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Summary

Computational methods for predicting the viscous transonic
flow development around aerofoil sections, using the
Reynolds—averaged Navier—Stokes -equations, require an explicit
turbulence model for the Reynolds stresses appearing in the
governing mean—flow equations. At present, most existing
Navier—Stokes solvers employ eddy-viscosity based turbulence
models, generally of simple algebraic type. The range of
turbulence modelling options potentially available for use with
Navier—Stokes solvers are briefly reviewed in the present

paper. These vary in sophistication from the algebraic
eddy-viscosity model of Baldwin and Lomax wup to full
Reynolds—stress  closures, which solve modelled transport

equations for all the Reynolds stresses. Results are presented
using a recently-developed flow solver and employing a
one—equation turbulence model, covering a wide range of
transonic flow conditions for the Boeing BAC 1 aerofoil
section. The results indicate that reasonably—accurate
quantitative predictions of integrated loads, including drag, can
be obtained for freestream Mach numbers up to 0.76, at
least until the appearance of extensive shock—-induced
separation. It is. concluded, however, that the shock
wave/boundary layer interaction is under-predicted, even for
fully-attached flow conditions, and that this can be attributed
to deficiencies in turbulence modelling at the eddy-viscosity
level. A priority research area for the near—future should,
therefore, be an evaluation of Reynolds—stress closure models,
which should lead to improved physical modelling of the
anisotropic development of the Reynolds stresses through the
shock wave/boundary layer interaction region.

Introduction

The continuing advances being made in computer speed and

memory capabilities are- enabling evermore large-scale
applications of Computational Fluid Dynamics (CFD) to
external aerodynamic flows. Indeed, through the wuse of

block-structured or unstructured computational grid techniques,
the aerospace industry is now able to compute the transonic

inviscid  flow  development around complete  aircraft
configurations. The transonic flow regime is an important
area both for the cruise performance of civil transport

aircraft and for the manoeuvring of combat aircraft. Inviscid
flow analysis methods based on solutions of the Euler
equations can provide much useful aerodynamic information
for design purposes and, as such, these methods are now
displacing older methods based on small-perturbation or
potential flow theories. However, despite the high—Reynolds
number nature of most external aerodynamic flows, viscous
effects are important in many crucial areas. The shock
wave/boundary layer interactions present on wings and in
jet/afterbody regions at transonic flow conditions are two
examples where viscosity plays an important role in the
quantitative flow development. Furthermore, the flows of
practical interest are generally turbulent in nature, and so the
CFD research community is now moving towards the
development of computational methods able to predict
transonic turbulent flows.
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It is possible, in principle, to compute compressible turbulent
flows in a nominally-exact manner using Direct Numerical
Simulation (DNS) or Large Eddy Simulation (LES) techniques.
The application of DNS or LES to the high-Reynolds number

aerodynamic flows of interest to the aerospace industry
remains beyond the capability of current supercomputers,
however. For this reason, computational methods which

employ the Reynolds-averaged Navier-Stokes equations are
being actively developed, this being seen as the most practical
engineering approach to be taken at the present time. The
main  problem  associated with the Reynolds—averaged
Navier-Stokes equations js that they do not form a closed
system of equations. The time-averaging procedures used to
derive the equations introduce new unknowns, the Reynolds
stresses, which must be modelled in terms of known or
knowable quantities before solutions can be obtained. Thus,
turbulence modelling is becoming increasingly recognised as
the most important factor determining the quantitative
accuracy of prediction methods solving the Reynolds-averaged
Navier-Stokes equations.

The computation of the viscous transonic flow development
around two—dimensional aerofoil sections continues to be
addressed by many in the CFD research community. This is
due to both the intrinsic interest of such flows themselves

~and also since they provide an efficient means for initial

investigation of numerical algorithm and physical flow
modelling issues, before recourse needs to be made to
expensive three—dimensional computations. The AIAA Viscous
Transonic Airfoil Workshop1 of 1987 provided a useful review
of the then state—of-the-art in engineering computational
methods. The performance of a range of Navier-Stokes
solvers was compared with that of the viscous/inviscid coupled
methods currently being used by the aerospace industry for
design purposes. The results of the Workshop indicated that,
indeed, the Navier-Stokes solvers were able to deal in a
routine manner, at least qualitatively, with transonic flows
involving shock-induced and trailing—edge separations. These
are flow regimes in which viscous/inviscid coupled methods
such as VGK2 and GRUMFOIL3 tend to break down.

