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Abstract

The Euler code MELINA is based on an explicit 5-stage
Runge-Kutta time stepping scheme with blended 4** and
2md order artificial dissipation proposed by Jameson. This
scheme is among the most efficient algorithms for the solu-
tion of the unsteady Euler equations. MELINA already has
a considerable impact on the aerodynamic design of complex
3D flow problems at Deutsche Airbus (DA) such as laminar
glove design, integration of propulsion systems like propfan
or turbofan, or simulation of flap track fairings on the wing.

The objective of this investigation is to improve the speed
of convergence of the code as well as the spatial accuracy
of the results in order to allow for an even more routinely
application of 3D flow simulation in the aerodynamic design
process at DA.

The speed of convergence of MELINA can be drastically
improved by using a multi-grid procedure to expell the dis-
turbances more rapidly through the outer boundary. In or-
der to reduce CPU time even further it is desirable to cluster
grid points only in regions of large gradients such as at the
wing leading and trailing edge. To achieve this goal, we
overlay sub grid blocks in the regions of interest. This leads
to the desirable property that the code still vectorizes well
and that the refined local sub block can readily be integrated
in the multi-grid procedure.

1 Introduction

Due to considerable advances in Computational Fluid Dy-
namics (CFD) in the last decade it has become possible
to simulate flows around 3D complex configurations like
complete transport aircraft with the FKuler equations on a
routinely basis. Even the first pilot applications of Navier-
Stokes simulations around such complicated geometries are
emerging today.

The purpose of this paper is to describe the newest devel-
opments that have been introduced to the proven tool pack-
age INGRID-MELINA-PISA, [1] for flow simulation around
3D complex configurations at Deutsche Airbus (DA).

The Multi-grid, multi-block Euler integration algorithm
MELINA is continuously being upgraded and adapted for
the applications which are of interest to the transport air-
craft designer at DA. It may be classified as a "Jameson-type’
explicit, cell vertex scheme with central differences, artificial
dissipation and Runge-Kutta time-stepping.
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With the Interactive, algebraic grid generator INGRID,
(2] several tasks can be tackled. INGRID is tailored to the
generation of body-fitted meshes around various transport
aircraft configurations. It serves as a geometry definition
and manipulating system to create the configuration to be
evaluated from given input data. In a second step the sur-
face is covered with a surface grid with full user control of
the node distribution. Then a global multi-block mesh can
be generated for a wing/body configuration. To add further
components, a suitable block frame is cut out of the prior
blocks and filled with the surface of those components and
the respective 3D mesh. Thirdly, additional smaller com-
ponents like flap track fairings are put into place. One or
more of the prior blocks are split at a suitable mesh plane
and free space is generated by pushing the split plane aside
using spline techniques. The space is then filled with new
mesh blocks which are called implanted blocks.

The Practical interactive solution analysis system PISA
is the tool package that has been developed for post pro-
cessing .

In order to enhance the accuray of the inviscid compu-
tation with MELINA and INGRID we simulate the local
decambering effect of the boundary layer along the wing
span such that experimental and theoretical load distribu-
tions match. In each span section of the mesh, the wing
airfoil is decambered and rotated in order to let the global
angle of attack of the Euler calculation fit to the projected
flight or wind tunnel angle and to adapt the local lift and
momentum coefficients to the predicted or measured local
coefficients.

An impression of the status quo concerning the com-
plexity that can be treated and accuracy that can be ob-
tained with MELINA and INGRID is presented in Figs. 1
and 2. Fig. 1 shows the global configuration of a wing/-
body/pylon/engine/flap track fairing combination with the
pressure distribution projected onto it, whereas in Fig. 2
a more quantitative comparison between the experimental
and theoretical pressure distribution is plotted.

