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Abstract

A new integrated tool for flow analysis of supersonic ve-
hicles, primarily missiles, has been developed. The system takes
a geometry description on standard format as input, automati-
cally generates computational grids and performs space march-
ing Buler and Navier-Stokes calculations in an efficient manner.
The geometry format allows very general configurations. Appli-
cation examples are presented here to validate and exemplify
the quality and different use of CFD results obtained with GEM-
INI. The Euler equation are solved for three closely related con-
figurations for M=2 and angles of attack up to 30 degrees. The
1ift and moment curves reveal that delta effects as well as abso-
lute levels can be accurately computed with the Euler equations.
The Navier-Stokes equations are applied to three different con-
figurations: Heat transfer rate are computed on an ogive-cylin-
der at M=6, laminar separation on a yawed cone at M=8 and the
flow field around a missile with a highly swept delta wing at
M=2.

Introduction

CFD is gradually becoming an engineering tool in aerospace in-
dustry. This is especially true for supersonic flow analysis
where space marching techniques take advantage of the down-
stream propagation of all information, which reduces computa-
tional times considerably.

Space marching Navier-Stokes is confined to flow attached in

the streamwise direction. However, cross flow separation, such
as body and leading edge vortices are accurately captured. The
Baldwin-Lomax turbulence model with the Degani-Schiff mod-
ification constitutes a satisfactory model for such flows.

Another aspect which is crucial for engineering applications is
the time for generating a computational grid.In GEMINI great
effort has been put into the grid generator which automatically
generates high quality structured, multizonal computational
grids around a wide class of missile and aircraft configurations.
The user can interactively modify the grid through a few param-
eters before launching the computation. The rapid grid genera-
tion normally enables us to have computational results within
24 hours after the geometry file is complete.

This paper presents the grid generation and computational
method in GEMINI along with results from Euler and Navier-
Stokes calculations of several different configuration to show
the versatility and accuracy of GEMINI.
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Equations

The Navier-Stokes equations
The full Navier-Stokes equations in non-dimensional

form read
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The ideal gas law states that
E=_P_
y-1
The viscous stress tensor components are
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and the heat flux is
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The coefficients of viscosity are related by Stokes’ hypothe-
SIS 30+ 2 = 0. Sutherland’s formula describes how the vis-
cosity depends on temperature
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The non-dimensional quantities are defined as

x=Xx/L w=u/c, p=p/p,

p=p/(p.c2) p=Q/R, Re= (piL)/R,

where the physical quantities are barred.

The turbulence model

The Baldwin-Lomax algebraic turbulence model® is uti-
lized, augmented with the modification by Degani and Schiff(®)
which improves predictions when the flow exhibits cross flow
separation.

Method 1: Steady space marching

Explicit MacCormack scheme

SAABSs original space marching method! (23is an in-
tegral part of GEMINI. This method solves the steady Euler
equations

dx 9dy o9z

by means of classical space marching, i. e. the steady equations
are discretised and explicitly marched downstream with the
MacCormack scheme with added artificial dissipation. The ex-
plicit scheme poses a stability criterion on the step size in the
marching direction which can be very restricting for low Mach
numbers and high angles of attack. One other aspect of the
scheme is its low ratio between the work done in the equation
solver and the work done in the grid generator. This ratio is
much higher for schemes with implicit marching of the steady
equations or explicit marching with the unsteady equations one
plane at a time (which can be viewed as an implicit marching of
the steady equations). This low ratio can be very limiting when
the body contour requires elliptic grid generation which makes
grid generation much more costly.

For a very large class of missiles this scheme offers a very effi-
cient way of obtaining Euler solutions.

Method 2: Pseudo-unsteady space marching

Motivation

The second space marching scheme can be used in Euler
or Navier-Stokes (PNS) mode, see also{¥). When Navier-Stokes
terms where to be included in GEMINI it was decided to change
to the pseudo-unsteady approach to space marching, which
means that the unsteady (Euler or Navier-Stokes) equations are
iterated towards a steady state in one computational plane at a
time. This choice was made of fear of running into severe step
size restrictions when marching explicitly. Naturally this will
lead to more work in each plane than the steady approach but on
the other hand much fewer planes are used. In practise the
steady approach gives (Euler) results more rapidly for normal
missile configurations. However the ratio of work between
equation solving and grid generation is extremely high in the
unsteady approach which makes the computational work insen-
sitive to costly grid generation. This, in turn, makes the scheme
more efficient for complicated configurations where large
amounts of elliptic smoothing of the grid may be necessary.
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Another advantage of the pseudo-unsteady approach is the
straight-forward extension to treatment of subsonic pockets.

