PARALLEL IMPLEMENTATION OF THE FEATURE

ICAS-92-4.5.2

ASSOCIATED MESH EMBEDDING METHOD FOR
THE 2D-EULER EQUATIONS (FAME2D)

M W Bowers and R K Cooper

Department of Aeronautical Engineering,
Queen's University of Belfast, U.K.

Abstract

FAME is a new approach to the problem of a flexible
mesh system for complex geometries, which are now
more frequently encountered in CFD. Three relatively
simple parallel versions of FAME2D, characterised by
their increasing complexity of domain decompaosition,
have been developed to run on a chain of transputers.
For a single element aerofoil the simplest version
produces a speedup of 5.7 using 8 transputers, while
the most complex produces a speedup of 8.6 using 13
transputers. All versions can be easily extended to
cater for 2 or 3 element aerofoils and they provide a
good basis for the parallelisation of FAME3D.

Introduction

The continued development of Computational Fluid
Dynamics{CFD) has reached the stage at which
solutions to flows over complex geometries i.e
complete aircraft, are being actively pursued and
obtained.'**® However, such a capability can only be
truly exploited, if it can be incorporated into the design
of an aircraft at the earliest possible moment.
Presently, this is being hindered by the lack of a
flexible mesh system and the need for immense
computing power. Constructing a grid for a new
aircraft requires large amounts of human interaction
and a high degree of expertise, while computers will
be soon reaching their ultimate speed limits.

A single grid-generation scheme is required that is
able to rapidly generate grids about an aircraft,
enabling accurate resolution of geometric features as
well as flow features, as and when they develop. The
FAME code is an initial attempt to unify the treatment
of the above two features.”! In this approach, more
than one mesh is allowed to cover certain parts of the
physical domain . A hierarchy of meshes is established
and those higher up will take precedence in regions of
overlap. Flexibilty is achieved through the use of
separate feature-associated meshes together with
mesh-embedding.

The requirement for increased computer power can

Copyright © 1992 by ICAS and AIAA. All rights reserved.

be fulfiled by the use of parallel processors.
Investigation of computer architectures best suited to
CFD is underway, as well as paraliel communications
software, and the conversion of present serial codes
to the parallel environment.®%7:8% The present work
describes the modificaton of FAME2D to work on a
simple network of processors.

Description of FAME2D

FAME2D is a basic application code employing a
two-dimensional grid system generated by FAME and
a novel second-order upwind transonic Euler flow
solver. A full description of the philosophy and
generation strategy of FAME can be found in reference
4. The objective of this section is to give an adequate
overview of the code, so that the parallel
implementation can be understood. For convenience,
we will use a single NACAOO12 aerofoil as the
reference test wing, although the code is capable of
handling a three element wing. The original code has
been optimised to run on a CRAYZ2.

Flow Solver

The Euler equations are solved using the Split-
Coefficient Matrix{SCM) method, which utilises
information on signal propagation provided by the
theory of characteristics.!'” In the form used, it is a
non-conservative first-order accurate upwind algorithm
with explicit forward time-stepping.”” The CFL
condition is applied locally to improve convergence.

In two space dimensions, x and z, and time, t, the
Euler equations in conservative form, can be rewritten
in the familiar quasi-linear form,

o0 0Q 00 _
gt-_"' [Al-aT{‘*‘[B]-a—Z 0 (1)

where Q is the solution vector. The SCM scheme
consisgs of integrating & decoupled form of the
characteristic equations of equation 1, which can be
written in the form,

1000

90 - 90" + 90"
ac * AlTg v lAlt5o
- . 2

v (817927 . [B]“gg (2)

=0
Notice, the coefficient matrices [Al and [B] have

been split according to the sign of their eigenvalues,
i.e

Al = [A]* Al~
[A] [a]* + [&] (3)
(Bl = [B]* + [B]~
The terms such as ,
+ 00"
[A] >

dencte the contributions made by the various
characteristics. In this particular case, the contribution
made by the positive characteristic with the positive
slope in the x-direction and a backward difference is
used on the derivatives of Q. The first-order upwind
scheme described above uses a symmetric five-point
computational molecule and requres no added
dissipative terms to enforce stability or to capture
shocks cleanly. However, for engineering purposes, a
second-order accurate scheme is necessary. In
particular, a method is required which does not
increase the size of the computational molecule or
which requires modification near captured shocks to
avoid 'wiggles’. These two properties considerably
ease the implementation of the algorithm on the
complex grid structure to be described later in this
section.

