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Abstract

On an unstructured grid a flux-difference splitting type algo-
rithm is formulated for the time dependent Euler equations.
The polynomial flux-difference splitting technique is used.
This splitting is of Roe-type. The grids considered are com-
posed of triangles. A vertex-centred finite volume method is
employed. This means that control volumes are constructed
around each vertex of the grid by connecting the centres of
surrounding triangles. On each face of a control volume, the
first order flux is defined taking into account the variables in
the two vertices on both sides of the face. The second order
correction results from a limited combination of the posi-
tive and negative parts of the first order flux-difference, with
corresponding parts obtained through extrapolation. The
extrapolation is based on gradients of conserved variables in
the vertices. As limiter, the simple minmod-limiter is used.

The time dependent system is integrated explicitely. This
is done with a Runge-Kutta type multi-stage time stepping
technique, with local time steps.

The domain is discretized using a Delaunay triangular
mesh generator, which is able to handle non-convex geome-
tries. To generate the grid, a description of the domain
boundary has to be given. Then points are introduced on the
boundaries, based on local curvature and local grid spacing
information. With these points an initial grid is constructed,
conform with the boundary. Then, criteria based on area and
aspect ratio of the triangles are used to refine this inital mesh.
On this first mesh, which is also a Delaunay triangulation,
a flow solution is calculated. As soon as the residual drops
below a threshold value, an adaption cycle is started. Us-
ing the same procedure as for the first grid, criteria are used
to refine the mesh. Instead of being based on mesh proper-
ties they are now based on flow properties like pressure and
entropy differences.

Results are shown for the transonic flow over a NACA-
0012 airfoil.
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Introduction

The polynomial flux-difference splitting introduced by
the second author (V)] is used here to construct a discretiza-
tion of the time dependent Euler equations on unstructured
grids. The flux-difference splitting technique is of Roe-type,
i.e. it satisfies the primary requirements formulated by Roe
@), It is however simpler. Its simplicity follows from drop-
ping the secondary requirement of having a unique definition
of average flow variables. This secondary requirement defines
the original Roe-splitting within the class of methods allowed
by the primary requirements. The secondary requirement is
however not necessary.

The vertex-centred finite volume method is employed.
On each face of a control volume, the first order flux is de-
fined taking into account the two vertices on both sides of
the face. The second order correction is constructed based on
the flux-extrapolation concept introduced by Chakravarthy
and Osher ).

Unstructured triangular grids are very attractive for two-
dimensional flow calculations. One reason is that geometries
of arbitrary complexity can be meshed. The other is that
mesh adaption by addition of points is very simple. The gen-
eration of unstructured triangular grids can be done in sev-

-eral ways. One of the techniques is based on the well known

Delaunay triangulation algorithm formulated by Bowyer (4),
This algorithm, which is rather popular nowadays ($&7) is
used here. Compared with other grid generation techniques,
this algorithm allows a strategy for placing points which is
independent of the mechanism to connect the points. The
algorithm iteratively generates a grid, by bringing point after
point into the grid. Every time, a small portion of the grid
is deleted and reconnected to include the new point. These
features of the algorithm leed to easy grid adaption through
refinement.
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The space discretization

Vertex-centred finite volume discretization

Figure 1: Vertex-centred discretization.

Figure 1 shows part of an unstructured triangular grid. In
the vertex-centred finite volume method nodes are located at
the vertices of the grid. Every node has a controle volume,
constructed by connecling the centres of the cells surround-
ing the node. The typical choice for the centre of a cell is
the centre of gravity. Here we choose to take the circumcen-
tre as centre for the triangles with no obtuse angle. For the
triangles with an obtuse angle, the circumcentre would lie
outside the triangle. To correct this the centre is then taken
as the midpoint of the edge opposite to the obtuse angle,
figure 1. To close the control volumes on the boundary, the
midpoints of the boundary edges are chosen as vertices of
the control volumes, figure 1. The advantage of taking the
circumcentres is that the faces of the control volume are as
much as possible perpendicular to the cell edges. With this
choice of the centre of triangles, the control volumes coincide
with the Voronoi regions, except where obtuse angles occur.
The Voronoi regions are defined in the section on mesh gen-
eration.