Major problems that still persist for routinely complex
3D flow simulations are, instead of the dramatic improve-
ments in the field of CFD and computer technology, the
problems of computational efficiency and spatial accuracy
in regions of strong gradients like at the leading edge. Com-
putational efficiency has become of special importance at
DA since MELINA is heavily beeing used by the aerody-
namic design department in the process of wing design and
for the optimization of engine-airframe integration.




For complex configurations it is extremly difficult, if not
impossible, to resolve all flow features with the same accu-
racy on a single mesh. In the multi-block approach, imple-
mented in MELINA and INGRID from the beginning, the
flow field is partitioned into distinct zones, each discretized
as a single grid block. Different types of grid topologies as
well as enrichment and coarsening can be used in each block
to improve mesh efficiency.

Among the developments in CFD in the last years, the
multi-grid technique and the method of mesh refinement can
be identified as major contributions for convergence acceler-
ation and improved spatial resolution, respectively. Impres-
sive improvements in convergence rates have been obtained
by several authors using multi-grid technique in combina-
tion with similar multi-block schemes like MELINA, [3],[4]
and [3].

Contributions to the topic of mesh refinement can be
found in [6] and [7] where good experiences with local mesh
refinement have been reported for 2D and 3D test cases in-
cluding computations on an isolated Onera M6 wing.

The objective of the new release of MELINA and IN-
GRID was to combine the benefits of both approaches. This
can be achieved by introducing locally refined sub blocks
and several global coarse block levels and connect them via
a multi-grid technique. The advantage of this approach is
to exploit the higher spatial resolution of the locally refined
sub blocks in critical regions without spending too much
grid points in smooth regions and without paying the price
of reduced convergence speed (the convergence rate using
multi-grid technique is independend of the spatial resolu-
tion).

2 Governing Equations

Inviscid flow can be modelled by the continuum mechanic’s
conservation equations for mass, momentum and energy. In
3D these are five scalar integral equations which are aug-
mented by the thermic and caloric gas equations for ideal
gas as material laws to form a closed system.

For any control volume V the conservation of mass, mo-
mentum and energy result in the system of Euler equations

mass (continuity):

%/VpdV = —4 r(F-Mdo Q)
momentum:

E/Vp{idv = —?gvpi(ﬁ-ﬁ)—{—pﬁd() 2)
energy:

%/VpEdV = — ¢ pH(57)d0 (3)

OV is the surface of the control volume V and 7 is the out-
ward unit normal vector on 9V.
The pressure p can be calculated from

2 2 2
p:(&_l)p{E_LtEZ_ﬂf_},

wheras p, U, F and & are the density, velocity vector, total
energy per unit volume and ratio of specific heats of the
fluid, respectively.
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Eqs. (2)-(4) can be abbreviated by the vector valued
equation

9 r -
—_ / /) = — 7Y
at/VW‘” }gv F(W) - 7dO (4)

where F' is the flux tensor and W = (p, pu, pv, pw, pE) is
the vector of conservative variables.

3 Spatial Discretization

3.1 Spatial Cell Vertex Discretization

In order to discretize Eq. (4), a boundary-fitted finite vol-
ume mesh, generated by INGRID, is used. In the cell vertex
discretization the vertices of the finite volumes are taken as
locations for the unknown variables W. Following Jame-
son et.al. [8] and others, the discretization by the method of
lines decouples time and space directions.

d 1

= Wi ‘—/i'j,k(Qi,j,k) (5)
where
3. F(W)-7dO
Qiik -ﬁV.-,,,k (W)-#
and
9 y ow
el ~ Viie——lis
= V;,,-,deV ikl

This discretization leads to equations attached to finite vol-
umes rather than grid points. Therefore a summation of the
equations is applied which takes into account every eight
cells connected to one common grid point.

