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ABSTRACT

The unsteady Euler equations and the Euler equa-
tions of rigid-body dynamics, both written in the mov-
ing frame of reference, are sequentially solved to simu-
late the limit-cycle rock motion of slender delta wings.
The governing equations of fluid flow and dynamics
of the present multi-disciplinary problem are solved us-
ing an implicit, approximately-factored, central-difference
like, finite-volume scheme and a four-stage Runge-Kutta
scheme, respectively. For the control of wing-rock
motion, leading-edge flaps arc forced to oscillate anti-
symmetrically at prescribed frequency and amplitude
which are tuned in order to suppress the rock motion.
Since the computational grid deforms due to the leading-
edge flaps motion, the grid is dynamically deformed using
the Navier-displacement (ND) equations. Computational
applications cover locally-conical and three-dimensional
solutions for the wing-rock simulation and its control.

INTRODUCTION

The dynamic phenomenon of wing rock is character-
ized by large-amplitude, high-frequency, rolling oscilla-
tion with a limit-cycle amplitude. The rolling oscillation
is self excited and it is triggered by vortex-flow asymme-
try or vortex breakdown on highly swept delta wings at
high angles of attack. The study of this phenomenon is
vital for the dynamic stability and controllability of high
performance aircraft during maneuvering and landing.

The literature shows that several experimental
investigations!® have been conducted to gain basic un-
derstanding of the phenomenon. Nguyen, et al.! tested
a flat-plate delta wing with 80° leading-edge sweep for
forced-oscillation, rotary and free-to-roll tests. The free-
to-roll tests showed that the wing exhibited a rock motion
at angles of aftack greater than 25°, and that the rock mo-
tion reached the same limit-cycle response irrespective of
the initial conditions. Levin and Katz? tested two delta
wings with leading-edge sweeps of 76° and 80°. They
found that only the wing with the 80° sweep would un-
dergo a rock motion. Nelson and his co-workers®> con-
ducted a series of experimental studies to investigate the
mechanisms responsible for wing rock on a delta wing
with 80° leading-edge sweep. Their analysis revealed that
the primary mechanism for the phenomenon was a time
lag in the position of the vortices normal to the wing
surface. Moreover, they concluded, through the analy-
sis of separate contributions of the wing upper and lower
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surface-pressure distributions, that the upper surface pres-
sure provides all of the instability and little damping in the
roll moment and that the lower surface pressure provides
the classical roll damping hysteresis. Morris and Ward®
conducted dynamic measurements in both a water tun-
nel and a wind tunnel on a delta wing with leading-edge
sweep of 80°. Their results showed that the measured
hysteresis loops in the water tunnel were opposite in di-
rection to those of the wind tunnel. They concluded that
the hysteresis direction does not play as decisive a role as
previously thought in initiating and sustaining wing rock.

Erickson’® analyzed experimental data for aircraft
configurations at high angles of attack in an attempt to
reveal the flow processes which generate wing rock. He
concluded that wing rock phenomenon for slender wings
is caused by asymmetric-leading-edge vortices and that
the voriex breakdown provides a limiter to the growth
of wing-rock amplitude. He also identified another two
mechanisms for limit-cycle oscillations in roll for ad-
vanced aircraft.