Flux-difference splitting

To define the flux through a side of a control volume, use is
made of the flux-difference splitting principle. Euler equa-
tions in two dimensions take the form

ou of dg
TR a—y~0) L

where U stands for the vector of conserved variables, f and
¢ the Cartesian flux vectors, given by

P fu pv

g-| P _| trp _ pUY @
pv 7f pu g pvz +p ( )
oE pul pvH

with p density, u and v Cartesian velocity components, p
pressure, E = p/(y — 1)p + u?/2 + v?/2 total energy,

H = vp/(y — 1)p + u?/2 + v?/2 total enthalpy and v the
adiabatic constant.

For the side ab of the control volume of node 7 and node
j, figure 1, the flux-difference can be written as

AF;; = (naAfig +nyDgi;)Asi, (3)

where Af; ; and Ag; ; denote the differences of the Cartesian
flux vectors, n, and n, are the components of the unit normal
to the side abin the sense i to 7, and where As, ; is the length
of the side ab.

The differences of the Cartesian flux vectors are

Afii=fi—Ffi, 8g;=9;— i (4)

where f; and f; are the flux vectors calculated with the flow
variables in node 7 and node j respectively.
The flux-difference defined by (3) can be written as
AF; = A(U; —Ui)Asiy;
A;,jAUi,]'AS.‘,]'.

i

To define the discrete Jacobian A, we use here the poly-
nomial flux-difference splitting. Full details of this splitting
are given in (®%), For completeness, we derive here the most
essential expressions.

Since the components of the flux vectors form polyno-
mials with respect to the primitive variables p,u,v and p,
components of the flux-differences can be written as follows

TAp+7Au
pulAu+TApu + Ap
= u’Ap+(pu+pu)Au+ Ap

1 1 1 — —
ApHu = p_u(§Auz + EA’U2) + E(u.2 +v?)Apu

Apu =
Apu® + p)

fl

+—L Apu
y—1

— — 1 — —
= %(u2 +v?uAp+ §(u2 +v2)pAu + wpulu
i

+L1pAu+v—,mAv+ 7 Ap,
P

y—1

etc., where the bar denotes the mean value. With the defi-
nition of 7 and 7,

7= l@m, Fowieog,

the flux-difference can be written as
u 7 0 0 Ap
Af=| ® ruipm 01 Bu
uv po pu 0 Av
qu gp t+upn+ .,%1? vpu ﬁﬂ Ap

With the definition of T = pu/p, and of the vector
W = (p, u, v, p)T the flux-difference Af is given by

1 0 0 O Z p 0 0

lw p 0 0 0 uw 0 1/p
Af=15 O 7 0 0 0 @ 0 AW.

g Ppu FT 7%1 0 v 0 =
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By denoting the first matrix of this equation as T, it is
easily seen that the flux-difference Ag can be written in a
similar way as

0 5 0
0 ¥ O 0
ba=T| 4 o 3 1/3 AW,
0 0 ~np v
with 7% = 70.
So any flux-difference can be written as
AF = (nAf+n,Ag)As
TAAW As. (5)

The matrix T is the transformation matrix between differ-
ences of conserved variables and differences of primitive vari-
ables, i.e. AU = TAW or AW = T7'AU. So the flux-

difference AF can be written as

AF = TAT'AUAs
AAUAs, (6)
with T~! given by
1 0 0 0
-v/p 0 1/p 0

(r-17 —(v-Dm ~(r-1p

In the expression (5) A takes the form

W ngp nyp 0
A . 0 w 0 nz/ﬁ
- 0 0 v ny/p |’
0 nvp nyyp w

with W = n.% +n,v and @ = n,u + 7£y1:).
It is easy to verify that this matrix A has real eigenvalues
and a complete set of eigenvectors.

A=RAL

For n? + nz =1, the eigenvalue matrix is given by

Ao 0 0 w 0 0 0
ol oo o) _fom o 0
“lo o x o |[T]0 0wt o |

0 0 0 A 0 0 0 w-t

wherew = (W+w)/2andc? =99 /p +(w ~W)*/4. Rand L
denote the right and left eigenvector matrices, in orthonor-
mal form. With § = (W —w)/2¢ they are

1 0 p/2c —7p /2%
r=| 0 ™ ng(l —8)/2 nz(1+6)/2

0 —n, n(l1-8)/2 n,(14+8)/2 |’

0 0 vp /2 —7p /2%
10 0 —p /7P

I = 0 ny, -ng 0

0 ng n, (1+68</yp
0 ne ny —(1-6)c/7p

993

The matzix A can be split into positive and negative parts

by

At =RA*L, A~=RAL, (7
with
ME 0 0 0
e | 0 D | |
1 0 o0 M o0 |’
0 0 0 )&=
where

At = mag(),0), X =min(),0).