Vs = 5_, Vi is the volume of the supercell constructed from
the participating grid cells. If we now denote a supercell and
its center ( cell vertex ) by the index i,j,k and add an artificial
filter term to prevent odd-even decoupling or spurious high
frequency oscillations we obtain

Ed;Wi,j,k = (G Disi) (6)

The artificial filter D'i,j,k consists of two parts: The so-
called background filter is necessary to ensure convergence
for the whole range of flow speeds to be treated. In Jame-
son’s approach it consists of 4th differences of the solution
vector multiplied by an approximation of the largest eigen-
value of the Jacobian matrix % and a user-defined constant
e, The second filter term is a second difference. It is de-
signed to avoid oscillations of the solution near shocks and
is switched on only in those regions by the use of a special
pressure based sensor function.




3.2 Boundary Conditions

Various boundary conditions are implemented in MELINA.
We can  distinguish  between physically motivated
boundaries and algorithmic boundaries of the computational
domain.

The computational domain may be bounded by solid
walls, the farfield, fan face and exhaust planes of the engine
and the symmetry plane if one exists. On a solid body the
velocity component normal to the wall is zero. Hence, the
flux integral parts along the faces of the control volume that
are aligned with the body reduce to the pressure integrals
of the momentum equations.

The definition of the farfield boundaries is based on char-
acteristic theory, which, if applied to the locally linearized
hyperbolic system of Euler equations, leads to a set of con-
ditions for the characteristic variables. A transformation
of these variables to the conservative variables W used in
the rest of the flow field results in proper equations for the
values of W at the outer boundary.

The boundary condition of symmetry is enforced with
the use of guard cells which are mirror images of the cells
abutting the symmetry plane.

The boundary condition at the fan face satisfies the mass-
flow specified by the engine data at the flow condition to be
evaluated. The boundary condition at the exit of the engine
is formulated such that the jumps in stagnation pressure and
stagnation temperature given in the engine data are realized.

The category of algorithmic boundary conditions consists
of inner cut conditions that manage the exchange of grid
coordinates and solution at the nodes from one block to the
other depending on the type of blocks that have a common
block segment. Practically this is done by introducing guard
cells for each block face which leads to an overlapping of
blocks that are devided by an inner cut and updating these
cells from a inter-block boundary exchange buffer. In the
simple case with a one to one correspondance of points on
both abutting block faces, the grid coordinates and data at
the nodes are simply copied from the corresponding cell of
the neighbouring block to the buffer and then to the guard
cell.

In order to optimize the distribution of nodes, the options
of enrichment and coarsening from one block to an other
have been implemented. Enrichment means the splitting
of each finite volume into two in each desired cooordinate
direction and linear interpolation of the coarse node data,
whereas in the case of coarsening every other grid node is
dropped in the specified direction.

3.3 Sub Block Refinement

Computing a 3D flowfield around complex configurations
it is difficult to resolve all features of the solution to the
same accuracy with a uniform mesh. This problem is al-
ready somewhat relaxed by using multi-block meshes with
the option of enrichment and coarsening of the mesh from
one block to the other. The drawback of this feature is the
fact that the desirable surfaces of block splitting and the
requirements for mesh refinement usually do not coincide.
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Another pitfall is, that for a posteriori changes of the spa-
tial resolution a complete change of the block topology is
required.

This leads to the development of sub block refinement.
The idea of sub block refinement is to simply "patch” locally
refined mesh blocks onto the existing mesh and connect the
additional fine sub blocks with the mesh via a multi-grid
technique. At the time beeing, sub blocks are defined a
priori or a posteriori to the solution of the flow problem in
the grid generator INGRID. Their orientation or extension
in the computational domain can be judged and changed
interactively with mouse and menu technique. The only
limitation to the topology is that a sub block has to lie
completely in a grid block of the existing mesh. But a grid
block may have various sub blocks and a sub block may have
several sub blocks itself,

In the actual version of INGRID, the mesh points of the
locally refined sub blocks are constructed with a simple tri-
linear interpolation of the coarse cells with a special inter-
polation of the points on the surface using Coons’ patches.
Thus yielding a doubling of the grid density in all three co-
ordinate directions. Although the results with MELINA on
meshes obtained with this strategy are very encouraging, as
will be shown later, it is a matter of future investigations
to refine the method of sub block construction in such a
way that smoother variations in grid stretching are obtained.
This is of special importance with respect to the application
of the sub block technique to Navier-Stokes simulations.

