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1. ABSTRACT
A simple analytical method to calculate the
unsteady airloads on an oscillating wing with

separation bubbles on the suction side of the wing is
presented. The oscillation of the wing is assumed to
be harmonical. Linearized aerodynamics is assumed in
the analysis.. It is also assumed that the separation
and reattachment points are known and fixed. Thus, the
separation bubble does not move and the flow is
separated during the whole cycle of oscillation. Such
simplified model is considered beneficial for
preliminary estimation of the unsteady aerodynamic
characteristics of an oscillatory flow about wing with
separation, such as those met in buffeting phenomenon.
In order to apply the linearized potential flow
theory, the flow is assumed to be inviscid and
isentropic. Although such modeling is by no means a
physical one, it is believed that it can serve as a
mathematical convenience in obtaining the load acting
in separated flow situation. Results of the method are
presented. The validity of the method for fully
attached flow case was insured by comparison with
published results, while for separated flow cases,
qualitative discussions are presented.

NOMENCLATURE

A - source strength, doublet strength.

a, ~ freestream velocity of sound
ar(y) - series coefficient of pressure jump.
a:(n) - normalized ar(ar* c(n)/4s)

c - mean chord

c{n) - sectional chord

Cl(n) - sectional lift coefficient

CL(n) ~ total lift coefficient
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Cm(n) - sectional moment coefficient
CM(n) - total moment coefficient
Cpl&,n) ~ pressure coefficient
ACp(E,m) ~ pressure coefficient difference
(Cp-Cp )
1 u
Cm(n) — sectional moment coefficient
d (y) -~ series coefficient of downwash jump.
dq(n) ~ normalized ciq (dq* c(n)/4s)
e (Esmim)
fums(g’nm ) _ chordwise integration
f12r(€,n;n’) of the 1st Kernel function
f o Emn’)
f, (&€,m;m) chordwise integration
as , of the 4th Kernel function
£ (&m7)
4qns
h (X) ~ pressure jump function
r
h (X) -~ downwash jump function
q
h(X,m) - amplitude of heaving motion
i - square root of -1
L(k|n~n"}) - modified Bessel function of 1st
! order l1st kind
k - ——Us, reduced frequency
1]
K (k|n-7"|) ~ modified Bessel function of Ist
! order 2nd kind
K(£,m&,n') - Kernel function
Ll(kln—n’l) - modified Struve function of Ist
order
M - Mach rzxumzber 2 2 2.1/2
r - [(x=x")"+B"(y-y" ) +B (2-2")"]
s - semi span
(s - integration in spanwise direction
rnove of the 1st Kernel
(S’ ~ integration in spanwise direction
an ve of the 4th Kernel
t - time
Uoo - free stream velocity
wi(g,m) - downwash
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Aw(E, ) - downwash difference (Wl— Wu)
X — coordinate along flow direction
X, Xc - pitching axis
X - normalized coordinate in the flow
X-%, gn)
directi —_—
irection { ) )
y - coordinate in spanwise direction
z - coordinate perpendicular to xy
plane
o - amplitude of pitching oscillation
BZ e
$(€,m) - perturbation velocity potential
w(g,n) - acceleration potential
w - frequency of oscillation
n - nondimensional y coordinate (y/s)
£ - nondimensional x coordinate (x/s)
Umt
T - — hon dimensional time
u - M/g?

SUBSCRIPTS AND SUPERSCRIPTS

- position of the singularities

D - doublet
1 - lower surface
ns - non singular
s - singular
- source
- upper surface
P, J ~ indices in chordwise direction
v, n - indices in spanwise direction
le ~ leading edge
te - trailing edge
xt - second derivative with respect to
X and t
XX,V Y)2Z - second derivative with respect to

X,y,and z , respectively.

2. INTRODUCTION

The prediction of buffeting characteristics of
aircraft remains a challenging problem for
aeroelasticians. The common difficulty found by
engineers in this case is wusually the calculation of
unsteady aerodynamic load associated with flow
separation which is nonlinear in nature. For
preliminary design purposes, the use of Navier Stokes
solver or even the method of inviscid-viscous strong
interaction to analyze the unsteady aerodynamic load
may not be economically justified. In many practical
applications, engineers are concerned mainly with the
prediction of the load itself rather than the detail
of the flow separation that occurs.