With positive and negative matrices, matrices with non-
positive and non-negative eigenvalues are meant.

Combination of (6) and (7) gives then the flux-difference

TRAYLT'AUAs + TRA™LT'AUAs
ATAUAs + A~AUAs. (8)

AF =

This allows the definition of the absolute value of the
flux-difference by

IAF| = |A|AUAs

AYAUAs — A" AUAs. (9)

Upwind flux definition

For the side ab of the control volume of node ¢ and node j,
figure 1, the first order upwind flux is defined by

1 1
F; = 5(Fi+ F) = SIAR]
1 1
= (B4 Fy) = (AL - A AU Asiz, - (10)

where
F‘i = (n:Afi + nyAgi)Asi,j)
F; (naAf; + nyAg;)Asi;.

I

Using (8) the expression (10) can be written as

Fl. = F; + A;—,_—, AU.":,‘ AS,',]'.

i3

(11)

. In order to define a second order flux, the second part
in the right hand side of (10), which contains the positive
and negative parts of the flux-difference, is decomposed into
components along the eigenvectors of the Jacobian, accord-
ing to

AFZE AL AU Asy

+
D rks N I AU sy,

n

I

(12)

where 7™ and [™ are right and left eigenvectors of A associ-
ated to the eigenvalue A". r™ and I" are components of TR
and LT-1. By denoting the projection of AU;; on the ntt
eigenvector by

oty =17 AU, (13)

the flux-difference becomes
n ynt n .
YT NE of; Asiy

D> AF

ll

+
AFE

i

(14)




The second order flux is then defined by
2 1
F?. = i(F' + F;)
1 1
_ n4 hl n—
3 E AFF + 5 E AFY;

1 zn 1 zn—
AR Y AR, )

T
where AF * are limited combinations of flux-difference com-
ponents AF"* and shifted differences AF™% | in the sense of
i for positive components and in the sense of j for negative
components. The limiter used here is the minmod-limiter.
The shifted flux-difference components are constructed based
on shifted differences of conserved variables. These are ob-
tained by elonging the line segment i,5 into the adjacent
triangles and constructing the intersections with the oppos-
ing sides (point 4, for the shifting in ¢ sense in figure 1). The
shifted flux-differences are defined by
AFTE = o2 00 67F Asy;

= 17 NI AURE Asg (16)
The foregoing technique to define the second order flux com-
monly is called the flux-extrapolation technique (3.

The time stepping

For the time-dependent Euler equations, the discrete set
of equations associated to the node 7 reads

du,

Vol,»—t' + ; AL AUipAsig + 8.0.=0,  (17)

d

where the index k loops over the faces of the control volume
and the surrounding nodes, where the term S.0. denotes
symbolically the second order correction, and where Vol; is
the area of the two dimensional control volume. A single
stage time stepping method with local time step on (17)
gives

( At ) (UrH U )+; AT AURAs x+8.0" =0, (18)
with the superscript n denoting the time level.

The maximum allowable time step is based on the mono-
tonicity condition of a single step first order time stepping.
This monotomicity condition reads

Vol; _
R ( At ;Ai"’ASiO >0,

where R means spectral radius. A sufficient condition to
satisfy (19) is given by

(19)

Vol; _ _ -
AL > Zk:'R(—‘Ai,k)As,-,k = gmaz(O, Cik — Wik )ASik,

where € is the velocity of sound and 1 is the normal outgoing
velocity component on a side.

The three-stage modified Runge-Kutta time stepping is
used here.

U, = ur
Uy = Us+os OFL 24 g,
Vol,-
At;
Uz = Uo-{-dz CFL Vol,‘ R1
At;
Uy = U0+a30FLf/0_l,'RZ
urtl = U,

with
Ri=—=)" A7 AUl Asip~ 8.0
k

The parameters are chosen according to Van Leer et
al. 9 o, = 0.2884; a; = 0.5010; o3 = 1.0; CFL = 1.325.