The literature review showed that numerical simula-
tion of this phenomenon for low speeds has recently been
presented by Konstadinopoulos, et al.’. This has been
followed by developments of analytical models to inves-
tigate the parameters affecting this phenomenon. Nayfeh,
et al.1%!! have presented two analytical models and Hsu
and Lan!? have presented one analytical model. The im-
proved analytical model of Nayfeh, et al.!! proved to
be superior in comparison with the Hsu and Lan model
and more accurate than their first model of referencel®.
The model of reference!! accurately fitted the rolling mo-
ment coefficient, which was computed by a vortex-lattice
method, using five terms which included the linear acro-
dynamic damping and restoring moments and the nonlin-
ear aerodynamic damping moments. With this model, it
was shown on the phase plane that both the wing rock
and wing-roll divergence were possible responses for the
wing. Hsu and Lan’s model cannot predict wing-roll di-
vergence. A serious question which can be raised regard-
ing the work in references 9-12 is: how accurate the fluid
dynamics solution is, using the vortex lattice method?
Moreover, the fluid dynamics model limits its applica-
bility to low-speed flows and to angles of attack below
the critical value for vortex breakdown. Moreover, the
vortex lattice model also cannot predict separated flows
from smooth surfaces.
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The first computational unsteady solution for the
forced-rolling oscillation of a delta wing, which was
based on the unsteady Euler equations, was presented
by Kandil and Chuang!®. The solution used the locally-
conical flow assumption for supersonic flows in order to
reduce the computational time by an order of magnitude
as compared to that of the three-dimensional solutions.
Forced-pitching oscillation of airfoils were also consid-
ered in a later paper by Kandil and Chuang'®. The first
unsteady three-dimensional Euler solution for the forced-
pitching oscillation of a delta wing was also presented
by Kandil and Chuang'®. The unsteady Navier-Stokes
solutions were also used by Kandil and Chuang!® for
the forced-rolling oscillation of a delta wing under the
locally-conical flow assumption. Batina!’ developed a
conical Euler solver, which was based on the use of un-
structured grids, and used it to solve for the flow around
a delta wing undergoing forced-rolling oscillation under
the locally-conical flow assumption. Later on, Lee and
Batina!® extended the Euler solver to include a free-to-
roll capability to solve for a freely rolling deita wing
which exhibited wing rock. The solution was based on the
locally-conical flow assumption. In Ref. 19, the present
authors studied symmetric and anti-symmetric forced-
rolling oscillations of the leading-edge flaps of a delta
wing. A hinge is considered at the 75% location of the
local half span and the leading-edge flaps are forced to
oscillate both symmetrically and anti-symmetrically. The
Navier-Stokes and Euler equations are used to solve the
problem along with the Navier-displacement equation to
account for the grid deformation due to the leading-edge
flaps motion. In a later paper by the authors?’, the effects
of symmetric and anti-symmetric flaps oscillation with
varying frequencies have been investigated for two flow
conditions. With the aid of these studies, the authors®??
studied the wing rock phenomenon as well as its ac-
tive control using anti-symmetric tuned oscillations of the
wing leading-edge flaps. The sequential solutions of un-
steady Euler equations and the Navier-displacement equa-
tions along with the Euler equation of rigid-body rolling
motion were used to obtain the solutions for these prob-
lems. The locally-conical flow assumption was also used
throughout these solutions. Simulation of wing-rock and
wing-divergence motions was presented by the authors
for the three-dimensional flows in Ref. 23.

In the present paper, the unsteady Euler equations and
the Euler equations of rigid-body dynamics, both written
in thé moving frame of reference, are used to simulate
the limit-cycle rock motion of slender delta wings. Con-
trolling the wing-rock motion is achieved by using anti-
symmetric forced-oscillation of the wing leading-edge
flaps. For the active control of wing rock, the grid is
dynamically deformed using the ND equations.

FORMULATION

The formulation of the problem consists of three sets
of equations, The first set is the unsteady, compressible,
Euler equations which are written relative to a moving
frame of reference. This set is used to compute the
flowfield for steady or unsteady flows. The second set is
the unsteady, linearized, Navier-displacement equations
which are used in the moving frame of reference to
compute the grid displacements whenever the leading-
edge flaps oscillate. If the leading-edge flaps do not
oscillate, the ND equations are not used. The third set
is the Euler equations of rigid-body motion for the wing
only or for the wing and its flaps. This set is used to
compute the wing motion for the wing-rock problem, It
is solved in sequence with the first set. For the control
of wing-rock motion, this set is solved in sequence with
the first and second sets.

Unsteady Euler Equations

Using the transformation equations from the space-
fixed frame of reference to a moving frame of reference
(Refs. 13-15), the non-dimensional, unsteady, compress-
ible, Euler equations are transformed to the moving frame
of reference. Such a transformation eliminates the mo-
tion of the computational grid for rigid wings having
time-dependent rigid-body motion. Since the flaps of the
wings are allowed very small relative rigid-body motion
per time step of the integration scheme, one must con-
sider the computational grid as time-dependent whenever
the grid is updated, and the grid speed in Egs. (4) and
(5) must be computed. Hence, the Euler equations are
given by
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The reference parameters for the dimensionless form
of the equations are L, a., L/a. and p.. for the length,
velocity, time and density, respectively. Here, L is a
reference length which is taken as the wing root-chord
length,

In Egs. (1)-(11), the indicial notation is used for con-
venience. Hence the indices k,{,» and s are summation
indices and m is a free index. The range of k,{, m,n,

and s is 1-3 and & = ;2.