Node centered scheme

The scheme is node-centered on a bedy fitted grid, which
means that the values are located at the grid points in the grid. A
computational cell is constructed around each node point in

computational cell

computational grid
npytational

\.“\' .
S solid wall

which the finite volume scheme is formulated. We call the
scheme node-centered since the values are located in the grid
nodes but since the node point is located at the center of the
computational cell the scheme is also cell-centered in a sense.
Dummy points are located outside the computational region to
enable slope computations at the boundary points.

Finite volume formulation

Consider the computation-
al cell indexed (i,j,k) whose vol- ¢
ume is denoted V. The finite
volume discretisation of the
Navier-Stokes equations is a bal-
ance equation of flow through
the cell faces of the computa-
tional cell

Vijk%(Uijk) =
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m

i
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where m loops over i,j and k. The space marching method uses
a so called pseudo-unsteady approach which means that the
equations are iterated to a steady state in one plane at a time. Be-
fore each iteration step the values in the downstream plane i+1
must be assigned a value to close the equation set. Because of
the downstream propagation of information we can extrapolate
the values from the planes i-1 and i to get the values at i+1

= o+ (1-ayu,_,

‘where a=2 for Euler computations. For reasons of well

posedness( we let 0=1 in Navier-Stokes computations.

The MUSCL scheme
With W denoting the vector of primitive variables
(p, u, v, w, p) , the inviscid cell face flux is computed as

(F,GH], /=
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W, + 1/ is the solution of a Riemann problem across the cell

face, using Roe’s approximate Riemann solver
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W, and W, represent the states just inside and just outside the
cell face, respectively.
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The 3D Riemann solver -

The 3D Riemann problem W = ® (W;, Wy) where L
and R denote the left and right sides of the cell face respectively,
is reduced to a 1D problem using the cell face normal velocity
and the fact that the tangential velocity is passively convected,
since the tangential velocity is a Riemann invariant to the two
acoustic waves.

The PNS approximation

A space marching procedure is possible if the system of
equations is well posed for solution in the marching direction
(x). To make the equations parabolic the viscous flux in the
marching direction is neglected. In the program we meet this re-
quirement by letting

[F,GuHJeS; 1= [F,G,H]®S, 1,,=0

Since only the inviscid terms are present in the marching direc-
tion space marching is possible if M>1. In the bounda.% layer
where M tends to 0 we apply the Vigneron techmqu to en-
sure well posedness for space marching. The inviscid flux in the
marching direction is split into

pU 0
pulU+opS, (1-w)pS,
[F,G,H] eS; |, = va+a)pSy + (l—co)pSy
pwU + wpS, (1-w)pS,

U(E+p) 0

and then the second vector is dropped. In the flux vector
U=uS + vSy +wS,

and p is taken from the Riemann solution across the cell face.
Well posedness is assured if

yM?
® = min(l.(), —)
1+ (y-1)M?

where M, is the Mach number normal to the cell face in the
marching direction. ® is of course chosen to be 1 if the above
expression exceeds 1, which it does if M; 2 1.1t is necessary to
apply the Vigneron technique also to the upstream cell face for
conservation reasons.

Discretisation of viscous terms
The viscous terms are evaluated with the compact, “stag-
gered” scheme as in * */ For evaluating

[Fv’ Gv’ HV] e Sm+1/2 ’
we compute all necessary derivatives located on the cell face
Vo, Vu, Vv, Vw,Vp) 10

We introduce an additional cell whose center is the central point
of the cell face m + 1/2. For m=j the point (i,j+1/2,k) is located
approximately half way between the node points (i,j,k) and
(i,j+1,k) on the cell face j+1/2. The point is at the center of an
auxiliary cell, denoted Q, with volume V and cell face vectors

§i—1/2’ ~Si+l/2’ §j’ §j+1' ~Sk—1/2’ §k+l/2

The volume and cell face vectors for this auxiliary cell is com-
puted as the average of the corresponding quantities for cells
(i,jk) and (i,j+1 k). The gradients at the cell face is computed by

VVW, i1k = %12, je 2k Sici2t
Wiv1/2,j+ 172,k Siv12 T j i S;
4 ivie St

Wi i1,k Ske12 VWi je1/2,k412 Skv12

The indices on the variables indicate their “location” in space.
Wenote that u; ; , and Ui 41,4 A€ node values and can be used
directly. The otflxer four values are obtained by averaging, e. g.

