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Abstract

This paper presents a numerical analysis for
three—dimensional turbulent flow in an S—shaped dif-
fuser. The coordinate transformation was made because
of the section variation along the duct, in order to over-
come the fundamental difficulty of the computational
mesh with the boundary conditions. The conservative
Navier—Stokes equations is still in conservation after
transformation from (x,0,z) to (&,{,n) coordinates. And
the three—dimensional body-fitted meshes have been
generated. As an instance, the three—dimensional turbu-
lent flow field in a rectangular—round S—shaped inlet has
been analysed numerically. The finite—difference method,
improved SIMPLE procedure and two equation k—g tur-
bulence model are adopted for computing the flow situa-
tion, The computational results obtained agree fairly sat-
isfactorily with experimental data, including static pres-
sure distribution along the walls, main flow velocity pro-
file at different section of the duct and total pressure

coefficients and cross flow velocity vectors at outlet.
I. Introduction

The subsonic diffuser is a feature of inlet installa-
tions for jet aifcrarft. In the case of the inlet located in
the belly and offset possitions of military aircraft in the
fuselage of which the engine is carried, the subsonic dif-
fuser is tailored the S—shaped duct to conform with con-
straints imposed by other aspects of the aircraft design.
In addition, the cross—section of the inlets often varies
along the duct from arbitrary shape, for example rectan-

gle, to circle facing the engine. In the ducts, the flow pat-
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tern is very complicated and should be paid close atten-
tion to. A considerable difficulty in calculation of the
flow is the compatibility of the computational mesh with
the boundary conditions. Obviously, the flow situation in
the ducts of this sort puts a significant task to the
computational fluid dynamics.

In previous work of the numerical investigations,
references (1) and (2) dealt with potential flows in the
ducts with arbitrary section. Some viscous flows in the
duct with regular cross—section for example rectangle,
circle or ellipse, were also analyzed®~ @, The flow pat-
tern in complicated duct computed by the method of
combining potential and stream functions is given in
reference(7). And a viscous analysis with parabolized
Navier—Stokes equations for flows through various inlets
has been made in Lewis Research Center®.

It is not easy to analyse above flow problem in
orthogonal coordinates. A numerical procedure is ad-
vanced here to predict the flow in S—shaped duct with
instance, the

varible  cross—sections. As an

three—dimensional  turbulent flow field in a
rectangular—round S—shaped inlet (See Fig.1) has been
computed numerically. A coordinate transformation is
made in order to remove the puzzler of the
computational mesh compatible with the boundary con-
ditions in the calculation at arbitrarily shaped region. A
series of transformation relations is presented by tensor
analysis. The governing equations of the flow are still in
conservation after the transformation. Based on the
coordinate transformation, the three—dimensional
body—fitted meshes have been generated through the
numerical solution of elliptic partial differential equa-

tions. The finite—difference method and improved SIM-




PLE procedure are used in the numerical approach. The
two equation k—e turbulence model is employed for des-
cribing the turbulent property of the duct flow. The sin.
gularity point at the centre of each section of the duct has
been treated numerically during generating the body—fit-
the flow field. The

computational results obtained agree fairly satisfactorily

ted mesh and calculating
with experimental data, including static pressure distri-
bution along the walls, main flow velocity profile at dif:
ferent sections of the duct, total pressure coefficients and
cross flow velocity vectors at outlet. The study shows
that the methods of coordinate transformation and grid
generation are successful, and the mathematical model
and the numerical method are practicable for the
three—dimensional turbulent flow in the duct with arbi.

trary sections.
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Fig.1 Sketch of the S—duct model

. Coordinate Transformation

The orthogonal cylindrical coordinates (x,0, z) (See
Fig.2) are suitable for the internal flow through a plane
S—duct with rectangular section®™. Obviously, the prob-
lem occurs when the cross—sections of the duct are not
rectangular because the boundary grids of the duct do
not coincide with the numerical mesh of the flow field in
cylindrical coordinates. It brings trouble in treating
boundary conditions in computing. On the other hand,
the accuracy of the calculation as well as numerical sta-
bility and convergency would be reduced too. To get rid
of the difficulty, the coordinate transformation and grid

generation in accordance with the section variation and
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S—shape of the duct are necessary for the numerical

computation.

