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Abstract
The flow over a slender delta wing in a
periodically changing free-stream, is investigated
theoretically and experimentally. The theoretical
model assumes the wings to be slender and infinite-
simally thin with straight spanwise  cross-
sections. The amplitudes and frequencies of the
periodic motion are assumed to be very small so
that the flow is governed by the steady two-
dimensional Laplace equation. Time dependence is
introduced through the boundary condition. The
theoretical model was validated by the visuali-
zation of the flow over a delta wing in a periodic
translational motion in a water tunnel. The
vortical flow field over the wing was visualized by
the hydrogen-bubbles technique. The spatial tra-
Jjectories of the leading edge vortices as a func-
tion of several parameters, were found from the
flow visualization results. Good agreement between
the theoretical and the experimental results was
found, as long as the small-perturbations assump-
tion was justified. The results also show that the
effects of a periodic flow are comparable with
those of a periodically translating wing, under
these assumptions and Galilei transformation.

Introduction

One of the concepts of increasing the perfor-
mance envelope of future aircraft is super maneu-
verability. This concept which was introduced by
Herbst [1], is based on recent developments in air-
craft propulsion, control and aerodynamics. The
contribution of aerodynamics to super maneuver-
ability results from its unsteadiness. Numerous
studies on unsteady-airfoil flows were carried out
in the past, beginning with Theodorsen [2] and von
Karman and Sears [3]. Recent studies are motivated
by super maneuverability. They are based on the
observation that a pitching airfoil generates
large-scale vortical structures (Helin and Walker,
[4]). These structures can cause flow reattachment
to the airfoil surface, even at post-stall angles
Walker and Chou (5] showed that these vortical
structures induce an increased suction over the
wing’s upper surface, in a manner similar to the
effects of the leading-edge vortices on a delta
wing, and generate a large additional 1lift force. A
theoretical model for a pitching slender wing at
small amplitudes and frequencies was proposed by
Randall [6]. Compared with the many studies of a
pitching airfoil, relatively little work was done
on unsteady chordwise motion. Lee et al. [7] tested
a delta wing in a free stream with periodically
changing velocity. Their measurements suggested
that the unsteady 1ift coefficient reflected the
free-stream acceleration.

This work presents a mathematical model for an
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infinitely thin, slender wing of a symmetric cross
section in a periodically varying free-gtream velo-
city with small amplitudes and frequencies. Such a
wing is also tested experimentally in a chordwise
periodic translational motion in a water tunnel.
The mathematical model is an extension to unsteady
flow of the Smith [8] model for slender wing in a
steady flow. It is also based on the model of
Randall [6] for slender wings that are pitching
periodically with small amplitudes and frequencies.
The present work deals with the influence of accel-
eration and deceleration of the free-stream on the
position of the leading-edge vortices, the vortices
strength and 1ift coefficient.

The Theoretical HModel

Let %, v, Z be rectangular Cartesian coordin-
ates, with their origin at the apex of the wing.
The x-axis parallels the free-stream direction, the
z-axis lies in the plane containing the center line
and the x-axis, and the §-axis is chosen to com-
plete a right-hand triad. The solution will be
worked out in the cross-flow planes that are normal
to the center line and contain the straight cross
sections. The value of x that defines the cross-
flow plane is a parameter only. Let y and z be
Cartesian coordinates in the cross-flow plane with
their origin at the intersection of this plane with
the center line. The y-axis lies along the straight
cross section, and the z-axis is perpendicular to
the y-axis. y and § have the same direction and the
direction of z and z differ by «. Figure 1 presents
the coordinate systems.

Assuming now that the flow is irrotational, a
velocity potential $(x,¥,2) exists such that the x,
y and z components of the disturbance velocity
(respectively u, v and W) are given by

8¢ a¢

u=&» {}=~:‘» C‘:a—? (1)
dy 8z

The linearized potential equation [9] of an un-
steady flow (assuming that the disturbance velo-
cities are very small compared with the free-stream
velocity) is:

2 2 2 2
¢ 00 8¢ _ 109 (2)
ax®  ay® a2 a§ at?
2 2 2
For slender wings a¢ << 8 ¢, g¢ and for small
2 ~2 A2
x ay az
2 2 2
amplitudes and frequencies —l é—% << gjg, gj%» S0
at dy oz

that the governing equation becomes the steady two-
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dimensional Laplace equation

2 2
aqusi.an:O (3)
ay dz

Let Z denote the complex variable y+iz, where
yv+izv is the vortex position. It is expedient to

introduce the transformation

z%% = 2% - %° (4)
In the Z*-plane the straight cross section becomes
part of the imaginary axis so that Z*5Z as Zoow
(Fig. 2a).