The majority of existing transonic flow solvers for the
Reynolds—averaged Navier—Stokes equations at present employ
the algebraic Baldwin-Lomax“ turbulence model or the hybrid
model due to Johnson and Kings. Experience indicates that
the Baldwin~Lomax model gives reasonable predictions for
fully-attached flow situations, but poor results in the presence
of shock-induced separation. The Johnson-King model has
been devised specifically to deal with shock-separated flows,
and the results presented by Kin and Coakley’ at the
AIAA Workshop show substantial improvements in predictions
for the shock wave/boundary layer interaction region. The
model does, however, introduce discrepancies in lower surface
pressure distributions which are reflected in the resulting
lift-drag polars at high-lift conditions. Also, the general
applicability of the Johnson-King model to geometries more
complex than simple aerofoils or wings is ultimately limited
by the thin-shear layer assumption within its formulation and
the use of an eddy viscosity to model the Reynolds stresses.

As discussed by Launderg, eddy-viscosity based turbulence
models, including the one- and two-—equation models which
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solve additional modelled turbulence transport equations, give
reasonable results only for flows close to local equilibrium
conditions. Also, it is known from experiments that the
Reynolds stresses are highly-sensitive to surprisingly small
extra rates of strain. This behaviour is not reflected by eddy
viscosity models, which are insensitive to the effects of
streamline curvature, for example, unless ad—-hoc modifications
are introduced. For transonic aerofoil flows, the shock
wave/boundary layer interaction is generally under—predicted,
even when the flow remains fully-attached and, again, this
can be attributed to deficiencies in turbulence modelling at
the eddy-viscosity level. Experience in the computation of
complex incompressible flows® suggests that turbulence closure
at the Reynolds-stress model level, in which the Reynolds
stresses themselves are retained within the mean—flow
equations, should lead to improved physical modelling of the
anisotropic development of the Reynolds stresses through the
shock wave/boundary layer interaction region.

The paper begins by presenting the mean—flow equations
governing two-—dimensional viscous transonic flows. This is
followed by a short review of the various

turbulence-modelling options available for potential use with
flow solvers based on the Reynolds—averaged Navier—Stokes
equations. The main features of a recently-developed flow
solver employing a one—equation turbulence model are then
described. The results of an extensive evaluation of the
method are discussed next, covering a wide range of
transonic flow conditions for the Boeing BAC I aerofoil, a
typical modern supercritical section. These results are used to
indicate some of the inherent limitations associated with
turbulence modelling at the eddy-viscosity level. The paper
closes with some proposals regarding the most profitable
near—term way forward to achieving an improved predictive
capability for viscous transonic aerofoil flows.

Governing Mean-Flow Eguations

It is assumed that the viscous transonic flow development
around aerofoil sections is governed by the compressible
Reynolds-averaged Navier—Stokes equations, written in terms
of mass—weighted average variables, Transonic flows involve
regions of supersonic flow, usually terminated by shock waves,
embedded within an outer subsonic compressible flow domain.
The steady-state Reynolds—averaged Navier—Stokes equations
change their mathematical nature, from elliptic to hyperbolic,

in crossing from subsonic to supersonic flow regions. The
resulting complexity of numerical treatment can be
circamvented by considering the unsteady form of the

equations, and using a numerical procedure which marches in

time to steady-state solutions. Therefore, the governing
mean-flow  equations are put into the following
time—-dependent integral form, to facilitate the subsequent

development of a suitable numerical solution procedure
]

ot

Q1 is the two-dimensional flow domain, (g is the boundary to
the domain and n is the unit outward normal to this
boundary. The contour integration around the boundary (g is
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taken in the anticlockwise sense. W is the vector of
conserved mean—flow variables
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where U and V are the cartesian mean-—velocity componeats,
p is the density and E is the total energy per unit mass. H
contains the flux vectors

Ho- Fi+Gj = E+mi+E+a.j @3

i and j being unit vectors in the X and Y directions of the
cartesian coordinate system. The flux vectors F and G
include both inviscid convective transport and viscous diffusive
transport terms. F! and G! are the convective flux vectors
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P is the static pressure and H the total enthalpy per unit
mass. FV and GV are the viscous diffusive flux vectors
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Oxx» Oyy and oy, are components of the stress tensor, which

contain “contributions from the molecular viscosity p and the
Reynolds stresses
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Similarly, gy and qy are components of the heat—flux vector,
containing contributions from the molecular viscosity and
turbulent heat—flux terms
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The molecular viscosity p is evaluated using Sutherland's law,

the static temperature T having been obtained previously from
the equation of state

(y = DpT 9

Pr and v in equation (8) are the laminar Prandtl number
and ratio of specific heats, and take constant values of 0.72
and 1.4 respectively for air. The surface boundary conditions
for equation (1) are the no-slip conditions, together with the
assumption of an adiabatic wall
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Subscript w denotes conditions at the wall and y, is the
surface normal distance.