The term 05: represents the mth component of the

grid velocity. It is set equal to zero when the grid is not
being updated. In Egs. (1)-(11), p is the density, u, the
relative fluid velocity component, V, and @, translation
velocity and acceleration of the moving frame, V; and
a, the transformation velocity and acceleration from the
space-fixed to the moving frames of reference, @ and &
the angular velocity and acceleration of the moving frame,
7 the fluid position vector, p the pressure, ¢ and h the total
energy and enthalpy per unit mass relative to the moving
frame and v the gas index which is set equal to 14.

Unsteady, Linearized Navier-Displacement
Equations

The details of the derivation of these equations are
given by the authors in Ref. 20. The dimensionless form
of these equations is given by
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where % is the displacement vector of a grid point. For
each grid point (a fluid element), Eq. (12) is integrated

over a short time range (¢ —1,) where A, p and p are
kept constants. This yields the equation
pMoc

t
1 _ 9
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= p= + C,(7) (13)

In Eq. (12), we use R, to refer to the mesh point
Reynolds number which is different from the flow
Reynolds number. This has been done in order o provide
a limiter for the grid displacement to avoid grid distortion
or overlapping, particularly in regions of high flow rever-
sal. Equation (13) is the vector form of the ND equations
to be used for computing the grid-points displacement
subject to displacement boundary and initial conditions.
The equation is a parabolic equation in time which is in-
tegrated by using the alternating direction implicit (ADI)
scheme. The constant C, () in Eq. (13) is computed from
the preceding time-range integrations.

Euler Equation of Rolling Rigid Wing With and
Without Oscillating Leading-Edge Flaps:

Figure 1 shows a sketch of a wing and its flaps which
are undergoing rolling motions. The rolling motion of
the flaps is anti-symmetric. The wing is fixed to an
axile which rotates in bearings. The bearings damping
coefficient is A. Torsional springs of stiffness k are
assumed at the ends of the axle. The xyz axes which
are fixed to the wing are assumed to coincide with the
principal axes of inertia of the wing-flaps configuration.
At section A-A, the wing half span is /; and the flap
width is /,. The masses of the wing and each flap are m;
and m;,, respectively, and their respective mass-moment
of inertias around their centers of mass are I.; and [,.
The generalized coordinates of the system are taken as 6,
and 6, which are measured from the horizontal position.
If the aerodynamic moment of the wing and its flaps about
the x-axis is C, and if one uses the Lagrangian dynamics
for obtaining the governing equations of motion, one gets
the following equation for the #; coordinate

C,- - (2.[,;,;2 - %I% - Tnglllg CcOoSs 921)9‘21

+ mzlilzégi sin 021

- (Iul + 2L, — %I% — molyl; cos 021) ¢,
- mzlllzéf sin 621
— 2m211120.10'21 sinfy + A0 + 7661 (14)

where 0y = 6, — #,, I,,, and I, are the mass moment
of inertia of the wing and the flap, respectively, around
the wing axis of rotation. If the angles 6; and 6y are
assumed to be small, then the linearized equation reduces
to

Cr - (2[,,:2 - 2;—21% - mzhlz) 621

= (Izzl + 21:51:2 - %I% - m21112)01

+ A6+ k6, @15
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On the other hand, if the flaps are not deflected and the
wing and its flaps roll as a rigid body, Eq. (15) becomes

Cr=1I.0 +20 +k0 (16)

where I, is the mass moment of inertial of the composite
wing-flaps configuration without relative motion.

Equation (16) governs the wing-rock problem while
Eq. (15) governs the linearized control of wing-rock prob-
lem by using a prescribed motion of the leading-edge
flaps.