Fig.2 Orthogonal curvilinear coordinates (x,8,z)

A body—fitted coordinate system (£,{,) is set up in
the present study. The coordinate directions of ¢ and #
are shown in Fig.3. { axe directs the downstream of the

duct flow.
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Fig.3 ¢, coordinates arranged in cross—section

For the flow through an S—duct with variational
section as Fig.1, the general governing equation, i.e. Na-
vier—Stokes equation can be expressed in cylindrical

coordinats (x,0,z) as
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which is suitable to two bends and the straight part of the
S—duct in Fig.1. R=R,+x and R=Ry—x for first and
second bend respectively, and R =1 for the straight part.

In equation (1), p is the fluid density. u,v,w are ve-
locity components in x,z,0 directions respectively. @ is a
general variable that may be u,v,w, the kinetic energy of
turbulence k and its dissipation rate ¢ I is exchange
coefficient that means dynamic viscosity when ® repre-
sents u,v,w. And § is source terms which are different for
different variable @.

Eg.(1) can be transformed to (&,{,n) coordinates
with tensor analysis. The transformed N—S equation re-
mains conservative with the help of the conservative
between (x,0,z2) and (&,(,n)

coordinate systems. It is not only convenient to the nu-

transforming relations

merical solution, but also gives the clear physical mean-
ing. The relations are given as follows.
Let A be equal to a scalar function, and conservative

gradient is expressed by®

3
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Here, (+) is vector. x'(i=1,2,3) indicates the variables
x,0, z of original coordinates. &(i=1,2,3) represents the
variable &,{,n of the body—fitted coordinates.d'(G=1,2,3)
is the contravariant base vectors of (&,{,n) coordinates,
and ¢ (i=1,2,3) is the covariant base vectors of (x,0,2)
coordinates. J=2a(x,0,z) / a(&,{,n) is the Jacobian of the
transformation. The quantity ¢;; shows the permutation
symbols, by the rules of tensor analysis.

In cylindrical coordinates (x,0,z), the relations be-

tween gi(i=1,2,3) and unit vectots iz, ,i;are:
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The conservative gradient in (£,{,4) coordinates de-
rived using Egs. (3)~ (6) in Eq.(2) by expansion is com-
pared with that in (x,6,2z) coordinates, so that the conser-
vative derivative transformation relations between (x,0,z)

and (£,L,n) coordinate systems can be obtained as follows?
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The contravariant components #(i=1,2,3) in
&direction of velocity vector u for (£,,5) coordinates are
given by
1
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Egs. (7) and (8) are applicable to two bends of the
S—duct. For the symbol F, the upper one is suitable for

first bend and the lower for second bend.
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E. Mathematical Model

The Eq.(1) can be transformed conveniently from
(x,0,z) coordinates to (&,{,n) coordinates by use of Eqgs.
(7) and (8). It is found that Egs. (7) and (8) may be
simplified in many real situations.

For example, when the centre lines of the two bends
of the S—duct are exact or approximate circle arc. The

terms U, and §, can be neglected, i.e.

ggzo} ®

£,=0

If the S—duct has big slender proportion or low—dif-

fusion, there exist the following approximations.
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For the three—dimensional turbulent flow without
recirculation in the predominant direction through an
S—duct as Fig.1, the diffusion fluxes can be neglected in
that direction. However, because of the significant curva-
ture of the duct, the pressure transmission of the flow in
upstream direction should be considered. In the present
study the partially—parabolized Navier—Stokes equations
are employed to describe the flow situation. After trans-
formed from (x,0,z) coordinates to (&,(,) coordinates,
Eq.(1) is properly simplified. As a result, the general ex-
pression of the governing equations of the flow in the

S—duct with arbitrary cross—section is
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Where ®,p,I',S have explained in Eq.(1), but the source
term S is different from that in Eq.(1) because of the

transformations. The other variables in Eq.(11) are:

U=Ju' =zu—z0+Dw
V=Ju*=—zu-t+z.0+Ew
W=Jud=Jw

J =z, —x,2¢

(12)
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It is evident that Eq.(11) is analogous to Eq.(1) and
also conservative.