Boundary conditions

To calculate the flow around an airfoil there are two kinds
of boundaries, a solid wall on the airfoil itself, and a far-field
boundary due to the finite extension of the computational
domain.

At solid boundaries, impermiability is imposed by setting
the convective part of the flux equal to zero. Thus a special
flux definition is used for the boundary edges of the control
volumes of boundary nodes. These nodes are updated with
the normal procedure for internal nodes. It is then easy to
see that the local time step definition is to be modified in
the sense that in the sum over the neighbouring edges no
contributions from the boundary edges enter.

The farfield boundary is a square aligned with the flow
(figure 2). This boundary is interpreted as a channel. There-
fore the walls of the channel have to be far enough away from
the airfoil in order not to disturb the flow. In the example the
farfield lies 100 chords away from the airfoil. For this chan-
nel the upper and lower boundaries are treated as solid. For
inlet and outlet boundaries flow variables are extrapolated.
For a point on an inlet boundary a line is drawn in the direc-
tion of the flow. The intersection of this line and the nearest
triangle edge that lies completely within the flow field, is
determined. The flow variables needed at the boundary are
interpolated at the intersection point. At subsonic inlet, the
Mach number is extrapolated, while stagnation conditions
and flow direction are imposed. At subsonic outflow the re-
verse is done.

The mesh generation

Delaunay triangulation

The automatic triangulation of an arbitrary set of points
can be achieved using the Delaunay triangulation. Robust
algorithms to construct this triangulation are nowadays fully
developed. The triangulation is based upon the concept of
the in-circle criterion. The triangulation is the geometrical
dual of the Voronoi diagram. This diagram is the construc-
tion of tiles in which a region is associated with every point,
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in such a way that each region is closer to a point than to any
other point in the field. The bounding line segments form
the Voronoi diagram. If points with common line segments
are connected then the Delaunay triangulation is formed.
The vertices of the Voronoi diagram are at the centres of the
circles, each passing through three points which form an in-
dividual triangle in the triangulation. One of the properties
of such a construction is that no point lies inside the cir-
cumcircle of a triangle. It is this feature that is used for the
construction of the triangulation. The Delaunay triangula-
tion of an arbitrary set of points is the most equiangular, or
smoothest triangulation that can be formed with that sef.
The basic building block of the grid generator is a routine
which allows to add a point to an existing Delaunay trian-
gulation. The result of this operation is again a Delaunay
triangulation. This routine can be split into several simple
steps (4). The first step is a search over the triangles to find
all of the triangles inside whose circumcircle the new point
lies. These triangles are deleted from the triangulation cre-
ating a hole or insertion polygon. The new point is then
added to the mesh by connecting every point of the inser-
tion polygon with the new point. One can prove that the
resulting triangulation is again a Delaunay triangulation.

First grid

The construction of the first grid can be decomposed into
several steps. First a description of the domain boundary has
to be given. For the NACA-0012 airfoil a analytic equation
is known. The farfield boundary is taken to be a rectangle.
The second step is to introduce points on the boundaries.
This is done based on local curvature and on local grid spac-
ing information. A maximum edgelength L,,.. is defined
on every boundary. On a polygon boundary the points are
equally distributed with all edges smaller than L. On
an airfoil points are placed so that pLj,car = constant. The
maximum value of Ljqr 18 Lmer and the minimum value is
Lnaz/5.

The third step is to create a Delaunay triangulation of
the set of boundary points. The grid that results typically is
atrocious, but this is of no concern as the subsequent inser-
tion of interior points into the mesh dramatically improves
the mesh quality. To construct this grid a small procedure is
followed. Four points defining a rectangle containing all the
boundary points are used to construct two triangles. Now
all the boundary points are added to this triangulation us-
ing the earlier described algorithm. At this stage the whole
rectangle is triangulated, the inside of the domain, as well
as the outside. A visual check is done to make sure all the
boundary edges appear in the triangulation. Now the trian-
gles that lie outside the domain are removed from the grid.
To detect these triangles extra points are added outside the
domain, but inside the rectangle. Triangles that are formed
with at least one of these points are removed. The extra
points give the notion of an outer normal to the domain.

