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Abstract
A multi-zonal local solution method is
developed for the solution of the compressible

Navier-Stokes equations. The main feature of the
method is the coupling of the Navier-Stokes
equations with the Euler equations and the local
adaptive mesh solution procedure. The methodology
is applied to turbulent flow fields past an airfoil. A
Flux Vector Splitting method with an upwind scheme
up to the fourth order of accuracy is used for the
discretization of the inviscid fluxes. The system of
equations is solved by an unfactored implicit method
using Gauss-Seidel relaxation. The multizonal local
solution method gives more rapid convergence to the
steady state solution retaining the accuracy of the
computational code.

Introduction

Technological improvements in supercomputer
speed and memory size provided the means to solve

the full compressible Navier-Stokes equations for
turbulent flow fields and complex geometries.
However, large amounts of computer time are

required for the solution of the equations especially
for problems in design practice. In order to reduce
the computational time a multi-zonal local solution
method (LSM) is presented for the solution of the
Navier-Stokes equations in high Reynolds number
flows.

In the past, other authors have developed zonal
methods [1-4] coupling, different kind of equations in
discrete regions of the flow field. In [1]
Navier-Stokes equations are solved near the wall and
Euler equations elsewhere. Van Dalsem and Steger
[2] have used a combination of a Navier-Stokes
solution on a coarse mesh and a boundary-layer
solution on a fine mesh. Schmatz [3] has developed
a coupling of the Euler and the Navier-Stokes
equations with the boundary layer equations.
Reduction of the computational time is obtained by
solving the Navier-Stokes equations only in the
region of the flow field where strong viscous
interactions occur. Extension of this method in
three dimensional flows can be found in [4].

The contribution of the present work is the
development of a multi-zonal local methodology
which combines the numerical techniques of the Local
Solution and the mesh sequencing with the coupling
of the Navier-Stokes and Euler equations. A local
solution method was been developed in the past [5]
for inviscid and laminar flow fields. This method
uses, initially, a sequence of coarser meshes in order
to provide a better initial guess for the solution on
the fine mesh. Local solution is obtained in discrete
regions (partial meshes) of the flow field during the
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convergence to the steady state solution. The above
procedure is extended in the present work to
turbulent flow fields while Navier-Stokes equations
are solved near the wall and Euler equations
elsewhere. Reduction of the computational time is
obtained from the zonal procedure as well as from
the local solution and the mesh sequencing
techniques.

The above procedure has been developed on a
Navier-Stokes Code [6] which uses a modified
Steger-Warming Flux Vector Splitting method [7] for
the discretization of the inviscid fluxes and the
Chakravarthy's scheme [8] for the discretization of
the viscous fluxes. An upwind interpolation scheme
[9] up to the fourth order of accuracy is used for
the calculation of the conservative varjables on the
cell faces. The system of equations is solved by an
unfactored  implict method wusing  Gauss-Seidel
relaxation sweeps. Implicit treatment of the boundary
conditions is obtained by Newton sub-iterations. The
multi-zonal local solution methodology is applied to
transonic turbulent flow fields past an airfoil.

Governing equations

The governing equations are the time dependent
Navier-Stokes equations for a compressible fluid.
These equations can be written in conservation
dimensionless form and for a generalized coordinate
system as :

J: Ut +(E inv)g + (Ginv)c - %&:—[(Evis>§+ (Gvis)c} @

where Re is the Reynolds number and U = (g, ou,
ow, €)' is the conservative solution unknown vector.
Einv, Ginv are the inviscid flux vectors while Evyjg,

Gyjs are the viscous flux vectors. [ = XgZg-zgXe is

the Jacobian coordinates X, z to generalized
coordinates E, {. The inviscid and viscous fluxes are
defined as :

E = J(EE, +GE))
G, =J(EL,+GC,)
E =J(Rg +88,)
G =3 (RE, +5C,)

with
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The indices E, T denote partial derivatives, except for
the stresses Tgy, Tyz, Tz, Tzz and the heat terms gy,

gz The stresses and the heat terms are given as :
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where Pr = pcpy is the Pranditl number, @ is the

density, v and w the velocity components in the x, z
directions respectively and e is the total energy. u, k
are the viscosity and the heat conductivity coefficients
while T is the gas temperature. Dimensionless
viscosity can be defined by Sutherland law :

110.4/T0+1 3
Mo 104 +T

To is the temperature of dimensionalization. The

formulation of the governing equations is completed
by an equation of state :

p = o(y-Di

where vy is the ratio of specific heats and i the
specific internal energy.