The aforementioned problem motivated many authors,
such as Chi[ll, Ericsson[2], Perumal[3], Dowelll4],
Huber, Rocholz and Laschkal5], and Djojodihardjo,
Sekar and Laschkal6] to work on this problem using a
simplified model of potential flow theory. The
modeling is not aimed at the physics of the flow
separation itself, but rather on the load occured
during the course. The results for two dimensional
cases seemed to have an encouraging agreement with the
experimental data. Thus, although the approaches
proposed do not physically model the flow separation
in great detail, they can reflect the essential
mechanism present in such phenomenalé].

Since all the cases considered formerly were two
dimensional, a three dimensional method would be of
interest for common practical applications. This paper
extends the method previously developed by

Djojodihardjo et al{6] for two dimensional case and
applied to wings of finite span. The kernel function
method used to solve the unsteady linearized
compressible potential flow without separation is
extended to cover also the separated region. The
boundary conditions comprise not only the slip
condition on the body and no disturbance at the
infinity, but also a prescribed pressure at the
separated region. The three dimensional kernel
function theory of Laschka[lO] is adapted and modified
for this case. To satisfy all the boundary conditions,
doublet distribution is placed on the entire lifting
surface and source distribution on the separated
region.

3 PROBLEM FORMULATION

A wing modelled as a flat plate at a steady
undisturbed flow having semi span equal to unity is
considered. The wing is executing harmonic
oscillations in pitching and heaving modes. At the
upper side of the wing, separation bubbles may appear.
This situation is sketched in Fig. 1.

3.1 GOVERNING EQUATION

The equation  governing  unsteady linearized
compressible  potential flow can be obtained by
assuming small disturbance with respect to the free
stream condition. This equation is known as the
Kelvin-Bernoulli equation, which for an acceleration
potential formulation reads([7]

_zM

2z a
o«

2 1,
(M )wxxwyyw th_az‘ e O @

+1]
For a harmonic type of oscillation this equation can
further be simplified to
i2kM

2
k .
3 wx+—zw = 0. (2)
w

2
(1-M )wxx+|,(/yy+wzz—
«©
In the second equation, ¢ is a complex quantity
representing the amplitude of the acceleration
potential and the phase lag with respect to the wing

motion.

3.2 BOUNDARY CONDITIONS

a. On the attached flow region
The kinematical boundary condition of inviscid flow
model dictates that the flow has to be tangential
to the surface. This condition can be written as

w(x,y;r)=(g—x + g?)z(x,y;‘r) (3)
where :

wix,y;t) = W(x,y)e“‘T (4)

z(x,y;T) = E(x,y)elkT (5)

and where k is the reduced frequency and T is the
nondimensional time. For a heaving and pitching
motions, the surface can be represented by :

z(x,7;7) = - H(x,y)e“{, (6)
and

z(x,7;7) = - (x—xc)&(x,y)e“‘T )
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respectively. Consequently, the boundary -conditions

becomes,
i) for heaving motion
-ikh

ii) for pitching motion

w

(8)

w —[1+ik(x-xc)1‘&. (9)

b. On the separated flow region

The separation is considered to take place only on
the upper side of the wing. On this region some
assumptions have to be made regarding the velocity
and the pressure of the fluid, based on the
experimental evidence. The true situation may be
obtained using viscous flow approach, which is
beyond the scope of this work. It may be assumed
that the velocity on the separated region is the
same as that of the undisturbed flow.
Alternatively, it may be assumed a priori that the
pressure difference in the separation bubble is
equal to some value ¥, which may be zero [1],

Epu(x,y) = 7. (10)

4. SYSTEMS OF INTEGRAL EQUATIONS

The system of integral equation for the stated problem
is obtained from two sets of integral equations. The
first set is the velocity (normal wash) equation with
the kinematical boundary condition on the attached
region and the other is the pressure equation with the

prescribed pressure boundary condition on the
separated region. In each set of the integral
equations, both singularities distributed on the
attached and separated regions contribute to the

appropriate boundary conditions. Therefore the system
of integral equations comprise four components or four
kernel functions. In this chapter the four kernel
functions are derived.