The sub block approach can be viewed as a compro-
mize between structured an unstructered meshes, combining
the benefit of high computational efficiency on structured
meshes and of clustering grid points in a "quasi unstruc-
tured” way by scattering sub blocks and even further refined
blocks in regions of strong gradients. It is envisaged but not
yet realized to use this method for solution adaptive mesh
refinement if the regions of sub block refinement are deter-
mined automatically during the iteration by suitable sensor
functions.

The interior grid points of the sub blocks are interacting
with the coarser block via a multigrid technique that will be
described in the next section. For the boundary points of the
sub blocks we use the same boundary condition routines as
for the coarser blocks. For the cut conditions along the edges
of the fine sub block we again introduced guard cells that
are updated by an additional inter-block boundary exchange
buffer. This buffer field had to be added, because with a sub
block the coarse block requires not only data exchange with
other blocks along its "external” block faces but also with
one or more sub blocks along ”internal” block faces.

4 Solution Procedure

4.1 Time-stepping Scheme

For the time-stepping scheme a hybrid, explicit 5-stage Runge-
Kutta time stepping scheme is chosen. If we define the resid-
ual in equation (6) as




- k -
B = QU+ Y mmD(U™)

m=0
we obtain
ge = wr
gr = ((70—9%}?’“1>,k:1,2,3,4,5
e o s ™

For convergence acceleration additional techniques like lo-
cal time stepping, implicit residual averaging with variable
coefficients and enthalpy damping (if applicable) are used.
The coeflicients i, are chosen such that we obtain a hy-
brid (5,2) Runge-Kutta scheme that is to evaluate the filter
terms only in the first two of the five Runge-Kutta steps.
The parameters a; are
1 1 3 1

Q'l:ZaaQ:_yaS:_’a‘l:-7a5:1'

6 ] 2

4.2 Multi-grid Acceleration

A general outline of the multi-grid procedure for the spe-
cial case of a 3-level W-cycle with 1-stage local sub block
refinement is presented in Fig. 3. There are various possi-
bilities for the implementation of a multi-grid algorithm in
the context of a multi-block environment which can lead to
extrem discrepancies in the convergence behaviour or even
to divergence if not properly done, Rossow [5]. The reasons
for these convergence problems are the time lags that may
occur between the grid blocks during a multi-grid cycle.
The multi-grid implementation that has been optimized
with respect to robustness and minimization of I0-operations
will be presented here. For the organization of the opera-
tions that have to be performed on the grid blocks during the
multi-grid procedure we define the following nomenclature:

We distinguish between three different types of grid blocks.

o The first class is categorized as global fine blocks. All
blocks of this category together form the global fine
mesh around the configuration.

e The second category consists of the sub blocks which
are local refinements of some of the global fine blocks.
These sub blocks must not but may be connected to
each other. One may think of them as beeing scat-
tered over the computational domain in an unstruc-
tured manner in regions of strong gradients in the solu-
tion or geometry. Sub blocks may have locally refined
sub blocks themselves.

o The third category consists of blocks that are defined
as global coarse blocks. These blocks are obtained
from global fine blocks by coarsening the latter m
times depending on the number of multi-grid levels
that shall be used in the time-stepping scheme.

From these block categories we form block groups, sym-
bolized by the squares in Fig. 3. The block groups are the
building blocks of the multi-grid cycles (V-cycles, W-cycles
etc. ) in the sense that the same operations are perfomed on
each of the blocks of the group at any stage of the multi-grid
cycle.