Discretization of the inviscid and viscous fluxes

. The discretization of the inviscid fluxes is
carried out by a modified Steger-Warming Flux
Vector  Splitting  method  [5], [9]. The
Steger-Warming FVS decomposes the inviscid flux
into two parts, positive and negative, in accordance
with the sign of the eigenvalues :

(Einv ) - (TA T _1>

1 1 L1 g
1+2 147 1+2

where T, T-! are the left and right eigenvectors
matrices respectively, while AT and A~ are the
positive and negative eigenvalue matrices. The
splitted fluxes are defined on the cell faces of the
computational volume because this formulation
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improves the results in the boundary layers, in
contrast with the definition of the fluxes on the
center of the volume. The eigenvalues in the
positive and negative eigenvalue matrices are splitted
as

0 2
+
xi XJ-‘AJ‘ =12
= 2 1=1
where
AO=uEX+wEZ , k1=ko+s 12=Xo—s

s represents the speed of sound.

The splitted
convective fluxes can be defined as

1, % L F
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The viscous terms are discretized using central
differences for the normal second derivatives and an
"upwind" type scheme for the cross derivatives.
This scheme was proposed in the past by
Chakravarthy [8].

High order extrapolation schemes

The conservative variables on the cell faces
are calculated by a hybrid upwind extrapolation
scheme up to the fourth order of accuracy. The
hybrid scheme is constructed by the superposition of
the first, second, third and fourth order
extrapolation schemes :

oA UM ra-a). {BUMJr a-nlo™ +(1—C)JU4i}

The superscripts 1, 2, 3, 4 denote the varying order
of the extrapolation. For instance the third and the
fourth order extrapolation are defined as :




Third order :
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The terms A,B are limiter functions and are
defined by the second order derivatives of the
pressure

o (i
B=min (1"111’ in e

The values of the constants d, b, C are d =
45, b =25 and C = 225.

Zonal modelling

The concept of zonal modelling results from
the fact that in high Reynolds number attached
flows, diffusion effects are important near the body
surface and in bounded shear layers in the wake of
the flow field. Thus, in regions distant from the
above regions the flow can be considered as
inviscid. In regions where the viscous effects are
considered important Navier-Stokes equations are
solved while Euler equations are solved elsewhere.
A schematic representation of the zonal modelling is
shown in figure 1 for the turbulent flow over an
airfoil. The definition of the viscous zonal boundary
is based on the physics of the problem.

The zonal modelling is associated with the
mesh sequencing technique and with the local
solution of the equations, which are described in the
following sections.

Mesh sequencing and local solution techniques
have been developed in the past [5, 6] for inviscid
and laminar viscous flows. A short description of
these techniques and indication of the differences in
the turbulent flow applications follow.

Mesh sequencing and local solution techniques
for turbulent flows

In the mesh sequencing technique an initial
guess on the fine mesh is obtained by first iterating
the solution of the equations on a sequence of
coarser grids and then interpolating the solution to
the next finer grid. The coarse mesh is constructed
by eliminating every second line of the fine mesh in
each direction. The refining grid criterion for the
interpolation of the solution from the coarse to

the fine mesh is the maximum variation max (|Ag|
. |Aw], |Alw) [, [Ael) of the conservative
variables during the iterations. The above criterion
is also used for turbulent flows. Because in the
mesh sequencing procedure the center of the
volumes of the fine mesh is not a subset of the
volumes of the coarse mesh, bilinear interpolation is
used for the calculation of the conservative variables
on the fine mesh using the corresponding variables
on the coarse mesh.

The local solution technique originates from the
nonuniformities of the flow wvariation towards a
steady or unsteady solution. Thus, the local
solution of the equations can be applied only in
regions where the disturbances are large because in
the remaining field the solution has been achieved.
The local solution of the equations is obtained in
subregions (partial meshes) of the fine mesh
characterized by large values of the numerical
disturbances. In the case of inviscid or laminar
viscous flows the solid boundaries may, or may not
be contained in the partial meshes. A typical
example is shown in figures (2a, b). In figure (2a)
the partial meshes A and B overlap a part of the
solid boundary of the airfoil while in figure (2b)
partial meshes do not overlap solid boundaries.

In the case of high Reynolds number flows
large numerical disturbances are generated in the
turbulent boundary layers. These disturbances are
eliminated at the same rate around every solid
boundary and thus all the solid boundaries must be
contained in the partial mesh during the local
solution of the equations. A typical example of the
construction of a partial mesh in turbulent flows is
shown in figure 3. The partial mesh contains the
solid boundary of the airfoil as well as the wake of
the flow field behind the trailing edge.

The local solution technique can be applied in
combination with the zonal method for the solution
of turbulent flow fields. Thus, there are two basic
regions where the Euler and Navier-Stokes equations
are solved respectively, while the local solution is
applied in both these regions.