4.1. INDUCED VELOCITY AT THE ATTACHED FLOW
REGION

The first kernel of the integral equation is
obtained from the induced velocity at the attached
flow region. Since equation (2) is linear, then its
solution for the attached flow subject to the boundary
conditions can be formed by the superposition of its
fundamental solution. A fundamental solution of the
Kelvin Bernoulli equation for a lifting problem is the
doublet flow. In the frequency domain approach of an
acceleration  potential formulation equation, the
induced potential of a doublet point takes the form of

, -ifkr
= 1 ipkMx-x")3 (e
lIJD(X’Y’Z) = g Ae az[ r ) )
where :
A= A_CLXZ_Y_L) (12)

The downwash at the attached flow region induced by
the doublet distribution over the entire surface is
then

s
te
o 1 r AT R > 3o
wl(x,y) = & ‘[ ‘[ ACp(x’,y") Kl(x,x v,y) dx’dy’.
s (13)

Equation (I5) is the usual integral equation of the
litfing surface approach for attached flow. The kernel
of this integral equation is introduced by Kussner [8]

le
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as
x-x’ 2
s tkl(x-x")/B8 ~-url
K = ek, 8 s dxx")
1 z~->0 622 r
0 (14)

or in a more convenient form, as was formulated by
Watkins, Runyan, Woolston [9]{10] :

il
e-uug £’)

2 ’ 22
s"(m-n")

X {-k]n—n’] I:Kl(k|n—'n’ 1)+

i , , :
5 (L &[n=n"]) = L (k|n-n’|)) - i
U.Br

e ] )
0

_ i—g’eik[(g—gwﬁz-ur’]
r )

T

( 1+1_2)1/2

(15)

where £ and n are the nondimensional coordinates in
x and y direction respectively, and

r o= [(€-€)% B%n-n")"1? (16)
the upper boundary of the integral is
UBr = —1— [(6-8) - Mr'] %)

|n-n" |8

4.2 INDUCED VELOCITY AT THE SEPARATED FLOW
REGION

of the separated region, on
which a source distribution is placed, to the first
set of integral equation 1is derived wusing velocity
potential formulation. Since separation occurs only in
the upper surface, acceleration potential is not
appropriate for this situation; velocity potential
formulation is more suitable. The Kelvin Bernoulli
equation for the velocity potential formulation takes
the same form as equation (2), since a linear
relationship between pressure and velocity potential
is assumed. The velocity potential induced by a point
source is

The contribution

1+ ipMix-x) (e THET
¢s(x,y,z) =-zz Ae [—?——] (18)
At- the lifting surface, a limiting process can be
followed to determine the following relationship
w(x,y,z") = -A" (19)

The downwash induced by the source distributed on the
upper surface where the flow is separated then becomes

1.°r

wem = [ [awem) kEmen) s
-1 Es
5w

5 (20)

£=g'n=n’' _

Notice that in the above equation the singular point
has been isolated and treated separately, taking into
account equation (19). The separated region for the
time being is taken to be uniform in the spanwise
direction; this condition can easily be modified by
examining the experimental results. The kernel
function of equation (20} is

-6 &M {ipter-1)

r?

1 .. 2 AT
Ka—ﬁ %yg -B7z AW(E’, " )e

(z21)




It is obvious that the last equation is zero on the
lifting surface since linearized aerodynamics has
been utilized. The remaining equation is then
— Aw
w(Emn = — (22)
g=g'n=n’

4.3 INDUCED PRESSURE AT THE ATTACHED FLOW
REGION

The third and fourth integral equations are
pressure equations, with the pressure on the wupper
surface where the separation occurs as the boundary
condition. The third equation is obtained from the
pressure induced by the doublet distribution in the
the attached flow region.

From the definition of acceleration potential and
the  linearized Bernoulli equation the pressure
coefficient is

Cp(x,y,2) = -an(x,y,z). (23)

Taking equation (23) and equation (11) into account
the pressure coefficient on the upper surface of the
wing is then

~ 1ote
Cp&m = [ [ aChe ) K Eme ) agdn-
-1 gle

ACp

A (24)

€=§’»T)='n'

Where, again, the singularity is isolated and treated
indenpendently and the separated region is distributed
uniformly in the spanwise direction. The kernel
function is worked out in the same manner as in two
dimensional case (Djojodihardjo [6]) to obtain

_ 1 2_ KRIM(E-E)-r"] (-ipkr’'-1)
K, =2 Lp Bz — (25)

It can also be examined that for a planar surface,
equation (26) will go to zero when z approaches zero.
The remaining pressure equation then becomes a very
simple equation as

= _ _Aﬁp
Cpu(i,n) = 5 (26)

£=¢',n=n’