(8)
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(10)

The mean-flow equations do not form a closed system, this
being due to the time-averaging procedures used in their

derivation. The Reynolds stresses in equation (6) and the
turbulent heat-flux terms in equation (8) must be modeiled in
terms of known or knowable quantities before the set of
mean—flow equations can be solved. This is known as the
turbulence closure problem, and it is the role of the
turbulence model to provide the necessary closure.
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Turbulence Modelling

The range of turbulence-modelling options that are currently
available for use with the compressible Reynolds-averaged
Navier-Stokes equations are discussed briefly in this section.
Attention is restricted to models that can be readily
incorporated into numerical methods for use in a practical
engineering environment. It should be noted that, to date,
not all of these turbulence model variants have been applied
to transonic external aerodynamic flows.

Differential Stress Model

As indicated above, the role of the turbulence model is to
supply the local values of the various Reynolds stresses
throughout the flow domain, in order to close the set of
mean~flow equations. The exact Navier-Stokes equations
governing the instantaneous flow development can be
manipulated to produce a set of exact transport equations for
the Reynolds stresses. These equations can be written in the
following symbolic form

8puiuj
—-——+Cij—Dij = Pij+¢>ij-‘eij (11)
ot
A similar set of equations can be derived governing the
transport of the turbulent heat fluxes in equation (8). The
physical processes represented by the various terms in
equation (11) are (reading from left to right): time rate of
change of the Reynolds stresses; convective transport; diffusive
transport; production; stress re~distribution; viscous dissipation
(destruction). Turbulence closure at the Differential Stress
Model level involves solution of modelled forms of the
Reynolds stress transport equations in conjunction with the.

mean-flow equations. Modelling of equation (11) is required

because the terms Djj, &j and e contain  additional
unknown quantities. However, Cj; and  Pj;, the convective
transport and production terms,” can be  handled exacily

without any modelling assumptions. This is the most
significant advantage of the Differential Stress Model approach
to turbulence closure compared to the simpler eddy-viscosity
based models discussed below. Use of equation (11) leads to
a subtle interaction between the various components of the
Reynolds stress tensor and the mean flowfield, resulting in a
strong sensitivity to small extra rates of strain, such as those
due to streamline curvature.

The use of equation (11) as the basis of a turbulence model
requires the solution of a further modelled transport equation,
for a local turbulent length scale or time scale. Therefore, a
total of five turbulence transport equations and four
mean—flow equations need to be solved, even if the mean
flowfield is two-dimensional. Most practical applications of
equation (11), mainly to complex incompressible internal
flows, have been based on the modelling proposals of
Launder et al®, Recent developments in turbulence modelling
at this level are discussed by Launder8, and a comprehensive
review of modelling proposals for the important near-wall
region is given by So et ail0,

Eddy Viscosity Models

It is obviously computationally expensive to solve a total of
nine mean—flow and turbulence transport equations when the
mean flow itself is two-dimensional in nature. A range of
more simple turbulence models can be devised by invoking
the Boussinesq approximation, which models the Reynolds
stresses by analogy with the laminar viscous stress terms in
equation (6). Thus, the Reynolds stresses appearing in the
mean-flow equations are replaced by the following relations,
involving a single scalar turbulent (or eddy) viscosity
coefficient py

pu? = - py Syx + = pk , pvZ = - pp syy + — pk
. 3 3
D — 2 —_—
pwW? = = Uy Sy, + — pk , puv = - p Sxy (12)
3

where k is the turbulent kinetic energy, defined as one-half
the sum of the three Reynolds normal stresses

T
— (pu? + pv? + pw?)
2

pk = (13)

Similarly, the turbulent heat-flux terms in equation (8) are

modelled using the turbulent viscosity coefficient, by

introduction of a turbulent Prandtl number Pry

— py OT S pe OT

ptu = - — — | PtV = e e (14)
Pry 08X Pry oY

The turbulence closure problem now reduces to that of

specifying local values of a single variable, gy, instead of the
four Reynolds stresses. This decrease in turbulence model
complexity is gained at the expense of the explicit modelling
of the physical processes involved in the transport of the
Reynolds stresses. Since p; is a scalar quantity, much of the
vector behaviour of the Reynolds stresses is lost by
introduction of the Boussinesq approximation.