Second-order accuracy can be obtained using a type
of deferred-correction procedure, in which a forcing
term is generated that is an approximaton to the
leading dissipative truncation error associated with
first-order upwinding."'? This is subtracted from the
right-hand side of the discretised equations. The
forcing term is calculated using Equation 2 with the
time derivatives set to zero and the spatial derivatives
discretised using simple second-order central
differencing. The computational molecule remains
unchanged and the stability characteristics are those
of the first-order scheme. No observations of 'wiggles’
during numerical experimentation have occurred.

Grid Structure

FAME classifies geometric features (types
0,1,2,3,4) according to the number of directional
constraints to which they are subject, and generates
the appropriate mesh. In this particular case, a type 1
and a type O have been produced as shown in Figure
1.

The type 0 mesh is the main mesh which underlies
all other meshes and covers the whole flow field.
Although it is not associated with any particular
geometric feature, it must allow the accurate
resolution of high-flow gradients. Therefore, mesh
density must be greater in the vicinity of the aerofoil
than at the boundaries of the flow field. This is
achieved by the use of a series of embedded Cartesian
meshes (termed 'levels’) of increasing mesh spacing (a
factor of 2 is used) as one moves towards the far flow
field boundary. Each level is comprised of a number of
blocks containing 16 mesh points. These blocks play
a crucial role in the embedding procedure. Figure 2
shows the distribution of blocks across the embedded
levels. The finest levels, level 17 being the most
embedded, are located around the nose and trailing
edge of the aerofoil. Level 11, which we have called
'ovle’, is the first level that fully encloses the whole
aerofoil. Level 1 is the coarsest.

The type 1T mesh is associated with the surface of
the aerpfoil. It is an algebraic C-mesh extending 3
mesh intervals downstream of the trailing-edge and 1
mesh interval into the flow field, perpendicular to the
surface.

A hierarchy of meshes can now be established. The
type 1 or overlying mesh is used to calculate the flow
on the aerofoil surface. Boundary conditions are
obtained by linear interpolation from mesh points on
the most embedded main mesh level which occupies
the region where the overlying mesh boundary point is
located. At level ovle, all the overlying mesh boundary
conditions will have been collected.

In regions where the main mesh levels overlap, the
more embedded level takes precedence over the other
level, since it is more appropriate, i.e it has been
constructed to resolve higher flow gradients. This
precedence is accomplished by replacing flow data on
the coarser level by data from the finer level, at those
points which coincide in space with points on the
coarser level. Boundary conditions for each level are
obtained by interpolation from the next least
embedded level.

The main mesh has not been constructed to cope
with the solid surface, so some points in each level
will reside inside it. The Euler algorithm uses a five-

1001

point computational molecule and several points on
each level may reference inside the surface. At these
points, flow data is replaced by data obtained from
further up the hierachy using linear interpolation from
the four vertices of the appropiate cell of the type 1
mesh. These poinis on levels less than ovile, are
corrected using the method described in the previous
paragraph. Thus, levels less than ovle have no
interaction with the overlying mesh.

In summary, FAME2D is composed of an Euler
routine for the embedded levels; an Euler routine for
the overlying mesh and a series of corrections which
transfer flow data from more appropiately constructed
meshes. The FAME2D algorithm is shown in Figure 3
and describes the strict order in which the corrections
are applied. Note, the convergence criterion is applied
to the overlying mesh,

Some Comments on FAME2D

Six important observations, with respect to
parallelisation, can be made of the FAME2D algorithm:

(a)Boundary conditions for the overlying mesh are
collected on embedded levels greater or equal to ovle.
The most embedded collect those around the nose and
trailing edge while while the least embedded collect
those near the centre of the aerofoil.

(b) For a single aerofoil the embedded levels greater
than ovle are split into two independent segments, one
located around the nose and one around the trailing
edge.

{c) Once all the boundary conditions for the overlying
mesh have been collected, i.e. at level ovle, then the
Euler algorithm can be applied to the overlying mesh
as well as the calculation of the second-order
corrections followed by the test for convergence.
Levels less than ovie have no interaction with the
overlying mesh.

(d) The Euler algorithm can be applied to each
embedded level of the main mesh independently
without the need 10 communicate with any other
levels. Remember, access to flow data on other levels
is only necessary to enact corrections.