The free-stream is time dependent and contains
a steady and an unsteady component

U= UO + e-u(t) (5)

where U0 is the steady free-stream component, & is

a dimensionless quantity that 1is smaller than
unity, and ult) ~ 1.
U
[}
The boundary conditions in the cross-flow
plane: w=0 on the wing surface, and at infinity
w = [UO + s'u(t)]a (6)
determine the solution of Eq. (3). The complex
potential in this case is given by (6]
1" Z<l('__.2§>
W= - i[U + e-u(t)]ocz* + zr In v (7)
] mi Z%,T%
v

where Z* is defined by Eq. (4) and T' is the vortex
strength. Then "Kutta" condition, or the finite
velocity at the leading-edges (Z=tcs), is deter-
mined in the transformation plane by dW/dZ*=0 at
Z*=0., This means that Z*=0 is a stagnation point,
and the boundary condition then is

. R %
r_ a[UO+£ u(t)12v2v

5 (8)

VAL VA
v v

In the steady case, the total force on the vortex
and on the cut (here, the leading-edge vortex is
replaced by a concentrated vortex and feeding sheet
(Fig. 2b)) in the cross-flow planes must vanish,
otherwise the vortex would not be stationary. The
force acting on a length element dE of the cut is

cl:

F_ = ipgds [Zv—cs] [r' *[G] r] (9)

where dashes and dots denote differentiation with

respect to £ and t, respectively. This force is due

to a pressure difference Ac across the cut. The
p

force acting on a length element d§ of the vortex

is

This force, known as the Magnus force, is the pro-
duct of —ideE and the velocity perpendicular to

the vortex at 2Z2=Z . LA and v, are the velocity com-
v

ponents at Z=Zv and are given by

dw1

R R (1)

1 1 dz 727

v

where wl is
T

W =W- — 1n[2—2 ] (12)

1 2mi v

The condition that the total force vanishes results
in

%{[Ev—cs)[[Uo+e~u(t)]r’+cf]+F[{Uo+s-u(t))z;+civ]

AR VAR Al 22
_cr v v v 1 _ _Ccs (13)
= 2m1  ZF o = 2
v |2¥2* 2%+Z% 277
v v v v Yy Vv

The term Z is the temporal variation in the posi-
v

tion of the vortex, and the term r expresses the

variation in the pressure coefficient
Acp=—[£} [r+{§]r} The unknown quantities T, 2
and 2: are replaced by the dimensionless quantities

¥, m, q
I = 2nU0057 (14a)
Z = csm (14b)

v

Z* = csq (14c)

v

Substituting Egs. (8) and (13)

results in

(14) into Egs. (4),

g =n" -1 (15a
a[1+ 'Eézl]Q'—
7= 2 (15b)
a+q
= [5-1] [[1+ -ulgt)]ar’ + 8—~ 2}]+[1+suét)]ﬁ’
o o] 0
+ m] +75’[1+a uét)][2_~1]
o 0o
2 3 2 2— 2—-2 2— -2
= yPnd 2R d F2m q g+2m g 9-q 9-q9 (15¢)

2in® (¢ T+ g q)

Let m, g and ¥ consist of a steady component and of
a small unsteady one [6]

m mo(s) + e-ml(s,t) (16a)

(16b)

o]
]

q,(&) + e-q (£ t)