Mgttt e e i ek
Wi y/2,j+1/2,k = 4

Temporal discretisation
Denote the right hand side of the semi-discrete approxi-

mation

aU
T = Rije

An r-stage Runge-Kutta time stepping scheme is used iterating
towards a steady-state

)

U(m) U(O)+At.am.Rijk(U(ﬂl—1))

ik ik ,m=1..r

where one time step is defined by
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+1 _ 770
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The o values can be selected for optimal convergence rate to
steady state. The local time step is chosen a
At = Aty = min (At Aty)

. (10} .
where the time step based on the viscous part of the operator is

—1)ReP
(y=DRePrp
M yu
where Ax is the diameter of the biggest sphere that fits into the

computational cell. The time step based on the hyperbolic oper-
ator is

Aty =
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V..
Aty = min| —9%
1 ((un+c)|sm;

where m loops over the indices of the cell faces.

A special case

Points located on the boundary between two blocks are
doubly defined after an iteration. For most points there is no
conflict in this fact since the iteration will yield the same value
in both points as long as the dummy point values are properly
assigned. There are however cases where two different values
will be the result of one iteration such as the situation depicted
below where the left neighbor of the boundary point may have

block A

SO

\

\ block B

different values in the two blocks. To determine the value which
should be shared by the two points a Riemann problem is solved
with the two conflicting values as input.

Boundary conditions

Since the scheme is node centered we can apply the non
slip condition directly on the solid wall points. The wall temper-
ature is set as fixed or given from an adiabatic wall condition.
The pressure gradient normal to the wall is set to zero with a sec-
ond order accurate formula. For Euler calculations the solid wall
conditions uses the formulas for oblique shocks or Prandtl-Mey-
er expansions.

Automatic grid generation

Geometry format

The geometry of the body is given as points on contours
of constant x. Guide points help to generate good spline approx-
imations also over sharp edges. A body contour at a specified x
is computed by two unidirectional spline interpolations in the
geometry data.

Wings are defined as profiles at spanwise locations. The points
are given in a coordinate system local to the wing which is later
transformed into the missile coordinate system with translations
and rotations, defined by a few parameters. Cuttings between
wings and body contours are computed by the program and it is
therefore only left to the user to specify the deflection angle or
the axis location. It is therefore a simple task to e. g. move a
wing around on the body or to deflect a control surface. The
wings may have an arbitrary plan form and must not even inter-
sect the body. This allows the computation of deflected controls
with a gap between the root chord and the body.

Grid sections
The missile is automatically divided into grid sections
based on the geometry. Throughout each grid section the multi-

wing starts bump starts

+ wing ends *
< /_\* P
diverter ends rudter starts
diverter starts

The missile is divided into grid sections

block structure is fixed. The values are transferred to the next
grid section by an interpolation, which allows the grid to be
completely discontinuous across grid section boundaries.

Cross plane grids

Each cross plane grid is a multizone, structured grid per-
pendicular to the body axis. The grid generation is automatic,
which means that the program recognizes which geometrical
objects are present at the current x and then generates a grid ac-
cording to the current topology. Then, with an interactive graph-
ical pre processor, the user can adjust the grid through a set of
grid parameters. These parameters are stored in an indata file
and used by the internal grid generator during the computations.

The basic grid is an O-grid wrapped around the body. The body
cross section shape is arbitrary and with the boundary orthogo-
nality control, to be described later, a high quality grid can eas-

ily be generated around a large class of bodies. Arbitrary body
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Arbitrary body shapes are handled by GEMINI

shapes may require elaborate grid generation techniques to ob-
tain a high quality grid minimizing skewness and obtaining or-
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thogonality near solid boundaries. A so called grid smoothing
technique (described below) fulfills this task automatically.

Effect of grid smoothing for boundary control

A thin wing divides the grid into two block. The cutting between
the wing and the body is computed internally and need not be
specified by the user.