4.4. INDUCED PRESSURE AT THE SEPARATED FLOW
REGION

The kernel the last integral equation is the
contribution of the velocity potential source to the
pressure integral equation. The pressure coefficient
is related to the velocity potential through the
linearized Bernoulli equation as

. 6¢S 6¢s
Cp(x,y,z) = -2 [F + &—J 27
Substituting the expression of induced velocity

potential due to sources distributed on the separated
region into equation (27), one obtains the pressure at
the upper surface in the form

1 r
Cp (&m) = J. J. AWE' ") K, (€,m:€" ") dE’dn’ (28)
-1 gs
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where, the kernel

K = _Lexuk[M(ﬁ—g‘)-r’][ ik (&-E’)(iukﬂ/r')] (29)
4 2n 2 »2

8r r

Superposing all the components contributing to the
integral equation as elaborated in this section, the
system of iniegral equation is found to be

_ 1ote
W (&) = j J ATp(E", ) K (EmE",n') dE'dn’
£

-1

le
" A_"z"_ (30)
£=€",n=n’

— 1 gr__
Splem = [ [ aWE ) K Eme ) agan

-1

- Agp ‘ (31)

£=€" ,m=n’

This system of integral equation comprises two

Fredholm integral equations of the second kind, since
the unknowns also exist outside the integrals.

5 METHOD OF SOLUTION

As has been mentioned in the beginning of this
paper, the method employed for solving the system of
integral equation is the so called kernel function
method. The solution is assumed to stem in a function
space which must satisfy the physical characteristics
of the solution. Each component of the function space
is valid throughout the domain (in this case the
lifting surface); this is the main difference as
compared to the finite element approach where the
function space is only valid in an element. The choice
of the series of functions is carried out taking into
consideration four aspects, namely the completeness of
the function space, the physical characteristic
modelled, the convenience of the integration, and the
rapid convergence of the series.

In the present work, the unknowns, the distributions
of pressure difference and downwash jump across the

lifting surface are represented by the series
expansion as
R
ACpX,y) = ¥ al_(y) hr(X) (32)

r=0

in which each function h (X) should exhibit a well
known singularity behaviér for X » 0 of the type,

. -1/2

lim e

£30
This singularity models the suction force at the
leading edge. At the trailing edge where Kutta

condition applies, the result of thin airfoeil theory
dictates that the pressure difference should go to
zero in a manner like

. 172
lim €

€30
One set of functions which satisfies those physical
characteristics in the chordwise direction is the one
introduced by Glauert [10]

b (o < 2 Cosrgrcosliral)e) ()
r T sing
where y
x=x )
= ~C—(-1T)—-— = z (1“COS¢) (34)




The collocation points are defined as

_ 2n(p+l) _

¢ = 5Ps3 =0,.,...,P (35)
The coefficients of the series are not constants, but
they will also be expanded in the spanwise direction,
taking into account the physical characteristics of
the flow.

Similarly for the downwash jump across the lifting
surface, the same series expan51on is used

Aw(X,y) = ): d (y) h (X) (36)
q=0

After substitution of the series expansion, the system
of integral equations becomes

_ R 1
w (&)= T Ja(n)fh(xm(sng,n)dgdn
r=0 -1 le
Q 1 h.(X)
+ 7 Jd:(n’) S ‘ dn’ (37)
q=0 -1 £=£’7=n
_ Q
Cpu(g,n)=z fd(n)Jh(X)K(Ens,n) &'y
R 1 h (X)
+ ¥ J a:(n’) zr } dn’ (38)
r=0 -1 =€’ n=n’

The asterisks in the coefficients stand for the
apropriate nondimensionalization of the coefficients
in the spanwise direction. After the integration in
the chordwise direction, the above set of equations
can be written as

w(Em =% j a’(n') £ (E,mn') dn’+
r=0 -1
Q 1 h (X)
) I ') ‘ d’ (39)
q=0 -1 £=€"n=n
R 1, h (X)
Soem =L [an g | dn'+
r=0 -7 © £=£"n=n
J‘d(n)f (&mn) dn’ (40)
q= 0 -1

The charateristic of the flow in the spanwise
directions can, be well Jepresented by expanding the
coefficients a ('n) and d (n) in a Fourier sine series.