COMPUTATIONAL SCHEMES

The computational scheme used to solve Egs. (1)-
(11) is an implicit, approximately-factored, centrally-
differenced, finite-volume scheme*>. Added second-
order and fourth-order explicit dissipation terms are used
in the difference equation on its right-hand side terms,
which represent the explicit part of the scheme. The Ja-
cobian matrices of the implicit operator on the left-hand
side of the difference equation are centrally-differenced
in space, and implicit second-order dissipation terms are
added for the scheme stability. The left-hand side spa-
tial operator is approximately factored and the difference
equation is solved in three sweeps in the ¢!, &2 and &3
directions, respectively.

For the wing-rock problem, Eq. (16) is solved using
a four-stage Runge-Kutta scheme. Starting from known
initial conditions for # and 6, the equation is explicitly
integrated in time in sequence with the fluid dynamics
equations, Egs. (1-11). Equation (16) is used to solve for
#, @ and ¢ while Egs. (1-11) are used to solve for C,.
If the initial C, is nonzero, a case of asymmeltric steady
flow at initial conditions, the initial values of ¢ and ¢ are
set equal to zero and the motion is initiated by the initial
rolling moment,

For the control of the wing-rock problem using flaps
oscillation, the motion of the flaps; 83;, 65, and 6, are
specified and Eq. (14) (nonlinear equation) or Eq. (15)
(lincarized equation) is used to solve for §;, @, and §,.
The fluid dynamics equations, Egs. (1)-(11), and the grid-
deformation equation, Eq. (13), are sequentially used to
solve for C,.

COMPUTATIONAL APPLICATIONS
AND DISCUSSION

Simulation of Wing-Rock-Motion
(Locally-Conical Flow)

A delta wing of sweep-back angle of 80°, at an angle
of attack of 35° and a Mach number of 1.4 is considered.
The wing has an elliptic section with sharpened leading
edges. The, wing mass-moment of inertia about its x axis
is 0.02, the bearing damping coefficient is 0.2 and the
spring stiffness is 0.74. The unsteady Euler equations

are solved for locally-conical flows. The computational
grid is of 64 x64 x2 in the wrap around, normal and axial
directions, respectively. For these flow conditions, the
steady flow is asymmetric, and hence C, # 0 at t = 0.
Therefore, we set 6° = §° = 0. The Euler equations of
fluid flow and of rigid-body dynamics are sequentially
integrated accurately in time with At = 0.0025. Figures
2 and 3 show the results of this case. Figure 2 shows the
time responses of ¢ , C; and C, and the corresponding
phase planesof 6 vz 4 ,C,vz @ and C, vz 8 . The time
responses show the long time, t ~ 7, it takes to build up
the growing roll-angle response. The responses clearly
show that the # and C; continuously increase in time
with increasing frequencies. The limit-cycle response is
reached at t o~ 21 which is clearly shown on the phase
planes. The mean amplitude of ¢ is -0.5°, its maximum
is 40° and its minimum is —41°, Figure 3 shows snap
shots of the surface-pressure coefficient and cross-flow
velocity at the instants corresponding to points 1 and 2
on Fig. 2. The strong asymmetric motion of the primary
vortices are clearly seen. Also, the surface-pressure-
coefficient response clearly shows the generation of the
restoring rolling moment to the wing motion.

Active Control of Wing Rock Using
Leading-Edge Flaps Oscillation

The next step is to control the wing rock response
of the previous case. For this purpose a leading-edge
flap hinge is assumed to be at the 76% location of
the local-half-span length. The flaps motion is intro-
duced at t, = 13.02 when 6, = 4° and C, = 0.0.
The flaps motion is anti-symmetric and is given by
021(t) = 021 max sinke(t — t,) , where ke is the flap re-
duced frequency. With the aid of the previous values of
d;, C; and k of the wing (can be measured by sensors
to feed back the leading-edge flaps motion), we chose
G21max = —0.5° and k¢ = 6.7. Equation (15) for the wing-
flaps motion is sequentially integrated accurately in time,
with At = 0.0025, along with the Euler equations of fluid
flow, and the ND equation is used for the grid deforma-
tion. Figure 4 shows the time responses of §; and C; for
the wing. It is clearly seen that ¢, response is damped
within t — t, = 13 with a mean value of 5°. However,
the wing is still oscillating periodically around this mean
position with a small amplitude. Next, the flaps motion
is modified by dividing the amplitude 65) . by 1 + (t
— o) so that it decays with time. Figure 5 shows the
steady response of the wing at t = 30. The wing assumes
an equilibrium position of 5° without any oscillation. To
check that this is a stable equilibrium position, the wing
is disturbed at t = 40 with a small 9,. Figure 5 also shows
the time responses of ¢, and C, after the disturbance con-
firming that the equilibrium position is stable. Figure 6
shows the phase planes of the whole response history of
¢, and C,. Figures 7-9 show the same results as those of
Figs. 4-6 when the same control is applied at 1, = 23.27,
which is during the limit cycle response.
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Simulation of Wing-Rock Motion (Three-
Dimensional Flow)