7= VO(E) + e'vl(f;‘,t) (16c)

where the real and imaginary parts of the quanti-
ties in Egs. (16a-b) are written as

m, =, * iCO (17a)
mo=m o+ i (17b)
q = o*o + iro (17¢)
q =0, +it, (17d)
Equations (16) are now substituted into Egs. (15)

and the resulting equations are expanded in powers
of €, where powers of ¢ higher than unity are
neglected. It proves most convenient to choose 9,

for the dependent variable. From Egs. (16a) and
(16b) one obtains
mom1 = qoq1 (18&)
From Eqs. (16b), (16c) and (15b)
¥ q ¥ q _
v, =__..9.._°____.q +:__0qu1 + ¥, u[(Jt) (18b)
q,(a,+q,) q,(a,+d,) 0
From Eqs. (15c), (16), (18a) and (18b)
. )= R s c
[a1+1b1]q1+ {a2+1b2]q1+ s[a3+1b3}[q1 + T ql} +

0

(e}

+ s[a4+ib4][§;+ U; al}=[a5+ibs]u(t)—s[a5+ib6]ﬁ(t)

(18c)
where
X e 3~ — - - )z
al+1b1 = 21m0qoqo[qo+qo] [s [mo 1]A +s [Zmo 1]A]
5
+ 2ilsy’|m -1|+sm’ +s’y [2m -1||[4m 3'+q°— +
5% (M SIS 75 “Mo 090%o m_oqo
62
22 4 0 222,42 ,22 -
* 3md,9,t, m_o] - [6m0q0y0+4q070+4m03(0q0q0+
32— 222,222 22,2 —
* A9,7,0,42m 0y G5 HAY (9,9,79,7 07200y,
. 23, 22~ 2—2 -2 2—
-3oq - 9
* 27A [2m0q0+2m0q0q0+2m0q0q0 9% qoqo” (19a)
%
— +
m

S s 3— = - _ , ,
a2+ 1b2—21m0q0q0[q0+q0} [s [mo 1]B +sa*o

[=]

q m q 28’y q
+S_O—OO—__0_9+52m—1B+
— -2 — 0
m m m
0 s} 5}

+ 21[578[ﬁo—l]+sﬁé+s’7o[zﬁo~l)]

4 3— 2.2 2 22— .2 2_2— 2+
) [m0q0+2q0q0m0]-[2m070q0+4m070q0q0 "YOqO C{Oqo")’o

23, 22— 2-2 2— -2
+ Z'a'oB[2m0q0+2m0q0q0+2m0q0q0 9.9, qoqo]] (19b)
I — -
a3+1b3 = 21Am0qoq0[qo+qo]s[mo 1] (19¢)
a4+1b4 = Zlmoqo[qo+qo}s [mo—l]B + %; (194)
o
2i-m q’q !q +q '
a + ib = - booyo © [57'{ﬁ —1] + sm’
5 5 Uo o{ o o]
+ 2s 70[2m0—1]] +
27(? 23, 2 2- 22 2= -2
* —U;[2m0q0+2moq0qo+2moqoq0—q0qo-—qoqo] (19¢)
- % —
a6+1b6=21m0c10c{0 U—Z_ [q0+qo] (19f)
o
where
¥ 7.4
A 4_ 00 0_ and B & _————————0 0_
q,(q,+q,) q,(qa,*q,)
Equation (18¢) is a partial differential linear

complex equation for q,- Equations (17d) and (18c)

result in:

[a +a, ]a- +[b -b }r +s[a +a ]o"+s[b ~b ]1:’ +
1 2 1 2 1 1 3 4 1 4 3 1

sc + o sC < e
+ U__[a3+a4]¢1+U—{b4—b3]rl—asu(t) sasu(t) (20a)
o 0
[b +b }cr +[a -a ]1: +s[b +b ]o-’+s[a —a]r’+
1 2} 1 |71 T2 3 4} 1 3 T4 1
sc - . scC s e
+ G—[b3+b4]ol+ U—[a3—a4]rl-bsu(t) sbsu(t) (20b)
o 0
Let us assume, with no loss of generality, that
u(t) can be expressed as
u(t) = uoelwt (21a)
where
u_ = uc (21b)
0
Because Eqs. (20) are linear, o, and 7 can be
written in the form
twt (22a)
oi(g,t) = 62(5)8
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iwt

ti(i,t) = Tz(ﬁ)e (22b)
Equations (20) and (21) yield two ordinary
differential equations for o, and T,
[a1+a2+1sv[a3+a4]]02+[bz-b1+isv(b4—b3]]12+
+ s[a3+a4]02+s[b4—b3]12=[a5—iswa6]-uo (23a)
[b1+b2+1sv[b3+b4]}02+[az—al+isv(a3-a4]]12+
+ , _ P i
s(b3+b4]02+s(a3 a4)rz (bs 1swb6] u (23b)
where v is the reduced frequency defined by
_ cw
=T (24)
0