Wings impose multzoning

An additional feature allows the users to add extra blocks or de-
lete a part of the block near the body. In this way can e. g. actu-
ator housings and boundary layer diverters can be modelled.

IH} INNARE

Additional block for e. g. a boundary layer diverter

Grid generation

After cutting the body, the program computes block boundaries.
Grid points are distributed along these boundaries using option-
al stretching functions and then the interior grid is generated
with transfinite interpolation( ) followed bya si)eciﬁed num-
ber of smoothing steps with an elliptic operator( D One could
also view the grid generator as an elliptic one with transfinite in-
terpolation as a means of creating the starting solution for the el-
liptic solver. The transfinite interpolation can be stated

O @M =FEm = [+, - L) A &)

where

(M7} (&) =7(0,m) - (1 -9, (8) +7 (L) - 9,(8)
M1 (&m) =75 0) - (1=, (M) +7 (5, 1) -9, (M)

The functions ¢, 2 contain the stretching. Furthermore they are
monotone and satisfy

0,0 =0 @ ,(1) =1

The elliptic smoother solves the equation

g22F§§+gll;nT]—2g12fﬂ§+g(P?E_,+an) =0

where

8y = X+YE  &n = X HYE

812 = XXty 8 = (xpin~Yeyp)?

with an SOR scheme. This smoothing procedure has no impact
on the cpu-time if the pseudo unsteady equation solver is used
since the number of grid planes is relatively small and a large
amount of work is done in each plane. On the other hand, if the
steady space marching approach is taken the work ratio between
equation solving and grid generation is much smaller and thus
elliptic smoothing may dominate the cpu-time completely.

Boundary control

Near solid walls the functions P and Q in the elliptic equa-
tion is used to enforce control of orthogonality and cell height.
E. g. if j=j1 (the lower limit of j) is a solid wall then

P, k) =P (d;(j, k) —dc(j’k))e”ﬁ(j—jl)

. . -BG-jp
QUk =08G ke "
where (d,~—d,) is the difference between the desired cell
height and the current one and J is the deviation from orthogo-
nality in radians

&
\/ current grid

/ / desired grid
dC

P1,0, and B are built in constants.

Adaptation
GEMINI performs a simple grid adaptation so that

y* = Lol
w,

where y, is the normal distance out from the solid bound-
ary to the first interior grid point, takes on a specified value in
the converged solution in each computational plane. From the
users point of view the program takes over the decision about
grid stretching in the normal direction. Since y * for the first
cell is often used as a measure of the resolution of an attached
boundary layer, and hence the quality of the solution, this option
relieves the user of a trial and error process to get a high quality
grid. GEMINI is programmed to check y *  at certain intervals
in the iteration process, regrid the current plane and the down-
stream plane if required and continue the iteration.
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Results

Euler solutions for lift and pitch predictions

A missile consisting of an ogive-cylinder with fins and
strakes was subject to a wind tunnel investigation and this wind
tunnel data was used for the validation of GEMINIs first Euler
solver (the MacCormack scheme)( ) at M=1.93. We present
some results as a study where the ogive-cylinder is “dressed on”
to asses the quality of the Euler results for different configura-
tion types.

< |

Configuration 7

<

Configuration 11

Configuration 13

The curves of computed and measured values of lifting force
and pitching moment for a “+” configuration are presented be-
low. At a first glance at the curves we see that the delta effects
are well predicted as well as the absolute levels of forces and
moments. The computed lift and moment on configurations 7
and 11 deviate from measurements for angles of attack around
10 degrees. For angles over 15 degrees the agreement is more
satisfying. The deviation is attributed to the viscous separation
of body vortices from the smooth cylinder, which can not be

predicted by the Euler equations. For higher angles of attack the
separation is induced by a cross flow shock and this type of sep-

Lift for configurations 7-> 11 -> 13
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| The lift force coeﬁ‘iczent Cy, and pitching moment C,, for configura-
‘tions 7, 11 and 13 as functions of the angle of attack oL (in degrees).
Euler solutions.

aration can be predicted by the Euler equations. We see that the
lift and moment curves for configuration 13 suffers no such de-
viation since the point of separation is well defined by the
strakes. On the other hand the introduction of the strakes seems
to overpredict the lifting force for higher angles of attack where-
as the moment curve shows a very fine agreement.