On dimensional grounds, the turbulent viscosity coefficient can
be expressed in terms of local velocity and length scales, and
it is generally assumed that single scales are sufficient to
characterise the turbulent flowfield

e = p VV« LV« (15)
Turbulence models of algebraic, one—equation or two-equation
type can be devised, depending on the way in which V, and
L, are to be obtained. For one— and two-equation models, it

is usual to define the local turbulent velocity scale using the
turbulent kinetic energy k, another scalar quantity
Vv, =

1/2
f K1/

An exact transport equation for k can be derived by
summation of the three Reynolds normal stress transport
equations, and written in symbolic form as

(16)

dpk
— + C - Dy = Py + I - pe (17)
ot
The various symbols in equation (17) represent similar

physical processes to those described above for equation (11),
the individual Reynolds stress transport equations. However,
unlike P;; in equation (11), the production term Py can no
longer bé treated in an exact manner since it involves the
Reynolds stresses, which have now been modelled using the
turbulent viscosity coefficient.

The length scale L, in the turbulent viscosity relation,
equation (15) must now be determined. One option is to
model ¢, the dissipation rate of k in equation (17), by
defining a dissipation length scale L,

L, = k3/2 /¢ (18)

LP can be taken equal to L, over most of the flowfield,
apart from in the molecular viscosity dominated region
immediately adjacent to solid walls. A one-—equation
turbulence model is obtained, solving a modelled transport
equation for k, if the length scales L, and L, are specified
in algebraic form. This approach may lead to specification
problems for flows more complex than simple thin—shear
layers. The alternative is to solve a further equation for a
second turbulence quantity which can be related to a length
scale. The popular two-equation k—-e¢ model of Launder and
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Spaldingll employs a modelled transport equation for e, the
dissipation rate of k, with the required length scale being
obtained using equation (18). There are numerous variants of
two-equation turbulence models, and these are reviewed by
Patel et all2 and Speziale et all3, These differ mainly in the
way that the near—wall region is treated.

Algebraic Stress Model

Most of the physical modelling benefits of the Differential
Stress Model can be incorporated into a one- or
two-equation model framework if the time rate of change
and transport terms in the Reynolds stress equations are
approximated by the equivalent terms in the turbulent kinetic
energy transport equation, as follows

Bpuiuj pujuj

+Cij - Dij

ot pk at

Combining this approximation with equations (11) and (17),
in suitably modelled forms, leads to a set of algebraic
relations for the Reynolds stresses

dpk
[ +Cp - Dk] (19)

pujuy = pk (Pij + (bij - eij)/(Pk + dyp - pe) (20)
The Boussinesq assumption of a turbulent viscosity coefficient
can now be dropped and the Reynolds stresses re—introduced
explicitly into the mean—flow equations. The term Algebraic
Stress Model is somewhat misleading in this context since
dif ferential transport equations for k and ¢ (or k alone for
a one—equation formulation) need to be solved in conjunction
with the above algebraic Reynolds stress relations.

Algebraic and Hybrid Models

An algebraic turbulence model is obtained if the velocity and
length scales V, and L, in the turbulent viscosity relation,
equation (15), are specified in terms of mean—flow quantities
only., The most popular of such models is that due to
Baldwin and Lomax®, which is essentially a mixing length
model modified to be compatible with Navier—-Stokes solvers,
It can be shown that such a mixing length formulation is
equivalent to neglecting all terms, apart from the production
and dissipation terms, in the transport equation for the
turbulent kinetic energy, equation (17). Thus, no account is
taken of convective or diffusive transport processes within the
model. Physically, this amounts to an assumption of local
turbulence equilibrium, with turbulence energy being created
and destroyed at the same position in the flowfield.