(e} Corrections proceed in a strict order on any level:
(i} correct those points that reference inside surface
{ii) replace those points that are coincident with
points on previous embedded level

{iii) correct boundary conditions on level

Corrections 1 and 2 must be completed on previous
level before correction 2 is enacted on present level.
We will reference the corrections by their order of
precedence.

{fl To obtain an accurate flow solution on an

embedded level, the level must have access to flow
data on the next embedded level, the next least
embedded level and possibly the overlying mesh. This
dependency of information is illustrated in Figure 5,
showing the block structure of level 13 located around
the nose of the aerofoil. In this example,
approximately 40% of the solution is updated by the
Euler algorithm, although generally, it is just over 50%
The rest of the solution is composed of the corrections
or are points within the surface. Not only is the Euler
algorithm the most computationally expensive but is
responsible for generating 50% of the solution on any
given level.

Parallel Implementation

Hardware and Communication

Transputers provide a cheap and flexible research
tool with which to investigate the potential of applying
current CFD algorithms into the parallel envoironment.
Our present system consists of a Tandon P.C acting as
a host to 18 T800 transputers, with a total of 72
MBytes of RAM.

This combination is a typical MIMD{Multiple
Instruction stream, Muliiple Data stream) setup,
consisting of the Master processor and several Worker
processors, each with a separate memory. The Master
processor is responsible for the initial distribution of
data and then the collecting, collating and finally
storing of the results from the Workers. The Workers
perform the calulations required to solve the problem.
These processors are connected together in some
desired network depending on the number of
input/output connections on each processor{4 per
transputer). The network is needed to transfer data
that is required from one processor to another to
enable the calculations to proceed correctly.

Messages can be sent/received via this network
using communication software. As the majority of CFD
codes have been in FORTRAN, it is desirable to use
software compatible with this. One such message-
passing harness for FORTRAN applications is
FORNET(3L)v1.0." This provides a flexible method by
which any processor can send messages to any other,
whatever the configuration of the processors. Since it
isin the developement stage, FORNET(3L) is presentaly
limited to linear topolgies such as chains or rings of
transputers, but it can be extended to more complex
configurations.

Figure 4 shows a typical chain for nine processors
as well as some of the notation used in the code logic.
Each transputer is identified by its number inode.
Thus, the first processor has the value of inode=1
and the last has a the corresponding value inode =9.
A processor identifies its_nearest neighbours using the
termd ‘iprev’ and ‘inext’, where 'iprev’ =inode-1 and
‘inext’ =inode + 1. The first, second and last nodes in

1002

the chain are given the additional indentifiers of
‘mast’, 'fnode’ and ‘Inode’ respectively. One of the
other nodes is given the identifier , ‘ovend’, which will
be explained later.

Domain Decomposition

In general most previous work, as in reference 8,
has envolved problems using a single grid. Thus, the
physical domain has been split into several
subdomains, each containing roughly the same number
of mesh points, which ensures good load-balancing. i.e
one processor is not being asked to do too much or to
little computation with respect to the other
processors. This would be an inefficient use of aviable
resources.

Unfortunately, itis obvious that this approach would
be difficult to apply to the FAME2D grid system. [t is
possible but would require large amoutnts of setup
information (distribution data) and led to complicated
communication. A much simpler approach is desirable.

Instead of partitioning in physical space, the problem
can be split according to levels. Three versions have
been implemented with increasing complexity of setup
information as more processors are used.

Version A

In this method the complete levels are distributed
across the processors except for the ‘'mast’. On this
processor is placed the overlying mesh; its Euler
routine,its second-order correction routine and the
convergence test. The processor where level ‘ovie’
resides is given the additional identifier 'ovend’.

From observations (a) and (f) it is possible to obtain
the overlying mesh boundary conditions and apply the
Euler algorithm to the embedded levels on each
processor. Once this is completed on 'fnode’ the new
overlying boundary conditions are inserted into the
overlying mesh and the whole mesh is sent to
inode=3. Inode =3 receives the overlying mesh and
inserts the overlying mesh boundary conditions
collected from the levels on that processor, and then
sends the whole mesh on to inode =4. This updating
of the boundary conditions continues until
inode ="ovend’. Instead of passing the overlying mesh
to 'inext'='ovend’'+1, it is passed back to
inode ="mast’, where the Euler algorithm is applied
and convergence checked. This is shown in Figure 6b.