The turbulent nature of the flow is described by two
equation k—e turbulence model. And the viscosity is

calculated by

__cCppl?
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IV. Grid Generation

Based on above coordinate transformation, the 3—D
physical domain can be transformed to generate auto-
matically boundary—fitted meshes that may be extended
to the arbitrary case of duct flow. In Fig.1 the cross—sec-
tion of the entry of the duct is rectangular, which be-
comes a circle gradually from entry to outlet. The
centerline of the duct consists mainly of two opposite
planar circular arcs. The equivalent divergence angle of
the duct is about 4.722 ° . Therefore, the coordinate
transformation of the 3—D physical domain of the duct
can be made by generating two—dimensional body—fitted
meshes for every cross—section along the duct one by
one.

In the coordinates as Fig.3, the body—fitted grids of
each cross—section can be got numerically by means of a

set of differential equations

}

Thus, the task of three—dimensional meshs for analysis

V=P (z,2)

Vin=Q(z,2) (14)

can be translated into a series of two—dimensional
meshes generated in x—z cross—section planes in which
the mesh generation is automatically controlled. P and Q
in Eq.{14) are the functions of ¢ and 5. By use of reason-
able function P and Q, a satisfactory distribution of the
mesh can be obtained for arbitrary shaped cross—section.
The numerical mesh of some cross—section of the duct is
shown in Fig.4 where physical domain in x—z plane is
transformed to regular rectangular domain in £—n plane.
It is seen that the flow bound coincides with the grids on
the bound of the domain. There often exist singular
points in generating body—fitted grid for the flow in

ducts, such as the centre point O of the section in Fig.4.




In order to solve the problem a additive curve is enclosed

around O point as inner bound in the study.
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Fig.4 Computational mesh generated in x—z

and ¢—n planes

The numerical meshes of several sections along the

S—duct are presented in Fig. 5.

Fig.5 Fitted—body grid generated along the S—duct

V. Numerical Procedure

The three—dimensional turbulent flow field in
S—duct has been computed by finite—difference approach
in which the governing equation (11) described above is
solved numerically.

At first, the difference equations are derived by
discreting Eq. (11) on the boundary—fitted mesh in Fig.4.

According to the feature of the flow, the

partially—parabolized governing equations are used. The
flow variables are calculated by marching, through the
flow domain along the predominant direction, combined
with iteration at each cross—section in sequence from en-
try to downstream. In the computational approach, the
pressure field is stored as three—dimensional array so
that the effect of pressure on whole flow field can be
transmited by marching repeatedly. And all other varia-
bles are stored at any time of marchings as
two—dimensional arrays in cross—sectional plane.

It has been proved that U,V and W are velocity
components of u respectively in £, and { directions(m),
while u,v and w are physical velocity components of u
respectively in R,z,and 8 directions. The staggered grid
system is adopted, in which U,V and W are located in the
middle of adjacent grids corresponding with the
coordinate directions of u,v and w respectively. The oth-
er variables are settled on grids. The injtial values of
u,v,w and p of the flow at the duct entry are gained by
experiment’®, The initial predominant velocity w is
62m/'s.