It is highly-improbable that the turbulence remains in local
equilibrium through shock wave/boundary layer interactions,
and upstream turbulence history effects are likely to have a
significant influence on the subsequent flow development,
particularly if shock-induced separation occurs. Johnson and
King5 re—introduce such an upstream influence by solving an
ordinary differential equation for the maximum shear stress
across the viscous layer, using this to define the velocity scale
in the turbulent viscosity relation, equation (15). For this
reason, the Johnson-King model is perhaps better termed a
hybrid model, to distinguish it from the pure algebraic models
such as that of Baldwin and Lomax. King6 and Coakley’
demonstrate significantly-improved predictions of shock wave
strength and position for transonic aerofoil flows involving
shock—induced separation. However, there are discrepancies in
lower surface pressure distributions, the cause of which is

unclear at present. The Johnson-King model also retains
many of the physical modelling limitations associated with the
use of a scalar turbulent viscosity coefficient and a thin-shear
layer formulation. Whilst being well-suited for wuse in
predicting transonic aerofoil and wing flows, it is unlikely that
the model can be adapted for application to more complex
interacting flow situations.
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Computational Method

The computational method used for the present study has
been developed specifically to investigate issues associated with
turbulence model implementation and evaluation for viscous
transonic flows. A detailed description of the method,
together with an initial evaluation for a number of transonic
aerofoil sections, is given by Johnstonl4, The capability to
deal with more complex geometries, such as multi—element
high~lift aerofoils, is incorporated within the method by
adopting a block-structured computational grid formulation.
This two-dimensional method 1is also being used as a
‘pathfinder' for a three—dimensional method which is currently
under active development.

The two—dimensional compressible Reynolds—averaged
Navier~Stokes equations are solved in time—dependent integral
form, see equation (1). A simple, but relatively efficient,
numerical scheme is adopted for the mean-flow equations, so
that effort can be concentrated on the turbulence modelling
aspects. Thus, a cell-centred, finite—volume spatial
discretisation of the flow equations is employed, with
steady—state solutions being obtained by marching in time
using an explicit multi-stage scheme. The main features of
the present numerical method are summarized in this section,
which also includes discussion of the progress made in the
implementation of a range of turbulence modelling options.
The results presented in the subsequent section are used to
illustrate the quality of predictions that can be obtained when
using a turbulent viscosity coefficient to model the Reynolds
stresses.

Spatial Discretisation

The computational domain Q is divided into a finite number
of non-overlapping quadrilateral cells. Fig 1 shows a typical
cell, which has four edges (1,2,3,4) and four vertices
(a,b,c,d). The conserved variables, equation (2), within a cell

are represented by their average cell-centre values, such
quantities being denoted by suffices (i,j) in the local
curvilinear  coordinate  directions (£,7). The governing

mean—flow equations are applied to each computationai cell in
turn, and equation (1) becomes

ow 1

i,
ot
where (), refers to a contour integration around the boundary
of the cell, which has an area of hj; Performing the
finite~volume spatial discretisation of equatfon (21) before the

time discretisation leads to a large set of ordinary differential
equations with respect to time

4

(21

[(FdY—GdX)
0 d

hi,_j c

avi 1

(22)

Z (Fg AYg - Gg 4Xy)

dt 1

hij x

The summation (k) is over the four edges of the cell, Fig 1,
where

aX, Xa - X4

ax, Xp - Xa -

aXx AX

etc

3 Xe - Xp s (23)

Cell-edge values of the flux terms F and G in equation (3)
are approximated by averaging the two adjacent cell-centre

values
Ey = (Fi,j+Fij-0) /2

a Xg - Xc

- etc (24)
The viscous flux terms in equation (5) require cell~edge
values of first derivatives of U, V and T with respect to X
and Y. Derivatives at the cell vertices (a,b,c,d) are calculated
using auxiliary cells surrounding each vertex, Fig 2. For
example, a discrete application of the divergence theorem to




the auxiliary cell surrounding vertex b results in

au 1 8
{—} = — }: Uy AYg
oxX b hy k=5
ou 1 8
[—-—-} = - — }: Uy AXg (25)
oY b hy K =5

where hy is the area of the auxiliary cell. Cell-edge mean
velocities can be approximated by the relevant cell-centre
values

Us = U4y j o Us Uiy, j+1  etc (26)
The cell-edge values of the derivatives are then approximated
by

au 1 ou au

ox J, 2 ox 1, X Jg

Non-reflecting farfield boundary conditions are applied at the
outer boundary to the computational domain. These are
constructed using the Riemann invariants  for a
one—dimensional flow normal to the outer boundary.