The construction of the inviscid and viscous
regions in the zonal modelling are prescribed as
input in the computational code. The local solution
begins after a number of iterations on the fine
mesh. The criterion for the beginning of the local
solution procedure is an input value for the
variation of the solution. This input value may be
a value of the maximum variation of the
conservative variables on the whole flow field.

In the present results a value for the variation
max (|A(gu)|) has been used. When the numerical
convergence meets this criterion then a partial mesh
is constructed. The partial mesh contains all the
numerical disturbances from the inviscid and viscous
regions, which are larger than the convergence
criterion. In the present calculations as convergence
criterion has been considered, all the maximum
variations of the conservative variables to be less
than 103,

The partial mesh of the local solution may
overlap a part of the inviscid region and the whole
viscous region, or only the viscous region. Partial
meshes may be reconstructed during the numerical




solution. Each reconstruction of a partial mesh
defines a local solution. In figures (3) and (4) two
local solution levels are presented. In the first level
the local solution overlaps a part of the inviscid
region and all the viscous regions, while in the
second level the partial mesh overlaps a part of the
viscous region. The criterion for the construction
of the local solution levels may be a prescribed
number of iterations or a value of the numerical
disturbances. After the convergence of the
numerical solution on the partial mesh, it is not
necessary to repeat the solution on the whole fine
mesh, because the local solution does not influence
the physics of the results.

Acceleration Strategy

The general solution procedure which is called
multi-zonal local solution methodology, involves the
mesh sequencing technique, the zonal modelling and
the local solution of the equations. The zonal
modelling, as well as the local solution of the
equations, is applied only on the finest mesh of the
solution. The steps of the acceleration strategy are
the following :

a. Beginning of the numerical solution on the
coarsest mesh.

b.  Interpolation of the solution on the finer mesh,
and repetition of the interpolations and the
numerical solution up to the finest mesh.

c. Beginning of the numerical solution on the
finest mesh using the zonal modelling.

d.  Continnation of the iterations on the fine mesh
up to the "meeting" with the criterion for the
beginning of the local solution.

e. Beginning of the local solution and
reconstruction, or not, of the partial meshes
during the solution.

Step (e) is continued up to the steady state solution.

Turbulence modelling and multi-zonal local
solution

The Baldwin-Lomax [10] algebraic turbulence
model has been used for the present turbulent
compressible flows. As we mentioned above, the
partial mesh of the local solution may contain the
viscous region, or the partial mesh may be a subset
of the wviscous region. . In the first case eddy
viscosity is calculated in the whole profile using the
standard Baldwin-Lomax procedure. In the second
case the functions of the turbulence model may be
calculated either in the whole viscous region or in
the partial mesh, which is a subset of this region.

In accordance with the Baldwin-Lomax
turbulence model, eddy viscosity p is given by

_ {(ut)mer y<y,
H,=

(ut)outer yV2y> y1

y1 is the minimum normal distance from the wall at

which values of the eddy viscosity in the inner and
outer region are equal.
yy is the normal distance from the wall at which

the viscous zonal boundary or the local solution
boundary are located.

The inner and outer regions are included into the
viscous zonal boundary. The details of the
Baldwin-Lomax model can be found in [10]. In the
zonal methodology all the functions of the above
model are calculated into the viscous region, while
in the inviscid region the eddy viscosity is put equal
to zero.

Results

The development of the multi-zonal = local
solution methodology has been obtained in transonic
turbulent flows over a NACA 0012 airfoil. The first
case concerns the flow with M_ = 07, a = 149

and Re = 9 x 106, The results of computations
have been compared with corresponding experimental
results [11]. Two computational meshes with mesh
size 120 x 30 and 240 x 60 (figs. 5a, b) have been
used respectively. A physical image of the flow
field is shown in figure 5c plotting the Iso-Mach
lines. In figure 6 comparisons of the pressure
coefficient  distributions are  presented. The
comparison shows that the present results are in
good agreement with the experimental data. The
grid-dependent  solution also  shows that the
differences between coarse and fine mesh results are
small. The skin friction distribution for the coarse
and the fine mesh are shown in figare 7.  Skin
friction is overestimated on the coarser mesh
especially in the region around the leading edge.

Initially we tested the influence of the mesh
sequencing procedure in the convergence behaviour.
The calculations have been obtained for the fine
mesh 240 x 60 using three mesh levels. The first
level contains 60 x 15 grid points the second level
120 x 30, and the third level is the fine mesh with
240 x 60 grid points. Two cases of the mesh
sequencing procedure have been tested. In the first
case the calculations on the coarser meshes are
continued up to the steady state solution on the
coarser meshes and then the solution is interpolated
to the fine mesh. In the second case the solution
on the coarser meshes is interpolated on the fine
mesh, but this solution is not the final steady state
solution of the coarser meshes. The maximum
variation of the conservative variables between two
successive time steps is used as the convergence
criterion. Comparisons of the convergence for the
first and second case of the mesh sequencing
procedure are presented in figure 8. The
comparison” shows that faster convergence is
achieved when the coarse mesh solution is not the
final steady state solution. It is proposed that as
the convergence criterion on the coarser meshes the
maximum variations of the conservative variables to
be less or equal to 104. The resutls for both
cases are identical. This is shown on the figure for
the pressure and the skin friction coefficient
distributions.