It can be shown that the values of 02(0) and 12(0)

are obtained by solving

[b1+b2]02 + [al—az]rz = bsu0 (25a)

[al+a2]¢2 + [b2~b1]r2 =3y, (25b)

when the values of all the coefficients are taken
at €=0.

Solution Process

The unsteady solution depends on the steady
one because aj,bj J=1+6 are functions of oy T

»

o
Co, n, that are steady-state parameters. Therefore,

the steady flow is calculated first, using Smith's
model [8] and the unsteady flow solution follows.
Equations (18a) and (22) define n, and §2

+ - -
- (7)00‘0 C0-':0)6'“2 (nOGO c00\0)1‘-2

7 = eiwt =q eiwt
1 2,2 2
no+Co
(26a)
_ (noro_cowo)wz_(n000+coro)ra iwt iwt
g, = e =Le
1 2+C2 2
%%
(26b)

Equations (18b) and (22) define v,

70 2 2 Y9 iwt iwt

¥ ={—~———————[v (0 ~-T ]+2b T T ]+7 ——}e =y e

1 2, 2 210 0 002 oU 2
00(00+ro) o

(27)

The physical quantities are obtained by combining
Egs. (14a-b), (16a) and (16c):

iwt

y = csn_ + ecsnhe (28a)
v 0 2

wt

i
= 28b
z, csc0 + ecscze ( )

iwt
= . 28
T 2nU00510 + € ZnUocsyze (28c)

where N, §2 are complex. The phase differences

between the velocity and the variations of the
vortex position and strength are given by:

1/2 ip mn,.
2 1 _ -1 21
= [n2r+n2iJ e o T e [" ] (29)
2r
1/2 igp g
2 .2 2 -1{ 721
= . . = = 29b
cz [<2r+€2i] R tg {C } ( )
2r
172 ig ¥
2 2 3 -1{%21
_ . . = G 29
7, [%,f?’a 1] e i, = tg [72r] (29¢)

where P9, and 9, are the phase differences

between the velocity and 7w, g and ¥y

2 2
respectively.

The Lift Coefficient

Randall [6] claims that Robinson and Laurmann
[9] used the momentum theorem to calculate the 1lift
on the wing, L(£), up to station &

3
L(&) = - p*R.P.{U WdZ+cj[g€ deZ]di (30)
c s} c
where C is the contour Z=Re19, with R a constant
and 6 defined by tgf=z/y.
Introducing the complex potential, W, into Eq.
(30) results in:
_ 222
L(£) = puc’s Uo[a+47000] +
22 i2wt
+ g-4pnc’s U0u0[70¢2+7200]e +
+ epnU?R el (0tHe) (31)
01
where
R, = V/4 af. Yo 2 2 g 2 Yo
1 c's [ZaU;+4[7002+7200]] +{vc j s aU;
o
2 (32)
4 oe}
and
2 2 Y
) c’s [Zaﬁg+4{7002+7200]]
¢ =tg F (33)
ve? 82| a2+ y o +y o | |dE
aUO o220
o
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The first term in Eq. (31) is the steady component

of the lift. The steady 1ift coefficient, CL , of a
0

delta wing is therefore

_ 1
CLO =3 AR[a+47000] (34)
The unsteady lift coefficient is given by:
2nKU?
C = [a+47 o )+
o) on+s-u(t)]2 eo
8nKUo i2
t e S uo[yov +y o )el wt
|U0+e-u(t)l 220
2
2nU R .
. 01 e1(wt+q>) (35)

|U0+C-U(t)lch2

where K is obtained from the wing’s leading-edge
equation.