In order to precondition the starting solution of the multi-
grid cycle we apply the full multi-grid strategy. That is in
our case to use three iteration levels coarse-medium-fine.
The coarse iteration level is obtained from the fine level by
coarsening each of the blocks, including the global coarse
blocks, twice and reducing the depth of the multi-grid cycle
by 2. (See Fig. 3). The medium iteration level is generated
in the same way, except that the blocks are coarsend only
once and the depth of the multi-grid cycle is reduced by one
level. Usually we perforn about 30 multi-grid cycles on the
coarse and medium iteration levels until we start the final
fine multi-grid cycles.

After outlining the multi-grid acceleration, we would like
to discuss in more detail the individual operations that have
to be perfomed on the block groups in each step of the multi-
grid cycle, symbolized by the filled squares in Fig. 3 . Let
us consider the interaction between two grid levels, fine and
coarse with spatial step sizes h and 2h, respectively. On the
fine level we perfom the Runge-Kutta time steps as before,
( Equ. (7) ). With the updated solution W/,f“ and the final
residual }—fi we determine the forcing function on the coarser
mesh f—g’h as

T = INJoson (W)
fa. = RESw_soan(R3) - R, (8)

and carry out five Runge-Kutta steps on the coarse mesh

I

I

. - I IYAY
Uéh = (UZOh—-%_(Réhl_*'f.gh)) 1k: 172737455
Wit = 05, (9)

The correction of the solution on the coarser mesh is com-
puted from

Co = Wi = W,
and interpolated to update the solution on the finer mesh

Vit = Wit 4 INTon-sa(Con) (10)

RES,INJ and INT in Eqgs. (8) and (10) are the operators
for the restriction of the residual ( full weighting ), for the
injection of the fine solution to the corresponding points
of the coarse grid and for the trilinear interpolation of the
corrections from the coarse grid onto the grid points of the
fine mesh, respectively. i

The corresponding block diagram is depicted in Fig. 4. It
is easy to identify the elements of the conventional scheme
with no multi-grid acceleration, like updating the bound-
ary conditions and Runge-Kutta time stepping, in the main
path of the algorithm. The additional operations on each
block group for the multi-grid technique depend, generally
speaking on ”from where are we coming” and ”where are we
going” in the cycle. For the robustness of the scheme it has
been found as beeing essential that the inter-block bound-
ary exchange buffer is updated only after all blocks of one
block group had been updated by the Runge-Kutta steps.
This insures that there are no time lags between the various
grid blocks of one block group.

513




5 Results

Among the applications of the CFD software package
INGRID-MELINA-PISA are quite complex 3D geometries
like wing/body/pylon/engine with flap track fairings
mounted on the wing. The simulations around such con-
figurations are performed on a routinely basis at DA and
are part of the integrated aerodynamic design process to
supplement and/or replace wind tunnel experiments for the
validation of distinct leaps in the iterative aerodynamic de-
sign cycle, [9].

The target of this investigation is to demonstrate the
capability of the new multi-grid approach and the tech-
nique of local sub block refinement to accelerate the con-
vergence of the time iteration and to improve the spatial
resolution of the scheme, respectively. The new version
of MELINA was applied to two configurations: a generic
quasi 2D NACA0012-wing and a wing/body combination of
a modern transport aircraft.

The mesh for the NACA0012-wing test case was gener-
ated with a 2D grid generator using the technique of konfor-
mal mapping. The 2D O-mesh around the NACA0012 airfoil
is copied and shifted in the spanwise direction to form a 3D
mono-block mesh around an unswept NACAQ012-wing. In
spanwise direction the wing is bounded by solid wall condi-
tions, to simulate a flow that is comparable to an experiment
in a 2D wind tunnel test section with adaptive upper and
lower walls. In order to study the influence of mesh block
splitting, the 3D mesh can be split at every desired position.

It is also possible to add locally refined sub blocks to test
the influence of sub block refinement.