In the above cases the mesh sequencing
procedure has been used without zonal modelling
and local solution of the equations. A significant
increase of the algorithm efficiency is achieved when
the multi-zonal local solution methodology is
applied. In figure 9 are shown the convergence
histories for three different solution cases. These
cases are the solution on the fine mesh, the
solution using the mesh sequencing procedure and
the solution using the multi-zonal local solution
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methodology.  Considering as convergence criterion
the maximum variation of the conservative variables
to be equal to 8 x 10C the solution on the fine
mesh requires about 4100 computational work units

(CWU). Using the mesh sequencing procedure the
solution requires about 2720 CWU while 1420 CWU
are neccessary for the steady state solution using
the multi-zonal local solution methodology.  The
most important contribution of the acceleration of
the convergence is due to the local solution of the
equations. The local solution of the equaitons is
obtained in a small region of the fine mesh,
including the viscous zonal boundary and the wake
region. The results between the fine mesh solution
and the multi-zonal local solution methodology are
identical (figures 10a, b).

In order to reprove the behaviour of the
multi-zonal local solution methodology on a coarser
mesh, the calculations have also been repeated using
a fine mesh of 120 x 30. Comparisons of the
convergence histories are shown in figure 11. The
multi-zonal local solution methodology (case 2, in
fig. 11) increases the efficiency of the algorithm
achieving faster convergence to the steady state
solution than the mesh sequencing procedure and the
fine mesh solution.

The convergence histories of figures 11 and 9
show that the efficiency of the multi-zonal local
solution is  greater when the number of
computational points is increased. This is an
important result because 3D complex calculations for
engineering problems require a great number of grid
points and significant computational cost and thus
the multi-zonal local solution is expected to reduce
significantly the computational cost.

A second flow case concerns the transonic
turbulent flow around a NACA 0012 airfoil, with
Mo = 055, a = 834° and Re = 9 x 108 In this
flow case a shock wave is formed in the chordwise
location x/c = 0.1. A physical picture of the flow
field is shown in figure 12 plotting the Iso-Mach
lines. The pressure coefficient and the skin friction
coefficient distributions are shown in figures 13a,
13b for the fine mesh and the accelerated solution.
In figure 13c comparison of the pressure coefficient
distribution with the corresponding experimental data
is presented. The results are in good agreement
with the cormresponding experimental results.® The
skin friction values indicate separation regions at the
foot of the shock wave and at the region of the
trailing edge, beginning at the x/c = 0.72 chordwise
location [12].

The convergence behaviour has been tested for
three different cases : 1. fine mesh solution. 2.
Mesh sequencing procedure and zonal modelling and
3. multi-zonal local solution (mesh sequencing,
zonal modelling and local solution). The
convergence histories (fig. 14) justify the efficiency
of the multi zonal local solution methodology for
the present flow case where the shock wave and the
separation region are formed. The computational
cost is 1800 CWU using the multi-zonal local
solution while 4700 CWU are needed using only the
fine mesh. Comparison between case 2 and case 3
shows that the local solution is significantly
responsible for the acceleration of the convergence,
reducing by 200 CWU the convergence of case 3 in
comparison with case 2.
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Conclusions

The development of a multi-zonal local solution
methodology for the accelerated solution of the
Navier-Stokes equations in high Reynolds
compressible flows is presented. The basic
conclusions are as follows :

The multi-zonal local solution methodology
reduces significantly the computational work
units for the solution of the Navier-Stokes
equations in high Reynolds compressible flows.

a.

The accuracy of the results is not influenced
by the accelerated procedure.

The local solution improves the classical mesh
sequencing and zonal modelling as accelerated
solution methods.
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Fig.1 : The scheme of zonal modelling.
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partial mesh

Fig.3 : Construction of the partial mesh, overlaping
a part of inviscid region and all the viscous
regions. (first level).

Zonal boundary
C'“— T Fareialmesn |
Fig4 : Construction of the partial mesh, overlaping

a part of the viscous region (second level).

Fig5 : Computational meshes around a NACA-0012

airfoil : a) meshsize :
¢) Iso-Mach lines of

: 240 x 60

120 x 30, b) meshsize
the flow

field (M, = 0.7, a = 1.49 deg, Re = 9:106).
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