Experimental Apparatus and Procedure

The experiments were conducted in a 22 cm x 22
cm x 70 cm test section water tunnel. The free-
stream velocity was 18 cm/sec. The model was 1 mm
thick with a root chord of 14 cm with sharp
leading-edges swept 75 degs. The flow over the wing
was visualized by the hydrogen-bubbles technique.
The bubbles were generated by electrolysis over
three thin platinum strips (each 0.2 mm thick, 4 mm
wide and 40 mm long) were planted in the left
leading-edge (Fig. 3) that were connected to the
negative pole of a D.C. power source, and the
tunnel wall served as the anode. The wing performed
a sinusoidal translational motion that was driven
by a 60 watt D.C. motor. The amplitude of the
motion was controlled by an excenter with a vari-
able eccentricity. The wing rode on a sled that
moved parallel to the flow direction connected by a
wire to the excenter. The frequency of the motion
was controlled by the motor voltage. The motion-
amplitude range was 0+1.5 cm and the frequency
range was 0.5+2 Hz. The wing motion mechanism is
shown in Fig. 4. The experiment were conducted at
angles of attack of 10 and 15 degs. The test para-
meters are listed in Table 1.

The principal source of 1light wused to
alluminate the flow in the working section con-
sisted of a 1000 watts lamp and a cooling system.
Normally, the wing was viewed with a plane of light
parallel to the wing {(for side view visualization)
and perpendicular to the wing (for top view visual-
ization). The hydrogen bubbles were caught in a
rolling motion generated by the leading edge,
vortex shed from the edge of the wing. The spanwise
and the vertical position of the leading-edge
vortex were found by using a Video Position
Analyzer (model VPA-1000). The VPA used to analyze
the photographs taken by a video camera (model DXC-
M2P SONY).

Results and Discussion

Out of the results of the many experiments,
those at 15 deg angle of attack with an oscillation
amplitude of A=0.75 cm and frequency of w=0.66 Hz
are shown in more detail. The root-chord based
Reynolds number was 2.5x10 . The vertical position
of the vortex is shown in Fig. 5 and its spanwise
position is presented in Fig. 6. A full cycle of
the motion is shown in both figures. At t/T=0,1
(which is the center of the forward motion, where
the velocity is at its maximum and the acceleration
vanishes) the vortex is closest to the surface and
nearest to the leading-edge. At the center of the
rearward motion (t/T=0.5) where the velocity is at
its minimum and the acceleration vanishes, the
vortex is the farthest inward from the leading-edge
and farthest from the surface. At the foremost
point of the motion (t/T=0.25), at maximum deceler-
ation and zero velocity, the vortex is roughly at
the mid-position between the previous two. It is
seen that at this time the vortex breaks down near
the trailing edge. At the rear most point of the
wing travel (t/T=0.75) when the wing is under maxi-
mum acceleration and at zero velocity, the vortex
is almost at the same position as at t/T=0.25, but
no breakdown 1is observable over the wing. It Iis
clearly seen that the main effect of the transla-
tional motion is on the vertical position of the
vortex.

Figure 7 compares the experimental with the
results computed by the mathematical model pre-
viously described. Test conditions are identical to
those in Figs. 5 and 6 show the displacement of the
vortex from its steady-state position in the trail-
ing edge plane (x/c=1) during a full cycle of the
periodic motion. The agreement between theoretical
and experimental results is good. The hysteresis
loop in Fig. 7 shows that the major effect of the
period motion is on the height of the vortex above
the wing, and that its maximum displacement from
its steady-state position is at t/T=0, 0.5 and 1. A
comparison of the theoretical and experimental var-
jation in the chordwise direction of the vertical
and of the spanwise vortex position, is presented
in Figs. 8 and 9 respectively at an angle of attack
of 10 deg, a frequency of 1 Hz and motion ampli-
tudes of 0.35, 0.75 and 1.1 cm. It can be seen that
the theoretical model predicts quite well the span-
wise variation of the vortex position. The pre-
diction of the vertical variation of the vortex
position is less satisfactory. This can probably be
explained by the fact that the vertical variation
is not small, whereas the theoretical model assumes
small perturbations. Figures 8 and 9 present a
monotonic increase in the displacement of the
vortex along the chordwise direction. This also
shows that there 1is a correlation between the
amplitudes of the vortex motion and of the wing
motion. This correlation lead to the plotting of
the displacements of the vortex, normalized by the
amplitude of the wing motion (Figs. 10, 11). This
normalization collapsed all the data on a single
curve. This result indicates a linear relationship
between the relative displacement of the vortex

position and the wing-motion amplitude. Such a
relationship is shown in Figs. 12 and 13. The
agreement between theory and experiment 1in the

relation spanwise displacement is excellent (Fig.
13). A lesser agreement is found in the vertical
displacement as discussed above.
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Vortex Strength