Solution Procedure

Additional numerical dissipative terms must be added to the
discretised mean-flow equations, in order to suppress the
odd-even point de—coupling behaviour associated with the
centred treatment of convection terms, and to ensure clean
capture of shock waves. These terms are formulated in an
identical way to that described by Jameson et all3 for the
Euler equations. However, particular attention must be paid
to controlling the magnitude of the numerical dissipation
within boundary layer and wake regions, so that the physical
(molecular and turbulent) viscosity is not swamped by the
numerics; see Johnstonl4 for the approach adopted in the
present numerical method. Finally, the resulting semi-discrete
mean—flow equations are marched in time to a steady-state
solution using an explicit multi-stage scheme!>,

Turbulence Modelling

Turbulent—viscosity based models are being used for the initial
validation and evaluvation of the present numerical method,
and three levels of turbulence modelling have been
implemented to date: the algebraic Baldwin—Lomax model; a
one—equation model; a two-equation high-Reynolds number
k-e¢ model with a one—equation near—wall formulation. The
Baldwin-Lomax model was used only during the early stages
of validation!4.16, Subsequent work has concentrated on a
detailed evaluation of the one—equation turbulence modell7,18
and the present paper is a continuation of this evaluation
process. As explained above, a one-equation model involves
solution of a modelled transport equation for the turbulent
kinetic energy k, equation (17), together with algebraic
specifications for the two turbulent length scales L, and L.,
equations (15) and (18). The turbulent kinetic energy
transport equation can be written in a time-dependent
integral form, similar to equation (1) for the mean—flow
equations, as follows

G

ot

J!JdQ+JH.nd.QS+ISVdQ=O (28)
Q ;" »

s

The principal difference is the inclusion of a source term SV,
which represents all the terms in equation (17) not involving
convective and diffusive transport. Full details of the
formulation and implementation of the one-equation
turbulence model used in the present numerical method are
given by Johnstonl4,
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The use of a transport equation for the turbulent Kkinetic
energy leads to an upstream influence of the turbulence on
the mean—flow development via the turbulent viscosity
coefficient p4. Predictions comparable with the Johnson-King
model might therefore be expected. In fact, as will be seen
below, experience to date indicates that this does not appear
to be the case. This is perhaps an unexpected result, since
the ordinary differential equation for the maximum shear

stress, used by the Johnson-King model to prescribe the
turbulent velocity scale, is obtained by modelling of the
turbulent  kinetic  energy  transport  equation. Further

investigation of these discrepancies in performance between
the two turbulence models is required.

Results

The results presented in this section were obtained by using
the present numerical method in a 'production’ mode, with a
fixed set of flow algorithm parameters and the one—equation
turbulence model. The computational grid, of C-type
topology, was generated using algebraic procedures and is of
multi-block form. Fig 3 shows the block structure of the
grid, together with the number of computational cells in the
two curvilinear directions £ and 1%; see Fig 1. Thus, there
are 224 cells wrapped around the aerofoil surface, 64 cells in
the near surface—normal and cross—wake directions, and 24
cells from the trailing edge to the downstream boundary. The
initial near-wall cell spacings are 0.002 and 0.00005 chords
respectively in the two curvilinear directions, the latter being
sufficiently close to the surface to enable an accurate
evaluation of the skin friction. The outer boundary to the
computational domain is 15 chords away from the aerofoil
surface and 10 chords downstream of the trailing edge.

RAE 2822 Aerofoil

The RAE 2822 aerofoil section has a maximum thickness of
12.1% and a sharp ftrailing edge. Cook et alt9 present
detailed experimental data for this aerofoil for a range of
transonic flow conditions, taken from tests in the 8ft x 6ft
transonic wind tunnel at RAE Farnborough. The data includes
surface pressure distributions, mean-~velocity profiles, integral
thicknesses and skin friction measurements, making this one
of the most complete data-sets available for validation of
numerical methods. The aerofoil geometry and the inner
region of the computational grid used for the present study
are shown in Fig 4. The manufactured geometry of the
aerofoil model is used for the computations and transition is
fixed at 3% chord on the upper and lower surfaces, in
accordance with experiment. Results are presented for one
flow condition only, Case 9, to illustrate the level of
agreement with experiment typically achieved for cases
involving fully-attached flow conditions. The freestream Mach
number M, Reynolds number R and corrected incidence angle
o are 0.73, 6.5 x 100 and 2.79" respectively; see Cook et
al!9 for the correction applied to o for tunnel wall
interference effects.