For those processors with ‘'mast’ <incde<’ovend’,
levels which contain points that reference inside the
aerofoil surface can be corrected whenever the
overlying mesh has been passed on to ‘inext’or ‘'mast’.

After correction 1 is applied to all the levels on
'fnode’, correction 2 is applied. At this stage

correction 3 cannot be applied to all the levels since
the least embedded level on 'fnode’ requires access to
the most embedded level on inode =3. Thus, the least
embedded level on ‘fnode’ is sent to inode =3, which
allows its most embedded, level on inode=2 to have
its cofrection 2 made. Immediately, the most
embedded level on inode=3 is sent to 'fnode’ and
correction 3 can be applied on all the levels residing
there. 'Fnode’ is then ready to receive from 'mast’ the
overlying mesh with the new updated surface flow
values and the old boundary conditions.
Simultaneously, correction 2 is applied to all the levels
on inode=3 and then it must communicate with
inode=4 as described above. As this tide of
corrections is continued until ‘Inode’ is reached, a new
time iteration is beginning in the previous processors.

When first-order convergence has be detected on
‘mast’, this information is gradually passed to the
other processors. This resuits in a delay of n iterations
where n =inode before the second-order corrections
begin to be calculated on inode. The complete parallel
algorithm is illustrated in Figures 6a,b,c,d.

Version B

This is the same as version A except that the
overlying mesh is distributed across the processors
that contain the embedded levels greater than ovle-1.
No computation is now carried out on the Master
processor. The distribution can be accomplished using
observation (a), i.e. each level has a number of
overlying mesh points associated with it.

Consider Figure 7; if the overlying boundary point E
is collected by level |, then we place the corresponding
surface point B on the same processor as ‘I, e.g
inode. Similiary, if we assume points D and A are on
inode-1 and points, F and C are inode+ 1. In order to
apply the overlying Euler routine to point B, | requires
information about the points A and C. Also, to enact
correction 1 on points within the cell BCFE inode
requires information about point F. Thus, the
communication in Figure 6b is replaced with a new
overlying mesh communication routine. For example,
for all overlying mesh points on inode, inode receives
points D and A from inode-1; then sends E and B to
inode + 1, then inode-1. Finally, inode receives points
F and C from inode+ 1.The overlying mesh Euler
routine and a modified convergence check are added
to Figures 6¢,d at the end of each time iteration.

Version C

Version B still suffers the same restriction as version
A in that only compiete levels are given to each
transputer, From Figure 2, it is easy to predict load-
balancing problems as more transputers are used. Is it
possible to get a more even distribution of blocks
without making significant changes to version B? This
can be achieved by making use of observation (b).

1003

For a single aerofoil the data structure of the FAME
grid system can be likened to a tuning-fork, to
separate limbs joining at a junction into one. In reality,
to separate and independent columns of ever
increasing thickness (i.e embedded level area). One
column immanating from the nose and the other from
the trailing edge, both eventually joining at level ovie.
Since ovle is simply rectangular in shape, this can be
easily divided into two and allocated to the
corresponding column. The juction level changes to
ovle-1.

Again consider Figure 4; for example, we can
distribute the nose column across inode = 2{'fnnose’)
to inode=4{('lnnose’}, and the tail column across
inode =5('fntail’) to inode =7{'Intail’}). Levels less than
ovle are then distributed across inode=8 to
inode =Inode. It is now possible to use the same code
with a few addional commuication modifications.

‘Lnnose’ exchanges levels with ‘Intail’ + 1 rather
than 'inext’ while 'Intail’ +1 exchanges levels with
‘Innose’ as well as 'iprev’{’Intail’}. Also, at the end of
each time iteration ’‘lnnose’ and ’Intail’ transfer
additional boundary condition due to ovle being split.

Results_and Discussion

Simple timing tests were carried out to evaluate

speedup, 5, and efficiency FE , defined as,

time for a single processor

S =

m time for m processors
(4)
S
E= -2 (5)
m

For version A we include the Master transputer in m
while for versions B and C the Master is not included
since it is not actively contributing to the computation
of the problem. The test conditions are M,,=0.8 and
{=0° while the execution time is the time for 100
iterations to be performed.

It is obvious from the previous description that for
good results using version A and version B, a
distribution of complete levels across the processors
must be found that gives good load balancing. Slightly
different strategies were implemented as the number
of processors increased.