Various block topologies without sub block refinement
have been tested and compared with respect to convergence
rate and robustness. With the specific implementation of
the multi-block, multi-grid procedure depicted in Figs. 3
and 4 we observed only very limited differences between
multi-block and mono-block meshes concerning these crite-
ria such that we concentrate on the special topology of one
mesh block on the upper wing side and one block below the
wing which is the basic block topology for transport aircraft
configurations at DA.

An impression of the global configuration of the
NACA0012-wing can be drawn from Fig. 5 that presents
a plot of the pressure distribution on the surface of the wing
and in a plane normal to the wing surface for the standard
NACAO0012 test case conditions of Ma = 0.8 and 1.25° an-
gle of attack. The mesh is split in an upper and lower mesh
block along the symmetry plane of the wing. The orienta-
tion of two locally refined sub blocks in the region of the
leading edge of the wing is also indicated by their boundary
surfaces.

A more quantitative evaluation of this test case is illus-
trated in Figs. 6 to 10. Let us first focus on the problem
of spatial accuracy. Fig. 6 shows a plot of lines of constant
total pressure loss for the coarse mesh with 80 cells around
the crossection and 16 cells normal to the wing. The total
pressure gains and losses at the leading edge are no physical
phenomena and result exclusively from spatial discretiza-
tion errors. In the case of the coarse mesh, the total presure
losses, that add up to a peak value of 7.3 percent, are con-
vected downstream.
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If we compare the distribution of the total pressure losses
of the corresponding test case with local sub block refine-
ment at the leading edge in Fig. 7, we can observe a reduc-
tion of the peak level by a factor of approximately 4. This
is the improvement that one would expect for a second or-
der accurate scheme ( doubling of the grid density leads to
a reduction of discretization errors by a factor of 4 ). A
comparison with a global fine calculation with 160*32*8 fi-
nite volumes confirms that it is possible to obtain locally the
same accuracy with sub block refinement as with a global
fine mesh. In the plot of lines of constant Mach number in
Fig. 8 for the test case with sub block refinement, the iso-
mach lines, which are a quite sensitive indicator for spatial
disretization errors, leave the region of local refinement al-
most with no distortion. This behaviour has been observed
for all cases computed so far, indicating that the boundary
condition for the cut interface from locally refined sub blocks
to the coarser blocks are treated correctly by MELINA.

Figs. 9 and 10 present a comparison between the con-
vergence behaviour of the new code running in the 4-level
multi-grid mode without sub blocks and in the 3-level multi-
grid mode with sub block refinement as well as the conver-
gence history of the scheme on a single mesh. The results
correspond to the test cases discussed already in Figs. 6 to 8.
The convergence behaviour is plotted as the reduction of the
residual B} on the finest mesh ( defined in Section 4.1 ) and
the development of the lift coeflitient of the configuration
as functions of the time step or the CPU time, in Figs. 9
and 10 respectively. In all three cases, the mesh density of
the finest grid-level corresponds to the density of a 160*32*8
mesh. The full multi-grid strategy ( See Fig. 3 ) was applied
by starting the iteration on the medium iteration level.

If we look at the development of the lift in Fig. 9 as a
function of timesteps we observe the dramatic improvement
of the lift convergence behaviour that is typically achieved
with multi-grid acceleration. The same applies to the reduc-
tion of the residual. With multi-grid acceleration we obtain
reduction rates of the residual in the order of .88 to .89 in
contrast to a rate of .98 to .99 in single mesh applications.
In this graph we count one timestep on the single mesh and
one multi-grid W-cycle equally as one timestep, which is ob-
viously not "fair” since a W-cycle is more expensive than a
timestep on the fine mesh alone. The curve is also somewhat
misleading since the 30 iterations on the medium iteration
level (full multi-grid strategy) are counted like timesteps on
the fine iteration level.