Introducing a Tcoordinat@ transformation, where 7 =
cos(8), the series can be written as
M
a(e) =7y A, sin(u) (a1)
T

H=1
The integration in the spanwise direction is worked
out using Multhopp method, which is closely related to
the choice of the series. Subtituting the series into
the system of integral equation and carrying out the
integration, one obtains

h
w(&m) = z z LEme )+ z z d W2
r=0 m= q=0 m=1 rm
_ R Mo hrm Q M
C = .
p&m =F ELa c3 +T T d c4rmf4q(§,n,em)
r=0 m=1 q=0 m=1
cl, ¢2, c3, c4 are the quadrature constants of the

Multhopp integration method.

The last set of equations indicates the presence of
M(R+1) number of unknowns, in the form of coefficients
of expansions. The same number of collocation points,

where the equation has to be satisfied, should be
taken. The collocation points in the chordwise
direction has been introduced before, namely
_ 2n(p+l) _
¢ = 5P+3 ! p = 0,1,...,P (35)

In the spanwise direction the collocation points are
chosen to follow a cosine spacing
= " =
6 = V1 , vo=1,2....,V (44)
To have the same number of collocation points P must
be equal to R and V must be equal to M. The set of

algebraic equations at the collocation points are

R M Q

a + a (45)
§0 m§1 rm 1 rm pv q§0 §1 qm 3 qm pv
R M * Q M
Z Z arm 2 rm pv+ Z Z dqm 4 rm pv (46)
r=0 m=1 q=0 m=1

where p and v run from O to P and from 1 to V
respectively. The equation in the matrix form

#.
g, 8 a w
{‘ 3]{‘}={_‘ . (47
g2 g4 d Cpu

Solving this set of algebraic equations, the
coefficients of the series expansion are obtained.

The pressure coefficient and the other
aerodynamic coefficients can then be easily calculated
from this result.

6. PRESSURE, LIFT & MOMENT COEFFICIENT

The pressure coefficient consists of the attached
and separated part, which are calculated separately.
Both of them give their contribution to the lift and
moment coefficients.

AEpau(X,T)) for O<x<xs and xr<x<c('n)

ACp(X,n) =

ACpsep(X,n) for x$<x<xr

The pressure difference on the attached region can
directly be calculated from the series expansion as,

R
= *
P, XM rg:oar(n) h (X) (76)
The pressure difference at the separated region may be
calculated using the following  procedure. The
definition of pressure difference is

ACp (X,m) = Cp (X,m-Cp (X,m) mn
sep 1 u
The lower pressure coefficient is calculated simply
from B R h,.(X)
Cpl(X.n) = Zoar(n) 5 (78)
r=
and from the pressure integral equation, the upper
pressure is
_ R h(X) 2 ™
Cpu(X'n) =T Z ar(n) 2— M Z Z qm 4 gm Vvp (79)
r=0 q=0 m=1

of the wupper and
difference is then

Substituting the two expressions
lower pressure the pressur‘e

ACp(X,n) = z a (m*h (X) - z z (80)

m4mv
r=0 qOmlq amve
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The sectional lift coefficient may then be calculated
as

b'd b'd
al r_
Cl(n)=of ACpatt(X ) dX+ j ACpsep(X ) dX

X
s

Q M J ¢r ¢S
"% —q§o m§1dqu§ogl am "Psm¢j[2”“) J (81

The sectional moment coefficient is calcualated in
the same manner as the lift coefficients

X
s
cm(n)=j ACp_, , (X', m)(X’=X )dX’

X
T
- j ACp (X, (X' -X )X’
% sep c

= % [a,(n)+(4X ~Da ()] +
; > : ¢r—¢s
qgo mgldqmjgog‘i qm vp(XJ'XC)SIH¢J[2(J——7+1 ] (82)

The wing lift coefficient is obtained by integrating

the sectional lift coefficient in the spanwise
directien
1 s
CL= 3 _sf Cl(y)c(y) dy
M
= Sﬁm)_:lcl(em)dem)smem (83)