(i} For a small number of processors the levels are
distributed to give as even a distribution of the blocks
as possible.

(i) As (i) becomes increasingly difficult (levels cannot
be split) preference is given to distributing levels

greater than ovle as extra processors are used.

{iii) Whenever all the levels greater than ovle are
distributed i.e one level per processor , preference is
given to distributing the coarser levels across the extra
processors.

The results for speedup and efficiency are shown in
Figures 8a,b. They relate to the best distribution for a
given number of processors. For convenience each
distribution will be referenced by the number of
processors version A uses. Figure 8c shows the
distribution of levels, in terms of the number of blocks
on each processor, for distributions four to nine.

For version A, speedup initially increases at a fairly
uniform rate until distribution 6 where the marginal
increase i.e. the speedup gained by using one extra
transputer, is significantly reduced. Marginal speedup
is reduced to zero using distribution 7. However,
distribution 8 causes a dramatic increase of 1.9 but
the use of further transputers has no effect and a
plateau is quickly reached. A speedup of 1.1 is
achieved for the special case of distribution 2 where
the whole of the main mesh is placed on Worker 1.
Efficiencies between 55% and 71% have been
achieved for distributions less than 8, thereafter, they
rapidily decrease.

The three distinct sections described above can
easily be associated with one of the distribution
strategips already explainéd. Distributions 6 and 7
correspond to strategy two, where preference is given
to distributing levels 11 and above. It is these two
distributions that are responsible for the kink in the
speedup results. This is caused by bad load-balancing.
For distribution 6 there is a consistent rise in the
number of blocks on Worker 2 to Worker 4. It has
been found that Workers 2 and 3 spend 11% of each
time iteration waiting to communicate the overlying
mesh to inext. This in turn increases the waiting time
on fnode for the overlying mesh from the Master.
Distribution 7 has a different source of processor
idleness. There is significant difference in the number
of blocks on Worker 6 and Worker 5. Almost 35% of
a time iteration on Worker 5 is waiting in order to
communicate its coarsest level with Worker 6. It is
slow to return to its Euler routine which then slows
down the progression of the corrections and no extra
speedup is gained by using distribution 7. Not
suprisingly a large gain in speedup is gained by
distribution 8 when the difference in the number of
blocks on Worker b and Worker 6 is reduced.

Ultimately, the maximum speedup achieved depends
on how quickly corrections proceed so allowing a new
time iteration to begin. The use of extra transputers
does quicken the calculation of Euler routine but this
is balanced by the need for the corrections to be
passed to extra processors, which is the cause for the
plateau.

1004

The version B results show same characteristics as
version A, although for given number of transputers
speedup and efficiency are considerable higher. One
would expect this since the overlying mesh is not
allocated its own transputer. By moving version B
results one unit to the right, they are almost
indistinquishable from version A. Two differences
emerge; the kink is more pronounced in version A and
its plateau value is 0.32 greater than version B's
plateau. The distribution of the levels are the same so
these differences can only be explained by the
difference in the treatment of the overlying mesh. -

Whenever the levels are allocated roughly one per
transputer the distribution of the overlying mesh
becomes significant. This is particularly for levels 12
and 11 which contain the most blocks as well as most
of the overlying mesh points. The additional burden of
calculating the Euler results for these points, although
relatively small, is enough to delay the start of the
main mesh Euler routine (the most computational
expensive part of the code) on their respective
transputers. This has a knock on effect and further
hinders the flow of corrections, so producing a
reduced plateau value. The more pronounced kink in
version A is the result of the extra communication by
having to send the overlying mesh back to the
MASTER processor. This slows the start of a new time
iteration on the first WORKER, especially if there is
very bad load-balancing on transputers near ‘ovend’.

To evaluate version C, four distinct cases were
tested. Case 2N3T envolved allocating one transputer
per column and one for the levels less than ovle. Case
3N5T allocated two transputers per column; case
4N7T allocated three transputers per column and
BNIT allocated four. Again, one transputer was
allocated for the rest of the levels. To each case extra
tranputers were added. These were used to
redistribute levels less than ovle. Speedup, efficiency
and block distribution are shown in Figures 9a,b,c
repectively.