Next, we consider the three-dimensional-flow simula-
tion of the wing-rock problem.

A sharp-edged delta wing with a leading-edge sweep
of 80° is considered for the computational applications.
The angle of attack is set at 30° and the freestream Mach
number is chosen as 0.3 for low speed simulation. The
wing mass-moment of inertia about its axis is 0.285, the
bearings damping coefficient is 0.15 and the torsional
springs stiffness is 0.74. The unsteady Euler equations
are solved for the three-dimensional flows. The bound-
ary of the computational domain consists of a hemispher-
ical surface with it center at the wing trailing edge on
its line of geometric symmetry. The hemispherical sur-
face is connected to a cylindrical aftersurface with its
axis coinciding with the wing axis. The hemispherical
and cylindrical radii are two root-chord lengths and the
downstream, circular exit boundary is at two root-chord
lengths from the wing trailing edge. The grid consists of
48x32x32 grid points in the wrap-around, normal and
axial directions, respectively. The grid is generated in
the crossflow planes using a modified Joukowski transfor-
mation, which is applied at the grid-chord stations with
exponential clustering at the wing surface.

Since the steady flow solution is asymmetric, C,
in Eq. (16) is of non-zero value and hence Eq. (16) is
initially inhomogeneous. At t =0, we set §° = 6° =
and release the wing with its initial M, value as the
driving rolling moment. Att = At, Eq. (16) of the wing
dynamics is integrated to obtain ¢ and hence § and 6
(At = 0.005). Then, Egs. (1-11) of the fluid flow are
integrated to obtain the components of the flowfield vector
and hence p and C,. Next, t is increased to 2At and the
sequential integration of the dynamics equation and the
fluid flow equations is repeated. The sequential solutions
are repeated until the limit-cycle amplitude response is
reached

In Fig. 10, we show the roll angle, rolling-moment
coefficient, C,, and normal-force coefficient, C,,, versus
time. Significant transient responses develop in the time
range of t = 0 — 22, wherein the amplitudes of the re-
sponses increase and decrease. Thereafter, ¢ > 22, the
amplitudes of the responses continuously increase until
t =95 Attt 295, the amplitudes and frequencies of
the responses become periodic reaching the limit-cycle
response. During the limit-cycle response, the maximum
roll angle, 6 .4, is 10°, the minimum roll angle, ¢ .,
is —11° and the period of oscillation is 3.53, which cor-
responds to a frequency of 1.78. With At = 0.005, each
cycle of oscillation in the limit-cycle response requires
706 time steps. The shown responses, up to t = 140,
required 28,000 time steps.