In the same manner the momment coefficient of the wing
is

y 2
Cy = _SI Cm(y)c (y) dy
M 2
M Cm(em)c (em)smem (84)

m=1

U =

C
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7. RESULTS

Figures 2a and 2b show the sectional lift and
moment coefficients, respectively, for  pitching
oscillations pivoted at Xc = 0.5 in a fully attached
flow, for a lifting surface with an aspect ratio of 2,
and for incompressible case. For Mach number of 0.8,
the results are shown by Figs. 3a and 3b. The results
agree very well with those obtained by Laschka.
Similarly, for heaving oscillations, the results are
exhibited in Figs 4a and 4b for incompressible case
and Figs. 5a and 5b for Mach number of 0.8. Both
oscillation were calculated at a reduced frequency of
1.00. The moment coefficients of the pitching
oscillation have been referred to the pivot point,
while for heaving oscillation to the gquarter chord.
The agreement appears to be very good. The slight
difference indicated in the results may be attributed
to numerical errors in approximating the integral,
since  this difference behaves consistently. The
distribution of pressure differences in the chordwise
direction is presented in Figs. 6a and 6b. These are
the case of pitching oscillations around mid chord
with reduced frequency of 2 for a wing with aspect
ratio of 2 in incompressible flow. Again the results
exhibit good agreement with those of Laschka’s.

For the separated three dimensional flow case to
the best of the author’s knowledge no theoretical
resuits, under the similar assumptions, as well as
experimental results, for a fixed separation point,
are available. Therefore we would like to embark upon
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a qualitative comparisons to existing data. As a first
step towards this end, computational results for
steady state case at Mach number 0.147 for a wing with
separation point at 35% chord and for fully separated
wing are shown in Figs. 7b and 7c, while the fully
attached flow case is shown in Fig. 7a. These results
are compared to experimental ones obtained at IPTN,
both for a wing with aspect ratioc of 4.4. However
since for the experimental case finite thickness wing
was employed and our mathematical model does not take
thickness effects into account, the comparison can
only be interpreted qualitatively. Taking these into
considerations, we could conclude that satisfactory
qualitative agreement between our work and
experimental data has been exhibited.

Figures 8a and 8b show the real and imaginary
sectional moment coefficients of the wing having
aspect ratio 2 executing an oscillatory motion in
pitching mode, pivoted at half chord. Two reduced
frequencies were calculated to see its effect on
moment coefficients. This is the case of
incompressible with partially separated flow on the
upper side; the separation is started at 60% chord.
The results of the present method are compared to the
three dimensional ones of the strip theory corrected
with elliptic downwash of Ref. {I2]. The two
dimensional theory used in the strip theory is the one
developed by the authorsié). The differences exhibited
in Figs. 8a and 8b have been expected to appear, since
the strip theory uses a simple prescribed downwash.
Consistent differences shown between the two results
indicate correct tendencies as the reduced frequency
increases.

The effect of separation is shown in Figs. 9a
through 9b for the same Mach number and vibration mode
as the previous case. Two cases were calculated namely
fully attached and separated flow starting from 607%
chord. The results again are compared to the strip
theory with prescribed elliptic downwash. Both methods
show a decrease in lift coefficients due to separation
as expected. Conclusion similar to that of Figs. 8a
and 8b can be drawn for Figs. 9a and 9b.

8. CONCLUSION

Extension of the linearized theory for unsteady two
dimensional subsonic flow around oscillating airfoil
with separated region has been carried out for finite
wings. Although comparison with the results of other
three dimensional theoretical work can not be made due
to lack of data, comparison with strip theory based on
two dimensional results corrected with a simple
prescribed downwash, shows a correct tendency.

9. FURTHER RESEARCH

The approach taken here is linearized aerodynamics,
and planar surface has been implicitly treated
throughout. However, for non-planar surfaces, the work
can be extended by approximating the surface by finite
set of planar elements and by the use of modified
series expansion taking into account the local angle
of incidence., The kernel functions can then be
evaluated numerically or exactly, wherever
appropriate, similar to the procedure adopted here.
Another alternative is to utilize doublet lattice
approach. This will be the subject of future work. The
applicability of the present work to flutter and
buffeting problems should next be investigated.
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APPENDIX A_ THE SINGULAR PART OF KERNEL
FUNCTIONS

Noting the complexity of the kernel functions, it
is intended to integrate them using numerical
approach. It is obvious that the singularity -contained
in the kernel functions will tend to' spoil the
numerical integration if they are not carefully
treated. The wusual technique to take care of this
problem is to isolate the region in the vicinity of
the singular point, and to integrate it in an

analytical manner applying a suitable limitting
process. The remaining regular kernel can then be
easily and accurately integrated using a standard

numerical quadrature. The limitting processes for the
second and third kernel are well documented in many
literatures. Such procedure leads to equation (30) and
(31). Hereafter, the singularities of the first and
fourth kernel are presented.