Each case exhibits the same characteristics as
version B, i.e. there is a rapid increase in speedup until
a plateau is reached. Plateau speedups of 3.3, 6.0,
8.2 and 8.6 were acheived for cases 2N3T,3N5T,
4N7T and BNOT respectively. Each case has an
optimum distribution where a maximum efficiency is
achieved. This corresponds to the first point on each
plateau. Initially, placing all the levels less than ovle on
one transputer creates a bad load-balance and this
effects the smooth progression of the correction
procedure. The use of more transputers reduces this
effect leading to the increase in speedup. Eventually,
the best distribution is achieved and no further
increase can be obtained by using more transputers.

Figures 7a,b compare the optimum distributions of
version C and the corresponding results for version B,
Using more than 9 transputers version C s

significantly better. Using 13 transputers, version C's
speedup is 50% greater than that of version B, while
efficiency is 0.66 compared with 0.43. It is interesting
to note that the optimum results also seem to
approach a plateau. Thus, greater speedups can only
be acheived with more transputers if the domain
composition is futher refined, For example, split both
segments of the most empedded levels and use the
extra pFocessors there.

Figure 11 shows the fully converged solution to the
test problem. This was obtained using version A and
7 transputers. It illustrates that paralielistasion has no
effect on the solution.

Conclusions

Three parallel versions of FAME2D have been
implemented, which for a relatively small number of
processors, i.e less than 20, arranged in a simple chain
gives acceptable speedups. It has been found that
better results can be obtained by biasing the use of
avaible parallel resources towards the most embedded
levels.

The algorithms have several positive attributes:

{a) The coarse chain of processors reflect the data
structure of FAME.

{b) Almost all communication occurs between nearest
neighbours.

{c) Retaining complete levels or independent sections
of levels on the same processor allows large chunks of
vectorised code to be retained (important if vector
processors can be used).

{d) Domain decomposition is achieved by distributing
levels rather than dividing actual physical space,
resulting in a flexible parallel code that can be used for
future development; for example, shock-fitting; implicit
or multigrid acceleration.

(e) Decomposition information is extremely small, easy
to obtain and thus allows quick redistribution, if
required.

{f) The algorithm can be easily extended to cater for 2
and 3 element aerofoils. Similar speedups can be
expected.

Acknowledgments

This work was funded by the Science and
Engineering Research Council{SERC) of the United
Kingdom.

References

1. Olling, C.R., and Mani, K.K., "Navier-Stokes and

1005

Euler Computations of the Flow Field around a
Complete Aircraft,” Advanced Aerospace
Aerodynamics, Society of Automotive Engineers SP-
757, Oct. 1988, pp. 231-242.

2. Raj, P., Olling, C.R., Sikora, J.S, Keen, J.M., Sing,
S.\W., and Brennan, J.E., "Three-Dimensional
Euler/Navier-Stokes Aerodynamic Method (TEAM),
Vol. I Computational Method and Verification,”
AFWAL-TR-87-3074, June 1989.

3. Thompson, J.F., "A Composite Grid Generation for
General Three-dimensional Regions - the EAGLE
Code," AIAA Journal, Vol. 26, No. 3, 1988, pp. 271-
272.

4. Albone, C.M., and Joyce, G., "An Overlying/Mesh-
Generation and Euler Algorithm for Flows Past Multi-
Element Aerofoils", RAE Technical Memorandom(Aero
2131), 1989.

5. Gropp, W.D., and Smith, E.B., "Computational
Fluid Dynamics on Parallel Processors”, Computers &
Fluids, vol. 18, no. 3, 1990, pp289-304.

6. Long, L.N., Khan, M.M.S., and Sharp, H.T.,
"Massively Parallel Three-Dimensional Euler/Navier-
Stokes Method,” AIAA Journal, Vol. 29, No. 5, May
1991, pp. 657-666.

7. Cooper, R.K., and Allen, R.J., "Fortnet(3L)v1.0:
Implementation and Extensions of a Message Passing
Harness for Transputers Using 3L Paraliel Fortran,”
Computer Physics Communications, 1992. (to be
published)

8. Yadlin, Y., and Caughey, D.A., "Block Multigrid
Implicit Solution of the Euler Equations of
Compressible Fluid Flow", AIAA paper 90-0106,
1990.

9. David, T., and Blyth, G., "Parallel Algorithms for
Panel Methods," International Journal for Numerical
Methods in Fluids, Vol. 14, 1992, pp. 95-108.