Next, we consider one cycle of the limit-cycle
response and analyze the roll angle, rolling-moment-
coefficient and normal-force-coefficient responses to gain
physical insight of the wing-rock phenomenon. For this
purpose, we show in Fig. 11 ¢ , C, and C, vz. 1 in
the range of ¢ = 135.19 — 138.72, This period of os-
cillation is marked by the numbers 1, 2, 3, 4 and 5 in
Fig. 11. In the first quarter of the cycle (1 — 2), the roll
angle of the left side of the wing decreases from 0° —
—11° and the wing rolls in the clockwise (CW) direction,
the rolling-moment coefficient increases and changes sign
from -0.057 — 0.0 — + 0.023 and the normal-force co-
efficient decreases and then increases from 2.68 — 2.65
— 2.75. It is important to notice that the rolling moment
changes its sign which means that the rolling moment
during the first part of this quarter of the cycle is in the
CW direction (the same direction as the motion) and in
the second part of this quarter of the cycle is in the CCW
direction (the opposite direction of the motion). Hence,
the rolling moment increases the negative angle in the first
part and then it limits the growth of the roll angle in the
second part. In the second quarter of the cycle (2 — 3)
the roll angle increases from —11° — 0 and the wing rolls
in the CCW direction, the rolling-moment coefficient in-
creases and then decreases from +0.023 — 0.045 — 0.04
and the normal-force coefficients increases and then de-
creases from 2.75 — 3.0 — 2.84. The rolling-moment
coefficient is in the CCW direction (the same direction as
the motion). In the third quarter of the cycle (3—4) the
roll angle increases from 0 — 10° and the wing keeps its
rolling motion in the CCW direction, the rolling-moment
coefficient decreases and changes sign from +0.04 — 0
— —0.038 and the normal-force coefficient decreases and
then increases from 2.84 — 2.78 — 2.86. Again, it is no-
ticed that the rolling moment changes its sign from CCW
to CW directions and limits the roll angle growth.

In Figs. 12 and 13, we show snapshots at points 2 and
4, respectively; of the cross-flow-velocity vectors and the
static-pressure contours at the chord stations of 0.54, 0.63
and 0.79 and the surface-pressure coefficient at the chord
stations of 0.54 and 0.63. In Fig. 12, the primary vortex
on the right side is nearer to the upper wing surface than
the one on the left side. Moreover, the primary vortex
on the right is further away from the plane of geometric
symmetry in comparison to the one on the left. The
surface-pressure curves show large peaks on the right side
and that the surface-pressure difference on the right side
i8 larger than the one on the left side. This results into
a CCW rolling moment at this maximum negative roll
angle of —-11°. In Fig. 13, the opposite process occurs;
the surface-pressure difference on the left side is larger
than the one on the right side and this results into a
CW rolling moment at this maximum positive roll angle
of +10°. These results are consistent with those of the
experimental data of Refs. 3 and 4.

In Fig. 14, we show the variations of the maximum
static pressure of the voriex cores of the primary vortices
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on the left and right sides versus the roll angle for the
chord station of 0.54. The numbers on the figures cor-
respond to those in Fig. 11. Since the maximum static
pressure of the core is proportional to the vortex-core
strength, it is obviously seen that the primary vortex on
the right side has a greater strength at point 2 as compared
to that on the left side. The strength differential between
the right and left vortices along with the locations of the
vortex cores contributes substantially to the net total CCW
rolling moment which limits the negative growth of the
roll angle and reverses the wing motion. Similarly, it is
concluded that the strength differential between the left
and right vortices at point 4 substantially contributes to
the net total CW rolling moment which limits the positive
growth of the roll angle and reverses the wing motion.

In Fig. 15, we split the rolling-moment coefficient
into restoring and damping components similar to Kon-
stadinopoulos, et al.’. First, the rolling-moment coeffi-
cient C, is fitted using the following expansions in terms
of ¢ and ¢

Cr=a0+ azé + a393 + 04026.
+ a5€20 + a603 + (1795 + a504€
+ a99203 + (1106293 + a“940 + (11205 (17)

The coefficients a; — a,; are determined using a least-
squares fit. A comparison of the original (-e-) and fitted
(=) rolling-moment coefficients is shown in Fig. 15,
Next, we split the fitted-rolling-moment coefficient into a
restoring part, M,, and a damping part, My, as follows:

M, = (al + aaf}z + a11é4)0
+ ((13 + améz) 03 + a;6° 18)

Md = ((12 + (1492 + (1504)9.
+ (ae + 0992)é3 + a2 (19

In Fig, 15, we also show M, and 6 versus time, and
My and 6 versus time. Moreover, we show on these
figures the numbers 1, 2, 3, 4 and 5 which correspond
to the same numbers in Figs. 11 and 14. In the first
quarter of the cycle (1—2), the roll angle § decreases
from 0 — -11°, the restoring rolling moment becomes
negative during the first part and positive during the
second part and the damping rolling moment, which is
negative at point 1, increases during the first part and
becomes almost zero during the second part. It is very
interesting to notice that M, and M, are negative duting
the first part and hence they are in the same direction
as the motion. During the second part, M, becomes
positive reaching its maximum at point 2 when f,,, =
—11° and hence it limits the angle growth. During the
same second part, My becomes almost zero indicating a
loss of damping rolling moment. In the second quarter