The predicted distributions of surface pressure coefficient,
upper surface skin friction coefficient and upper surface
integral thicknesses (6" and ¢ being the displacement and
momentum  thicknesses respectively) are compared with
experiment in Fig 5. An overall satisfactory level of
agreement with experiment is achieved, the main differences
appearing in the recovery region downstream of the shock

wave. In particular, Fig 5(a) indicates that the predicted
shock wave is ‘'too inviscid' and there are also detailed
discrepancies in the shape of the mean-velocity profiles (not
shown here) in this downstream region. The predicted lift,
drag and pitching moment coefficients of 0.830, 0.0180 and
-0.0945 compare reasonably—well with the experimental values
of 0.803, 0.0168 and -0.099. The over-prediction of the total




drag coefficient by 12 drag counts can be attributed to an
over—prediction of the wave drag contribution, due to the
stronger shock wave present in the computations.

Boeing BAC 1 Aerofoil

Johnson and Hill20 present surface pressure distributions and
integrated loads for the Boeing BAC 1 aerofoil section,
covering an extended range of transonic flow conditions. The
aerofoil was tested in the NASA Langley 0.3-Meter Transonic
Cryogenic Tunnel, as part of the NASA/US industry
Advanced Technology Airfoil Tests (ATAT) programme; see
Ladson and Ray21 for further details of this programme. The
Boeing BAC 1 aerofoil has a maximum thickness of 10%
chord and a trailing—edge base thickness of 0.202% chord.
This blunt base has been closed down to a sharp trailing
edge for the computations, by small modifications to the
design geometry of the upper and lower surfaces. Since the
base thickness is small, these slight changes in geometry are
expected to have little effect on the predictions. Fig 6 shows
the Boeing BAC 1 aerofoil section and the inner region of
the computational grid.

Results are presented in this section for three nominal
freestream Mach numbers at a Reynolds number R of 7.7 x
100, with transition fixed at 10% chord on the upper and
lower surfaces as in the experiment. The incidence angles o
in the original data report of Johnson and Hill20 have been

corrected for lift—induced interference effects using the
following relation
Aa = - 1.721 ¢ (29)

quoted by Jenkins?Z, where Cy, is the lift coefficient and «
is in degrees.

Incidence sweep at M = 0.70

Fig 7 shows selected surface pressure distributions for Langley
run 9, at a nominal freestream Mach number M of 0.70.
The predictions are in reasonably—good agreement with
experiment for the first four data points, the computations
indicating fully-attached flow for these cases. The upper
surface suction levels are under—predicted over the front part
of the aerofoil. This may be associated with equation (29)
slightly over—correcting the incidence angle, although the rest
of the pressure distribution agrees well with experiment.
Another possibility is the influence of the boundary layers
growing on the sidewalls of the wind tunnel. Jenkins22
discusses the need for a decrease in the nominal freestream
Mach number to take such an effect into account, but this
would also lead to a significant upstream movement of the
shock wave position. The use of a sidewall correction to the
Boeing BAC 1 aerofoil data—set is currently under discussion
with the data originators, and further investigation is required.

Shock-induced separation is predicted for data points 15 and
16, covering a chordwise extent of 0.45 < X/c < 0.51 and
0.45 < X/c < 0.56 respectively, with trailing—edge separation
also predicted for data point 16 beyond X/c = 0.98. Note the
large upstream movement and weakening of the shock wave
between data points 15 and 16 in the experiment, indicating
the presence of significant shock-induced separation. This
behaviour is not reflected in the computations, which predict
a much stronger shock wave further downstream for data
point 16. The reluctance of the computed shock wave to
move upstream and weaken appears to be a characteristic of
computations using turbulence models based on a turbulent

viscosity coefficient, and Johnstonl4 shows similar results for
other aerofoil sections.

Incidence sweep at M = 0.76

Fig 8(a) shows that the slight under—prediction of upper
surface suction levels also occurs at the higher freestream

Mach number of 0.76, for Langley run 8. Further, there is
now a significant discrepancy between the computed and
experimental shock wave position for data point 8, which is a
fully-attached flow condition. Shock-induced separation is
predicted between 0.645 < X/c < 0.67 for data point 10,
and from X/c = 0.645 to the trailing edge for data point 12.
Again, the computations do not reflect the upstream
movement and weakening of the shock wave between these
two data points.

The predicted variations of integrated loads for the incidence
angle sweep are compared with experiment in Fig 8(b) to
(d), these plots also including repeat measurements from
Langley run 10. The lift—curve slope appears to be slightly
over—predicted, with the greatest discrepancies at the negative
incidence angles. This may indicate an over—prediction by
equation (29) of the lift-interference correction at lower lift
levels, The computed lift coefficient does not reach a
maximum at high incidence, as in the experiment, presumably
due to the incorrect predicted behaviour of the shock
wave/boundary layer interaction in the presence of
shock—-induced separation. Fig 8(c) shows that the lift-drag
polar is very well-predicted, despite the detailed differences
between computed and measured surface pressure distributions
for the individual data points. There is less satisfactory
agreement for the lift—pitching moment polar, Fig 8(d), which
is much more sensitive to the discrepancies in the computed
shock wave position.