What we have now, is a Delaunay triangulation of the
domain defined by boundary points only. In the fourth step
the grid is improved by adding points into the interior. In-
deed, triangles of which the area is too big might appear in
the grid. For this, points are added, and placed in the centre
of the circumcircle of the triangle that is selected by the area
criterion. Again the previous described algorithm is used to

include this new point. Points are added until all triangles
have an area that is less than a certain value.
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Figure 2: First grid generated based on geometrical crite-
ria. Top: global view; Middle: blow-up of the airfoil region;
Bottom: control volumes in the airfoil region.
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During the fifth step, points are added, again in the cen-
tre of the circumcircle of a triangle. These triangles are now
selected by the aspect-ratio criterion. As a measure of the
aspect-ratio, the ratio of the circumcircle radius over twice
the incircle radius is used. This gives a measure of the skinni-
ness of the triangle. Triangles are refined until every triangle
has an aspect-ratio less than 1.6 or has an area less than a
minimum value, or until the triangle cannot be further re-
fined. Figure 2 shows the first grid. The side of the square
is 200 times the chord of the airfoil.

Adaptivity - mesh refinement

One of the most important advantages of unstructured grids
is the possibility to refine locally the mesh during the com-
putation. Successive mesh concentrations in critical zones
may be performed, without knowing them at the mesh cre-
ation time. The optimal way is to start the computation on
a coarse and smooth grid which is not at all specific to a
hypothetical solution, and refine during the run, according
to criteria specific for the particular physical solution. In the
physical problem treated here, transonic flow over an airfoil,
interesting regions are of course the shockwaves, which have
to be precisely located and also well quantified, stagnation
regions, and the trailing edge zone where a contact disconti-
nuity may exist. Criteria can be defined characterizing such
flow features. The criteria used here are of local nature. This
means that they are calculated with local flow parameters.
The first criterion is based on the pressure difference over

an edge. If

Vv 2'Smin !pmaz — pminl
C bl

P

lpi — pj|Li; >

then the edge 7, 7 will be refined by placing a new point into
the centre of the edge. In this formulation p; is the pressure
at node ¢, L; ; is the length of the edge. The variables in the
right hand side are minimum or maximum values taken over
all the nodes. Sy is the area of the smallest triangle, and
C, is the sensitivity constant for the pressure criterion. This
criterion triggers shockwaves and stagnation regions to be
refined. The other criterion is based on the entropy difference
over an edge, similar to the first criterion:

V 2Smin lsmaz - smin}
C )

s

|si —sj|Lij >

where s is the entropy. This criterion triggers shock waves
and tangential discontinuities. To include the new points
in the mesh, the earlier described procedure is used. In the
refinement criteria, the right hand side of the inequalities are
constructed in such a way that the same sensitivity constant
can be used on all meshes. The refinement procedure is

illustrated in the following figures.

Results

Starting from the grid shown in figure 2, three succesive
stages of refinement were done using the foregoing criteria.
Figures 3,4 and 5 show respectively the second, third and
fourth grid together with the obtained solution in the form
of iso-Mach lines. The NACA-0012 profile has an angle of
attack of 1.25 degrees and the Mach number of the incoming
flow is 0.80.

The number of points in the succesive grids are: 1278,
2159, 4157, 8860. The sensitivity constants are Cp = 1.0
and C, = 2.2.

\
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Figure 3: Second grid, top: triangular mesh; middle: control
volumes; bottom: iso-Mach lines per 0.05.
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Figure 6 shows the refinement on the third grid. Only
the triangles selected for refinement are shown.

Figure 7 shows the final grid structure in the shock region
on the suction side, in the leading edge and the trailing edge
regions. The shock is sharply resolved. At the leading edge
the refinement is mainly due to the entropy criterion (figure
6). This means that some false entropy is created by the
algorithm. The formation of an artifical entropy layer can
be seen in the grid structure.

Figure 8 shows the convergence history. The logarithm
of the maximum residual of all equations over all control
volumes is shown as function of work units. The work unit
is the computational effort for one stage in the three-stage
stepping for 1000 points.

0 50 100 150 200 250 300 350 400

Figure 8: Convergence history: log of residual as function of
work units.

Conclusion

By the combination of an adaptive unstructured grid gen-
eration technique, suitable refinement criteria and a high res-
olution flow solver, high quality solutions for Euler equations
can be obtained.
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