10. Chakravarthy, S.R., Anderson, D.A., and Salas,
M.D., "The Split-Coefficient Matrix Method for
Hyperbolic Systems of Gas Dynamic Equations,™ AIAA
paper 80-0268, 1980.

11. Albone, C.M., "An Upwind, Multigrid, Shock-
fitting Scheme for the Euler Equations,” RAE Technical
Report 85004, 1985.

12. Albone, C.M., "A Second-order Accurate Scheme
for the Euler Equations by Deferred Correction of a
First-order Upwind Algorithm,” RAE Technical Report
88061, 1988.

Fig. 1 Type 0 and type 1 meshes for a
single element aerofoil.

NUMBER OF BLOCKS

50 TOTAL
R ——
45 b
/ NOSE
40 - A
/ \ TAIL
a5 A

i RS

28 0 \b
20 l—?\“n‘ \
15 @ 0
/ Aﬂly\é
10 =25
2
5 \&

0
0 2 4 6 8 10 12 14 16 18

LEVEL OF EMBEDDING

Fig. 2 Distribution of blocks across
the embedded levels of the type
0 mesh for a NACA0012 aerofoil.

1006

i T=T+1

most embedded level start: NTEM=0,T=0 E Fig- 3 FAME2D algorithm-
'

collect outer boundary points
for overlying mesh

calculate second—order

is NTEM equal 1 corrections for present level

N

apply Euler algorithm to |

every poinit on present level

correct those points that h Y t least
may reference points inside € angi :dndexl efs
aerofoil Frmhedded Teve

T

correct those points that

are coincident with points
on previous level

"

update boundary of previous
embedded level

1s level the least embedded ¥

apply Euler algorithm to
overlying mesh

is NTEM equal 1 ?

NTEM equals 1
calculate second-order
corrections for overlying mesh

check first—order
convergence

check second-—order
convergence

Y

HOST PROCESSOR

T

[
>

inode = 1
MAST

inode = 2

FNODE

iprev=1,inext=3

inode = 3
iprev=2,inext=4

inode = 4
iprev=3,inext=5

inode = 5
iprev=4,inext=6

inode = 6
iprev=5,inext=7

inode = 7
iprev=6,inext=8

Points within serofoill

inode = 8
iprev=7, inext=9

Points colculated correctly by Euler algorithn

Points corrected by overlying mesh

- . Points corrected by finer grid
inode = 9

LNODE
iprev=8

OpPD O+ ®

Points corrected by coarser grid

Fig. 4 Parallel network using Fig. 5 Dependency of flow data on
nine transputers. level 13 around the nose of
the aerofoil.

1007

800L

s -))
J receive overlying mesh . —0 T—. N most embedded level ¥ [}
e start: NTEM=0,T=0 f on foode - start: NTEM=0,T=0 !
] .
)

from ovend : 5
= X
apply Euler algorithm to collect outer boundary points
overlying mesh for overlying mesh
. 1
send overlying mesh calculate second—order change to next least
to ovend {alse NTEM) is NTEM equal 1 7 corrections for present level embedded level
on foode
. apply Euler algorithm to
is NTEM equal 1 every point on present level
. NTEM equals 1 N
Che:rni::'“e:::er calculate second—order s level the least embedde.
& corrections for overlying mesh on fnode 7
ﬁ T=T+1 check second—order for all levels on fnode
convergence correct those points that may
reference inside aerofoil
| Aetiata it 1 %
, finish H for all levels on fnode correct
' nls H those points that are coincident
1] with points on previous level
T
send least embedded level on
Fig. 6a Parallel code on MASTER transputer. node to jnext
(also NTEM)
T
receive most embedded level
on inext from inext
update boundaries of all levels
on fnode
i T
receive overlying mesh from
- i mast (also NTEM)
if inode less than !
or equal to ovend P — | P
Y ' 1
J T=T+1 !
. . h
receive overlying mesh ! J
from iprev
i
add collected boundary
conditions to overlying
mesh
if inode less than Y send overlying mesh to inext Fi i]
ovend 1lg. 6c Parallel code on WORKER ‘fnode'.
send overlying mesh
to mast

continue parallel L
FAMEZD algorithm W

Fig. 6b Communication routine for
the overlying mesh for
WORKERS, ‘fnode‘<inode<'lnode’.

most embedded level)

