
vortex lime similarly to the subsonic Kutta-JouKowski
theorem

0

Fo ST +uw Ox €45)
In the small perturbations approximation ud<{l, and
therefore the force exerted on a 2-D vortex distribution
takes the form
F= §o UgnTy €44)
where —\’—'t is given by (29).

In order to obtain the force on a vortex line, equation
(48) will be considered in the limit e 0. In this case the
strength of the vortex line becomes infinitesimal in
order to preserve the basic assumptions of small
perturbations and perfect fluid, as shown previously.
The force generated by a supersonic flow on the vortex
line results as

dF= ?“Utx dF

This formula is somewhat similar to the subsonic one
(the Kutta-Joukowski theorem). However, two differences
must be pointed out :

1) only infinitely small stremgth vortex lines can be
accounted for within the small perturbations assumption,
and

2) the total velocity, including the one induced by the
vortex under observation, has to be considered.

The latter characteristic might lead us to the conclusion
that for supersonic flows the total velocity plays the
same raole as the freestream velacity for subsonic flows.
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Moreover, the force is perpendicular to the total velocity
which implies no force ("drag") along i3,

For example, in the case of a 2-D flat plate modelled
by means of a constant vortex distribution J , the force
can be written as

Fe fo T xyce T

where ¢ is the chord of the plate.

Since U, 1+V is oriented along the flat plate F acts
perpendicular to the plate,; which implies that the lift is
L ¢ F while the drag is D =& F, a5 in Ackeret’s theory.
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