Heat transfer predictions for Jaminar and turbulent flow
Navier-Stokes computations were carried out on a circular

arc ogive-cylinder for which there are measured data of heat

transfer13). The study covers a Reynolds number range where
hé‘at‘tra?lséar%auges d/1L.=0.2
R/L=1.139
- —
0.0 \ 1.0 =x/L

the flow goes from laminar, over transitional to fully turbulent.

The test geometry consists of a circular arc ogive cylinder with
alength L=15 inches (=38.1 cm) and a diameter d=3 inches. Co-
axial heat transfer gauges are located at x/L.=0.467, 0.533,
0.600, 0.667,0.733 and 0.800. The experiments were conducted
under five different test conditions (a test condition is called a
T/C)

e M, Re; Type of flow
1 5.76 2.0-10° laminar

2 578 58.10° laminar

3 579 13.107 | transitional
4 5.86 2.6-.107 turbulent

5 5.90 38.107 | turbulent

The temperatures at infinity and at the wall were constant

= 59.8K = 290K

In T/C #3 the transition from laminar to turbulent flow occurred
in the interval 0.7<x/L<0.8. In computations the Baldwin-Lo-
max model was swtched on after x/1.=0.74.

The grid adaptation was switched on in all cases except for the
transitional one where a constant stretching was held.

+ . . . e
y = 1.0 for the innermost grid point was specified as an ad-

aptation criterion.

We compare the Stanton number defined by

Gy
PotiecCp (Tow = T,)

where the heat flux is computed by one-sided differences of sec-
ond order accuracy. The experimental Stanton numbers!3) uses
“edge” values just outside the boundary layer instead of infinity
values. We believe that the differences due to the different def-
initions are very small.

St =
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Laminar separation on a yawed cone
The test geomc:try(12 consists of a circular cone with a

10° semi-apex angle. At x=L a pitot pressure survey of the flow

' B,
—
0 L %
field indicates the positions of the shocks and the viscous
boundary. The test conditions are M, = 7.95 and
Re; = 4. 10° The experimental pitot pressure survey revealed
the location of shocks, viscous boundaries and minimum pitot

pressure. The following symbols are used to depict the loca-
tions.

—(O— Shock
---{>+~ Viscous boundary

-7\~~~ Minimum pitot pressure

Qui2e

Computed Mach number contours compared with experimental
pitot pressure survey for o. = 12°
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Computed Mach number contours compared with experimental
pitot pressure survey for o. = 16°

Computed Mach number contours compared with experimental
pitot pressure survey for o, = °24

Navier-Stokes solution on a complete missile
A slender missile with a highly swept wing(B) at M=2.0

and oo = 10° demonstrates a laminar solution to the Navier-
Stokes equations on a multiblock configuration. The cross sec-
tional grid comprised 49 points radially and 64 points circum-
ferentially. The results show the skin friction lines on the upper

Computed Mach number contours compared with experimental
pitot pressure survey for o. = °20

surface of the missile. The Mach contour on the lower side is
also shown to reveal the intricate vortex pattern at the body-
wing junction.
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Skin friction lines on the upper sur-
Jace of a missile with q highly swept
delta wing at M=2.0, o. = 10°

Mach number contours under the wing.
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Skin friction lines on the lower surface.

Conclusions

A Navier-Stokes/Euler codefor supersonic flow has been
developed. The method has two Euler solvers and one Navier-
Stokes solver. The Navier-Stokes method is based on a pesudo-
unsteady approach to space marching with a high resolution up-
wind scheme for the convective part and a staggered scheme for
the viscous terms.

An O-H grid is generated around the vehicle. GEMINI is
equipped with an automatic grid generator, with an interface for
the user to introduce minor modifications to the grid. By this we
practically eliminate the grid generation time and reduce the
time from geometry to the first result to in the order of one day.
The drawback is, of course, its lack of complete generality.
However, a very wide class of missiles (and fighter aircraft) can
be captured by the present grid generator.

GEMINI has been applied to several realistic missile con-
figurations with good results. Forces and moments can be pre-
dicted with good accuracy by the Euler equations up to high
angles of attack. For that purpose it is already in production use
at SAAB.

Navier-Stokes computations gives accurate predictions of
heat transfer rates and crosswise separation. It will without
doubt improve predictions of forces and moments for full con-
figuration, although the computational cost is much higher than
for Euler computations.
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