1
i
—B on inode Hhoommmmnd start: NTEM=0,T=0 :
1]

collect outer boundary points
for overlying mesh

calculate second-—order change to next least
is NTEM equal 1 ? corrections for present level embedded level
on inode

apply Euler algorithm to l
every point on present level

is level the least embedde:
on inode 7

communicate overlying mesh
see fig. 6b

X

for all levels on inode

correct those points that may Fig. 6d Parallel code on WORKER inode>'fnode’'.

reference inside aerofoil

receive the least embedded
level on iprev from
iprev (also NTEM)

for all levels on inode correct
those points that ere coincident
with points on previous level

T

send the most embedded level
on inode to iprev

send least embedded level on
is inode less than Inode ? inode to inext
(also NTEM)
T
update. boundaries of all levels receive the most embedded
on inode I level on inext from inext
PR P I
L})
! T=T+1 !
M dccccnrcnan (.
SPEEDUP
] Version A
Version B
5 PR = S
k=1
4
nf
i
k=0 .surfoce) 3 -
ERF
i
,cj_.:‘
2
O - over lying 1
mesh point

0 2 4 6 8 10 12 14 16 18
NUMBER OF PROCESSORS

Fig. 7 Type 1 mesh section.

Fig. 8a Version A and B speedups.

1009

EFFICIENCY EFFICIENCY
T Version A 1 2N3T
0.8 f‘ G 0.0 N@
\E!- h Version B 3NST
0.8 TG - 0.8 2 e G-
ol AN e] A ANTT
. 0.7 St il e
: Yo Bx 9 g =
0.6 |—i-< 0.6 A B &NeT
g K ; g b3 B
R v i
0.5 0.5 T FRG
0.4 0.4 ul Ié{ y
i 94
0.3 0.3 25 ,/
0.2 0.2 *
0.1 0.1
0 o
0 2 4 6 8 10 12 14 16 18 o 2 4 & B 10 12 14 16 18
NUMBER OF PROCESSORS NUMBER OF PROCESSORS
Fig. 8b Version A and B efficiencies. Fig. 9b Version C efficiencies.
NUMBER OF BLOCKS NUMBER OF BLOCKS
180 DIST. 3 100 2N3T
160 00 el RN .
DIST. 4 4 ST;T
140 m:rs ° anNTT
I A 70 Py N
120 ‘.\ SNST
DIST. 8 60
100 = ke
DIST. 7 50 Ay At}
80 —E— 40 R ;D 1) ,é\(B
DIST. 8 TH AR & A
60 VAN 20 i\ ,‘Azﬁ A .-{\'A’./ w
TRY/ ARV
DIST. 9 A7 Btk | W | ¥
40 - 20 i ol
i
20 10
o)
1 2 3 4 § 6 7 8 8 10 0 2 4 6 8 10 12 14 16 18
PROCESSOR PROCESSOR
Fig. 8c Elstrlbgtlog of blocks 02 eagh Fig. 9c Distribution of blocks
Branspu er for versions an on each transputer for
' version C.
SPEEDUP SPEEDUP
10 2N3T 10 Vorsion B
ol 1+ 0] e O o O
==k 3NST [m] Version C
8 &'r_zz JR S . 8 g [m}
T aNTT
7 { . N— 7
8 g I_leé"l B340 BENOT 6 &
m A | € ok o|o
5 "] / 5
VAR
i / /
4 i i r 4
R .
3 . o u! O./- R o}
J 7 /
2 S l-m ol 2
1 1
0 0
o 2 4 & 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
NUMBER GF PROCESSORS NUMBER OF PROCESSORD
Fig. 9a Version C speedups. Fig. 10a Comparison of speedups for

1010

versions B and C.

EFFICIENCY
1

Vergion B
o]
Vergion C
0.8 i a

0.9

0.7

0.6

0.5 o

0.4 g

0.2

0.1

0 2 4] 8 10 12 14 16 18
NUMBER OF PROCESSORS

Fig. 10b Comparison of efficiencies
for versions B and C.

Cp
5 UPPER
...@...
i) LOWER
1 4..|3..4.,
)
0.5
o '
o -8
% /
-0.5 |—& 1'1'
r:]Q‘s’ca /@
-1 “EM g 13- 0
-1.5
0 0.2 0.4 0.6 0.8 1
x/e

Fig. 11 Cp distribution for NACA0012

aerofoil at M,=0.8 and «=0° -

1011