The integral in the chordwise direction will
contain singularities if m and %' take the same
values. This situation is closely related to the
integration  technique applied for the spanwise

direction. The singular -part of the first kernel can
be examined to consist of some poles and a logarithmic
function, since the Bessel function has a logarithmic

behaviour for small arguments. This singular part is
{10}

-1k (€-€") L
s (n—")
2
- ; In {r'—(s-s’n] (A1)

The singular part of the fourth kernel has a less
complexity since the singularity is caused only by the
r’. Consequently it produces some poles, which can be

taken separately as

P | ik M(£-8)) _ (8=8)
K s(gi'nvg i )= [ﬂ 1~ -f =
4 2n Zlg_gy |( [ﬁ f'; I J ’€_§:|3]

(A.2)
If these two singular parts obtained are subtracted
from the original kernels, the rest will become
regular functions which facilitate the numerical
treatment of them. Proceeding along this line, then
the non singular of the first and fourth kernel are

Klns(grn;g’;n’) = Kl(i,n;g’,n’) - Kls(E»"fl;i’:n’) (A.3)

and

K, _Emg.n) =K (EnE) - K _(Eng,n). (A4
APPENDIX B INTEGRATION IN CHORDWISE DIRECTION

The integration of the first kernel is worked out
exactly in the same manner as the one in Laschka [10],
where the singular parts are treated analytically and
the rest numerically. Proceeding along Laschka’s
approach the singular integral is divided into three
parts

R
1 . 2 * i
flr(Em,n)— T ;O{ lim [ = ar(n) £ Emn)

r= €20

i

-1

1 a:(n’) ' X
m— nrns(E,Tlm) dT)]

1 *
:J a (@) In[n-n’| f (Emw’) dn’

1 %
+1j a () £, (Emn') dn} (B.1)
The Gauss-Jacobian Quadrature is employed for the
integration of the nonsingular kernel times the series
expansion. The quadrature chosen takes the advantage
of the series expansion, h (X), as the weighting
function, r

1
L(r,X) = f h (X') FOX,mX,m) X’
[+

J
= ; Brj F(X,'n;X),'n ) (B.2)
]=0
where :
cos(r¢J)+cos((r+1)¢J)
B” = Tl (B.3)

The components of 1f (¢,m;m)is then evaluated one by
one using this f ormula as

J —xkﬂ(X—XJ) [

s
fllrs(g’n’n) —jgoBP_)e
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dh {(X) c(n)
f‘llr‘ns(E’.m'n’) = f‘1 (5 ™ n)+[ dx’ +ik _s hP(X)]
"2 ,
[%] (n-0")" In|n-7’| (B.5)
2 —ikc—:l)(X—XJ)
fm(i,n;n }=-%k"%} Brf’
j=0
as 1 e h kK =5 b (X)
ot |Tak S5 00| -2k Gy
(B.6)
f s Eomn’)
f L Emn) = 3 - Injp-w’| £ (§mn’)
(n-n")
1 J - Mx —XJ)
- —1 BPJ e k|- |
(n-n")"j=0

[Kl(kln—n’[) i+ ke L ke ])

U.Br
4 J‘ T k=T d-r]
2,172
(1+%°)
AL L (X-X3-MR})
X-Xj sB
tog e (B.7)

where the upper boundary of the integral becomes

v.pr = X X MR) cln) (B.8a)
2 R s
|’ |
and
2 1
- [(x—x’)2 + g (n-n’)z]z (B.8b)
c™(n’)
x'- x (n)
i LE N ,

X'= ~—m) "3 (1-cos¢’) (B.8¢c)

» . Jm
¢ = T T (B.8d)
j = 0»1:'--3‘1 (B.Se)

Following Watkins et.al[ll], the approximation of the
integrand is carried out by expansion like,

T & 120401 e 0%T_gggg o 1:4067T
2,1/ 2
(1+77) —2.00T
0.09480933e sin T (B.9)
Using this expression the integral appeared in

equation (B.7) can be easily worked out to obtain,

U.Br
J__T___ T gk |n-n [UBr_
(1+7%)? I
0_101(e(m|n-n'|-o.329)U.Br_1) i
ik[n-n"[-0.329
(ik|n-n’ | -1.406nU.Br
0.899(e -
ik|n-n"[-1.4067 0.09480933 C
with:
_(eUkln-w| -2 00UBr L o
C = i
[ 1+ 5 1 ]
w(ik|n-n’] - 2.90)*

1 -n*|-2. . .
e( kIT)T) | 290U Brsm(nU.Br)

7’ (ik[n-n’|-2.90)
1
2

1+
[ n? (ik|n-n’ |-2.90)
An efficient approximation to the Bessel
functions that appear in the equation (B.7) are [11]

+ (B.11)

Lk|n-n']) - L (k|n-n'|) = Ek_i_m
1.0085 k{n-n’| .