The variation of the vortex circulation in the
trailing-edge plane (x/c=1) over one cycle of the
wing motion is shown in Fig. 14. The test condi-
tions are: angle of attack of 10 deg, frequency of
1 Hz and motion amplitudes of 0.35, 0.75 and 1.1
cm. Increasing the amplitude of the wing motion at
a given frequency, also increases the changes in
the vortex strength. The relation between the
amplitudes of the variation in the circulation and
of the wing motion, seems to be linear (Fig. 15).
The influence of the frequency of the wing motion
on the circulation of the vortex in the trailing-
edge plane over a full motion cycle is presented in
Fig. 16. The test conditions are a=10 deg, a=1.1 cm
and w=0.66 Hz and 1 Hz. There seems to be a correl-
ation between the vortex strength and the wing-
motion frequency. The chordwise distribution of the
circulation itself at various motion amplitudes is
presented in Fig. 17. As expected, the circulation
increases when the distance from the wing apex
increases.

Unsteady-Lift Coefficient

The variation of the dynamic 1lift coefficient
over one cycle of the wing motion at an angle of
attack of 10 deg is shown in Fig. 18 at a constant
frequency of 1 Hz and with the motion amplitude as
parameters. The same variation, but at a constant
motion amplitude of 1.1 cm with the motion fre-
quency as a parameter, is presented in Fig. 19. The
effects of the motion parameters on the dynamic
lift coefficient are similar to those on the circu-
lation. It is quite clear that the acceleration and
deceleration of the wing should effect the 1lift
force. However, the phase difference observed here
indicates that the acceleration is not the only
mechanism that effects the 1ift. This is even more
strongly evident in Fig. 20 that compares the time
histories of the dynamic 1ift increment and of the
acceleration of the wing. Not only is there a phase
difference, but also the character of the 1ift var-
iation in the second half of the cycle differs con-
siderably from that of the acceleration. These
effects must be due to the displacement of the vor-
tices, in addition to the wing acceleration.

Conclusions

The good agreement between the vortex unsteady
position as predicted by the theoretical model and
between the experimental results, validates both
the theoretical model, and the assumption that the
Galilean transformation can be used as long as the
amplitudes of the motion of the wing, as well as
its frequencies (and consequently its acceleration)
are small. The above means that the theoretical
model of a freestream flow with a periodic varia-
tion in its velocity (a not very practical possi-
bility) can predict the results of a periodic vari-
ation in the flight speed of a wing as long as the
perturbations from steady-state are small. With the
above in mind, it can be concluded that a periodic
variation in flying speed will affect the leading-
edge vortex position above the wing as well as its
circulation and the generated 1ift. Another con-
clusion is that the 1lift is influenced both by the
acceleration of the wing themselves, as well as by
the displacement of the vortex. It is suggested
that the responses of the vortices and of the lift
to the periodic speed variation can furnish at
least a qualitative indication of the influence

that sudden acceleration of deceleration of the
aircraft might have over the 1lift.
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Fig. 1: Coordinate systems.
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Fig. 6: Top view of
the vortex over

oscillating wing.
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Fig. 14: Vortex strength at various amplitudes.
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Test No. o’ (Hz) A(cm)
1 10 0.66 0.35
2 10 0.66 0.75
2 10 0.66 1.10
4 10 1 0.35
5 10 1 0.75
6 10 1 1.10
7 15 0.66 0.35
8 15 0.66 0.75
9 15 0.66 1.10

10 15 1 0.35
11 15 1 0.75
12 15 1 1.10

Table 1: The list of the experiments.
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