A more realistic comparison is shown in Fig. 10 where
residual and lift convergence are plotted as furictions of CPU
time. Although the gain in lift convergence with the multi-
grid approach is diminished, we still come up to a reduction
of 70 percent of the CPU time with the multi-grid method
relative to the single mesh. Concerning lift convergence a
noticable improvement of the 3-level multi-grid mode with
sub block refinement relative to the 4-level multi-grid mode
has not been observed. Also it seems to be somewhat forti-
tious that the lift converged to exactly the same values on
the global fine meshes (4-level multi-grid and single mesh)
compared to the coarse mesh with local sub block refine-
ment, since instead of the good resolution at the leading
edge, with local refinement there are still some discrepan-
cies in the solutions especially in the shock region.




The mesh for the more complex case of a wing/body
configuration of a modern transport aircraft configuration
was generated with INGRID and has an H-type structure in
streamwise direction and is of O-type normal to that direc-
tion. The mesh consists of approximately 700000 cells in 4
blocks ( See Fig. 11 ). The two interior blocks 1 and 2, that
cover the upper and lower surface, are separated by the wing
plane and the two exterior blocks extend to the farfield. In
order to optimize the distribution of finite volumes, the op-
tion of coarsening and enrichment from one mesh block to
the other is used extensively. Because wing/body compu-
tations are usually performed as baseline computations for
engine installation prediction at DA, a high mesh density
is required in block 1 from which the engine block may be
cut out and reconfigurated. The external block 3 is coars-
ened relative to block 1 in all three coordinate directions.
The upper side blocks 2 and 4 are treated likewise except
that both are coarsend in j-direction relative to the lower
side blocks 1 and 3. The strategy of coarsening and enrich-
ment should not be mixed up with the technique of local
sub block refinement, but means that the individual blocks
of the global fine mesh level have different grid densities in
the 3 coordinate directions.

Because of the coarsening it was only possible to use 3
multi-grid levels. Again we applied the full multi-grid ap-
proach starting with 40 W-cycles on the medium iteration
level and 100 W-cycles on the fine iteration level. The lift
converged after 70 cycles on the fine iteration level and the
residual convergence rate was determined to be 0.89, ( See
Fig. 12 ). With respect to CPU time we achieved a reduc-
tion from 120 min on a VP200 vector computer on the single
mesh for this configuration to 43 min, which corresponds to
a reduction of 65 percent.

6 Conclusions

It has been demonstrated that the convergence behaviour
of the multi-block Euler code MELINA is dramatically im-
proved by the implementation of a multi-grid acceleration
technique. The CPU time has been reduced by up to 70
percent.

The technique of local sub block refinement also fits nicely
in the multi-grid algorithm and offers the possibilty to im-
prove the spatial resolution of the scheme. The method of
sub block refinement can be viewed as a compromise be-
tween structured and unstructured discretization, combin-
ing the advantages of both approaches. The basic scheme
without sub block refinement is of second order accuracy in
space. Investigations of the total pressure loss in regions of
local refinement have shown that the technique of local sub
block refinement conserves this second order accuracy.

The developments implemented in the grid generation
system INGRID and the Euler code MELINA discussed in
this paper will enable us to apply the 3D Euler simulation to
more flow problems than in the past and to perform more
iteration steps in the aerodynamic design of complex 3D

geometries.

Future developments will treat the generalization of the
method for the simulation of viscous flows. This can be
done by introducing viscous sub blocks that are placed on
the surface of the configuration and connecting these to the
global mesh again via the multi-grid approach.
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Fig. 7 Total pressure loss on 80*16*4 mesh with sub block
NACA0012-wing, Ma = 0.8 and o = 1.25°
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Fig. 5 NACAO012-wing test case - pressure coefficient
80%16*4 mesh with sub blocks at leading edge
Ma =0.8 and o = 1.25°

Fig. 8 Isomach lines on 80*16*4 mesh with sub block
NACA0012-wing, Ma = 0.8 and a = 1.25°
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Fig. 11 Block topology for wing/body configuration
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Fig. 12 Convergence history for wing/body configuration