It is known that the values of u,v and w depend on
the distribution of the pressure of the flow. With
reference to firsthand SIMPLE method®”, some im-
provement has been done. A new pressure—correction
equation for body—fitted coordinates (£,(,4) has been de-
rived by use of continuity equation. The pressure com-
puted and velocity components u,v and w are corrected
with the help of pressure—correction equation in every
iteration at each station, in order to get more reasonable
distribution of the pressure and velocity field. The cor-

rection formulas for the velocity componehts are written

as
ue=d, (pp— ) +c. (o —pv)
o= (pwr—p ) -0 (Ps— )
Ve =dy (o— i)+ P — 1) (15
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The subscripts stand for the locations of numerical
meshes (See Fig.6). The starred variablesp™,u”,v" and
w" are the values obtained in last iteration, and v/, v/,
and w’ are velocity corrections corresponding to pressure
correction p’. The corrected p,u,v and w are taken as the
value of the current iteration. The pressure—correction
equation can be deduced by substituting Eqgs. (15) and
(16) into the difference equation of continuity. The
coefficients in Eq. (15) are calculated by the difference

equations of u,v,w momentum equations,

1

§

Fig.6 Locations of subscripts of Eq.(15) at £—# mesh

By pressure—correction equation, the pressure field
is corrected in itself to bring the velocities to conform
with the continuity equation. Besides, the pressure distri-
bution and predominant velocity w are also corrected by
non—equilibrium of the flow flux between entrance and
current station in marching computation. The numerical
marching, with iterations in every section of the duct,
through the flow domain are repeated many times, using
a more correct pressure field each time. The procedure is
terminated when the corrections to the pressure field
have become so small that the residues of three velocity
components and airflow are smaller than a preassigned
value.

The center point in every corss—section of the duct is
a singular point in the process of grid generation. It is al-
so a problem in the solution of the flow equations.
Analytically, the metrics vanish at this point and it makes
the tlow variables multivalue. In the present study an
additive closed bound is made around the inner point.
The value of the flow variables at the inner mesh point is

equal to the average value of those at grids surrounding
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the singular point after every iteration. The results prove

that the treatment is desirable,

VI. Results and Discussion

Computations for the turbulent flow illustrated in
Fig.1 have been made. The flow parameters obtained in
the S—shaped duct have fairly good agreement with ex-
perimental data®,

A typical vortex pair of the transverse flow at outlet
of the duct appears in Fig.7. The calculating and experi-
mental results show that the corss—sectional flow pat-

terns in Fig.7a and 7b are very similar,

computation

INSIDE WALL

OUTSIDE WALL

INSIDE WALL

QUTSIOE HALL

Fig.7 Transverse velocity vectors at outlet section

The distribution of total pressure coefficcent at out-
let section is an important property of the flow in aircraft
inlets. Fig.8 gives the results of computation and experi-
ment, in which it is seen that the distribution of pressure
loss computed looks like the situation of that from exper-
iment. The pressure loss is larger near the wall which is
far away from the fuselage and called outside wall in
Fig.8a. However, it does not appear in Fig.8b. The rea-
son for this may be that a separation of the flow occurs

in second bend near outside wall due to the larger curva-




ture there. But the partially—parabolized solution is only

able to analyse the one—way flow.
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Fig.8 Total pressure coefficients at outlet section

Fig.9 shows the theoretical distributions of static
pressure coefficient on the symmetrical line of the duct
walls which have the same tendency with those of exper-
iment. The numerical gradient of the static pressure, re-
flecting the nature of the flow through an S—duct, is cor-

rect, though there are some differences in the data.
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Fig.9 Static pressure coefficients along the S—duct walls

The development of longitudinal velocity w along
the S—shaped diffuser is shown in Fig.10 that gives the
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distribution of w component in symmetrical plane at dif-
ferent sections. Because of the duct diffusion the mean
flow velocity decreases along the duct. The analytical re-
sult shows the variation of w component in accordance
with the curvature of S—duct. Since only the flow field at
outlet is measured, a comparison between numerical
curve and experimental data at exit setion is given in
Fig.10. Tt is seen that experimental points stand very near
the computed velocity profile.

= COMPUTATION
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Fig.10 Longitudinal velocity profiles at different

sections along the S—duct

Reviewing the foregoing results, it may to be con-
cluded that the mathematic model and numerical proce-
dure considered in the present study are practicable for
computing three—dimensional turbulent flow through
S—shaped ducts with arbitrary sections. And expectantly,
the numerical approach can be spread to 3—D turbulent

flow in more complicated ducts.
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