Incidence sweep at M = 0.80

The final set of comparisons presented are for Langley run 7
at a nominal freestream Mach number of 0.80, Fig 9. The
shock wave is predicted consistently downstream of experiment
for all of the data points shown, resulting in an
over—prediction of shock wave strength due to the higher
suction levels achieved in the computations. Note also, that
the agreement with experiment for the lower surface pressure
distributions is less satisfactory than for the two lower Mach
number incidence angle sweeps. The computations indicate
fully-attached flow for the first three data points, but
shock—induced separation with no re—attachment for data
points 6 to 8. Predicted integrated loads are compared with
experiment in Fig 9(b) to (d). The Ilift coefficient variation
with incidence angle is very well-predicted, apart from at the
lower lift levels associated with negative incidence angles. Fig
9(c) indicates that premature drag rise is predicted at lower
lift levels where the flow is still fully-attached. This is

presumably due to an under-prediction of the shock
wave/boundary layer interaction at this higher freestream
Mach number. The discrepancies between computed and

experimental shock wave position lead to the prediction of a
much steeper negative slope to the lift-pitching moment
polar, Fig 9(d).

Discussion of Results

Consideration of the results for the Boeing BAC I aerofoil
section suggests that the simple correction to incidence angle
implied by equation (29) is not sufficient to account for all
the tunnel wall interference effects in the experiment. The
consistent under—prediction of wupper surface suction levels
indicates that a negative increment to the nominal freestream

- Mach number for blockage effects may be required. Whether

or not this is due to the influence of the tunnel sidewall
boundary layers, as discussed by Jenkins22 for other aerofoil
tests in the same facility, is a matter for further
investigation. Despite this uncertainty in the nominal
freestream conditions of the experiment, there are larger
discrepancies between computations and experiment which
must be due to other causes. The general over—prediction of
shock wave strength, even at fully-attached flow conditions,
indicates that the physical modelling of the shock
wave/boundary layer interaction may be deficient. This can
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probably be attributed to limitations associated with the use
of a scalar turbulent viscosity coefficient to model the
Reynolds stresses. Such an approach will not allow the severe
streamwise adverse pressure gradient, resulting from the shock
wave, to give a sufficiently strong directional bias to the
magnitudes of the various Reynolds stress components. In this
respect, turbulence closure at the Reynolds stress model level
will almost certainly lead to improved predictions.

Conclusions

The main features of a recently-developed numerical method
to predict viscous transonic aerofoil flows have been
presented. Turbulence modelling is currently at the turbulent
viscosity level, and a one—equation model gives results
representative of this class of turbulence model. An extensive
evaluation of the predictive capability of the method has been
carried out using an experimental data—set for the Boeing
BAC 1 aerofoil section. It is concluded that there is a
general under—prediction of the shock wave/boundary layer
interaction when wusing a turbulent viscosity coefficient to
model the Reynolds stresses in the mean-flow equations. This
results in an over—prediction of shock wave strength for
freestream Mach numbers beyond 0.76, with a consequent
over—prediction of wave drag. The numerical method in its
present form is unable to predict the upstream movement and
weakening of shock waves when severe shock—induced
separation occurs. Nevertheless, some of the quantitative
aerodynamic trends for integrated lift, drag and pitching
moment coefficients are well-predicted, even with the current
formulation of the one-equation turbulence model. Significant
improvements in the quantitative predictive capability of the

numerical method are anticipated once a Reynolds-stress
turbulence closure (either algebraic or differential) is
incorporated.
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Fig. 1 Notation for main computational cell Fig. 2 Auxiliary cell for computation
x = cell centres; e = cell vertices of viscous flux terms
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Fig. 3 3-block C-grid structure of Fig. 4 RAE 2822 aerof.'oil secti.on
computational grid and inner region of grid
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Fig. 6 Boeing BAC I aerofoil section
and inner region of grid

point 13 - o = 4,25 point 15 - o = 5.13° point 16 - @« = 6.05°

surface pressure distributions

Fig. 7 Boeing BACT - M=10.70 , R = 7.7 x 106
0,a experiment; —— computation
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