{
E

1.3410 + 1.0050k%(n-n")2

~0.8675k|n-1' | [0.4648+0. 9159k [n-7' |

1.3410+k%(n-n") 2

o)

and Struve

In the same manner, the integration in the chordwise

direction for the fourth kernel reads

J

7 lﬂ-klM(X-XJ)-RJlﬂ/c(TI’)

f‘qu {gmn')==-LB 57
1=0
ik (X=X)) ipk s (X-%))
B8R R eln’) g2
L L{ ik [1» M(x-xn]_ s (X=X)) } ¢.-?,
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¥ 7 -k 1
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1
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(B.12)
with :
= L N . =
I1q~ TSRS [cos(mﬁ)Jq - sm(q¢)l<q]

Iz = A {cos(:@)f +sin(qp)M + cot(@)[coslap)] +
T 4sin‘p 1 a 4
sinap)K ]-r-z—s-l—n— [cos(m¢)J + sin(m¢)Km -

cos(k¢)3k+sin(k¢)ik]} (B.13)
with it m=q+ 1 and k =q -1
Fotr q =0 :
(¢
. 2 _—
= N K =0
.Jq 21n o .
sin [ 5
— pré, -9 -9,
qu-z[cot( ]-cot[ 5 ]-cot ) ]+cot 2 ]]-
2((15 %, ) (B.14)
For q=1:
Jq=Jq41+2.sm¢(sin¢’—sin¢r) s Lq= q—l-K
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For q>1:

5 =T, ro2psinteDelsine-1g ~sin(e-D9 ]
+ 2 sin(ag)lsin(ag, )-sin(at )] , L K _ &
K =K, +Zcosta1)lsinle-1)p, ~sin(a-1)4, ]
+ £ costepsinlap I-sin(ep )] MM 14T
(8.16)

APPENDIX C INTEGRATION IN SPANWISE DIRECTION

In the spanwise direction the integation is
performed in a similar way as in steady case where
Multhopp’s method is employed. The method is based on
the assumption that the characteristics of the flow in
the spanwise direction can be excellently approximated
by a Fourier sine series. The coefficient of expansion
as a function of 7m can then be written as

. M
al(e)=7¢ Au sin{u8)

(C.1)
H=1
using the coordinate transformation where 7 = cos(8)
The series coeffcient can be calculated by the
orthogonality of the series
n M b4

I T A# sin(u@) sin(me) de f a:(e) sin(mo) de
0¥ u=1 0
Applying Multhopp integration quadrature for the right
hand side results

2 M *
= }Vf_ﬂ. Z Sln(#em) ar(em)

m=1

A

(C.2)
m

Fig. 1a. Schematic of a Wing with Separation bubble
Ideal situation

separ.

ation
bubble -

N\

Fig. 1b. Schematic of a Wing with Separation bubble
Linearized situation
Xs & Xr assumed constant along spanwise
Xr ossumed ot Xte

The integration points are also the collocation points
in the spanwise direction, namely
e

with m=l2.....M (C.3)

_ mm
m M+l
The same integration technique is
integration of the kernel function

applied to the
in the spanwise

direction. Notice that the downwash has to be
evaluated at the collocation points

I R M *

w, v =Yy Ya cl f (C.4)

rm rm lrm pv

r=0 m=1
The kernel function is divided into three parts, i.e.:

cl =b (f ) +c (f o T ) (C.5)
rm lrm rm 1llrm pv rm 12rm n I13rm vp
" i (]
1- (_l)v m sS1n
2(M+1) (cos6 .—cose ) for ven
bvm = v m (C.6)
M+1 _
Fsine for v=n
v
si nem
O‘m = E(M—"'D (C.7)
c = S sin@ [l cos 26 - In 2]
vm 2{M+1) m ‘2 v
M cos(u+l)6v cos(u—l)ev
i .8
+u§zs1n (uem)[ T T ] } (C.8)
where f

, £ and f are given by equations
(B.4), téfg‘), 1?@."6), arlla”f'bﬁ). The same quadrature
is applied to the integration of the fourth kernel.
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