of the cycle (2—3), M, stays almost constant during the
first part and drops to zero in the second part when the
roll angle becomes (°. During the same second quarter,
M, continuously increases from 0 to a maximum positive
value when the roll angle becomes 0. In the third quarter
of the cycle (3-4), a similar interaction of 8, M, and
M, as that of the first quarter (1-2) occurs except with
opposite signs. These conclusions are exactly similar
to those of Ref. 9. Hence, the loss of damping rolling
moment is responsible for the wing-rock motion.

CONCLUDING REMARKS

The multidisciplinary problem of wing-rock motion
and its active control has been simulated using the un-
steady, compressible, Euler equations; the Euler equa-
tion of rigid-body dynamiocs and the ND equations for
the grid deformation. The fluid flow Euler equations are
solved using an implicit, approximately factored, central-
difference, finite-volume scheme; rigid-body Euler equa-
tion is solved using a four-stage, Runge-Kutta scheme and
the ND equations are solved using an ADI scheme. Sim-
ulation of the wing-rock problem is obtained for a delta
wing which is mounted on an axle with torsional springs
and the axle is free to rotate in bearings with viscous
damping. The wing starts its motion under the effect of an
initial rolling moment due to the initially asymmeitric flow
at zero roll angle and zero angular velocity. For the ac-
tive control of wing-rock motion, a tuned anti-symmetric
leading-edge flaps oscillation is used to achieve that pur-
pose. Also, it has been shown that the hysteresis re-
sponses of position and strength of the asymmetric right
and left primary vortices are responsible for the wing rock
motion. Moreover, it has also been shown that the loss
of acrodynamic damping rolling moment at the zero an-
gular velocity value is a main reason for the wing rock
motion. These conclusions are consistent with the pre-
vious findings of the experimental®* and computational®
research work.
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Fig. 2 Roll-Angle, Roll-Moment-Coefficient and Normal-Force-Coefficient Responses for an Unstable Rolling Motion
(Wing Rock), B = 80°, & = 35°, Mo = 14, Lix = 0.02, A = 0. , k=0.74, At = 0.0025, 6° = 6°=0.

Wing-Flaps Dynamics for Rolling Motion.
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control followed by disturbance,

0y = %Sin kf(t - to),

a =35, Mg = 14, t, = 13.02

History of Responses; Instability,
Control and Disturbance,
a = 35° Mg = 14, t, = 13.02
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Fig. 11. Time responses for wing-rock motion during the limit cycle response.
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Fig. 12. Snapshot at point 2 of crossflow velocity, static-pressure contours and
surface pressure for wing-rock motion.
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Fig. 13. Snapshot at point 4 of cross flow velocity, static-pressure contours and
surface pressure for wing-rock motion.
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vortices for wing-rock motion during the limit-cycle response.
L L TS I WA S "“‘t‘\lTv1‘l'|~|~1‘fl-|v: T

.uE - Fitted Cr _: .ZSE- = ?\/I -i ~‘t - i/l | | ‘_;' | T N
[ 1o 1 20 F -0 T 3 -
; i -o- original C; * _“E/«\ /,\\ /,i‘\ _ " \\ -o- Mg //»\\ ]f\\‘ ]
i A A (AT AR NIRRT - A U AR U U S
- N RN Wi A s 0 S B SN N SN VI
5 1= F eI [ A ERUNEE =0 ~7] N7 12 7]
2 \ \ \ 17-eE A [ I ] Vg {5/
o -0k W \> 1 -l \ / \ ] \ é X 7 X 7 X ]
TES ] -Jbi i K \ é ~r % \ \ ]
5 20 [ \\"/ \\ijl \/E - E \‘J ] \.{ ] \’\‘/ ] 1
sl ] ER S ]
130 191 152 133 193¢ T,igr,ne,,, 137 1an 130 140 Bty 1m 132 193 “‘Ti;;e 138 157 138 130 140 | o 130 131 192 193 134 .;;Ine’” * 137 120 * lsw*un
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damping rolling moment (Mg) for wing-rock motion during the limit-cycle response.
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