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Abstract

MacCormack's explicit and unsplit method is employed
on a multizone overlap grid—system to predict the
transonic, turbulent flowfield around an axisymmetric
projectile at zero angle of attack. The computational
results compared with wind tunnel measurements of
boundary layer surveys are performed. Two different grid
systems, depending on how the projectile base is modeled:
(1) the projectile with the flat base as the actual projectile.
(2) the projectile with the extended boattail as a simplified
model. The computational results show that the
agreement with experiment can be obtained and
convergence is significantly improved if the locally varying
time step proposed by Kunz(1991) is employed.

Nomenclature

Equation Symbols:

X,y axial and normal cartesian coordinates
! variables vector in cartesian coordinates
E', F'  flux vector in x, y direction

& transformed coordinates
variables vector in transformed coordinates
E, F flux vector in &, n direction

Bj, C;j  coefficient terms in Navier—Stokes equation

1
S, Sa viscous terms in Navier—Stokes equation
Ty, Ty _ o . ‘
Gy, Go axisymmetric viscous terms in Navier—Stokes

equation
H source term in Navier—Stokes equation
J Jacobian

Fluid Properties:

p density (Ib/{t3)

u, v axial velocity, normal velocity (ft/sec)

u,v contraviant velocity (sect)

t time (sec)

p pressure (1bf/ft2)

T temperature i{R)

e unit energy (ft2/sec)

R gas constant (1716 ft2/sec?-R)

1yl laminar and turbulent viscosity coefficients
(Ib-sec/ft2)

Pr,Pry  laminar and turbulent Prandtl number

Cv specific heat of constant volume (4290ft2/sec?: R)

Cp specific heat of constant pressure
(6006ft2/sec? - R)

Cp pressure coefficient

k conductivity coefficient

M Mach number

Re Reynolds number

D diameter of SCOBT projectile

Subscript:

i grid indice

o freestream value
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I. Introduction

A projectile in flight will experience some critical
aerodynamic behavior in the regime of transonic speed,
which is the range between M_=0.9 and 1.1. In this range

of speed, the aerodynamic coefficients change abruptly.
The complexity of shock structure is formed on body
which causes such a tlow phenomenon. The flowfield is
characterized by the strong viscous—inviscid interaction,
shock—boundary layer interaction and the separation near
the projectile base.

Most of early researches about transomic projectile
tlowfield were based on small disturbance potential theory.
Krupp & Murman!(1972) and Chow, et al2(1975) provided
qualitative predictions of transonic projectile by
application of this theory. Because potential theory
doesn't consider the effects of viscosity, recent researches
tend to deal with the flowfield by thin layer Navier—Stokes
equation.  Most famous and widely used numerical
schemes are Beam and Warming, Flux—Splitting and TVD
schemes.., etc. For example, Deiwert3 studied the 3—D
boattail afterbody flow field by applying Beam &

Warming*. Sahu & Danberg®S solved the flowfields about
the modified projectile with extended boattail by using the
same method and the flux—splitting scheme.  Hsu?
employed the TVD scheme to study the same problem.
Present work will solve the full Navier—Stokes equations
instead of thin—layer type equations by using the
MacCormack explicit® scheme. In addition, an overlap
multizone technique is used for the grid—system generation
so that better resolution and easier grid generation can be
obtained. This study is extended from the work developed
by Patel and Sturek®. However, a locally varying iime
step proposed by Kunzil in 1991 is employed to satisty the
crucial criteria for this explicit scheme. Due to the
improvement of convergence, application of this time step
evidently increases the efficiency of MacCormack explicit
scheme without adding any artificial dissipation term.

II. Numerical Treatment

Governing Equations

The mean flow is described by two—dimensional mass,
momentum and energy conservation equations, which are
full time dependent, mass averaged Navier—Stokes

equations.  The dimensional governing equations in
generalized curvilineaar coordinates are represented as
follows,
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Where Sy, Ss, Ty, Tq are viscous terms, the coefficients

Bi, Cj, Dj are defined as follows:

Bi= (p+ ) (£y2 + 4/3 &) (2.3)
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The axisymmetric source terms (F'+H') can be

expressed as follows, i.e.
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n

Turbulence Model

In this article, the mixing—length turbulence model
proposed by Baldwin and Lomax!2 is used to compute the
turbulent viscosity, i.e.

Mt 1111161—/)[/2 | w |
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where, y is the normal distance from wall. ycrossover 15 the
minimum y for (ft)inner = (1) outer -

Numerical Procedure

The MacCormack's explicit method is employed for
solving the governing equations. The predictor—corrector

steps are
Predictor:
Qp] *QpJn At( 13J“ El 10 ) At(Fbjn_Fiaj»l)
@27)
Cotrector:

1 Ay
Qi»j:_Q[ijjn_{"Qiajn !

_At(Eiﬂ’jn+1_Ei7jn_+T)_At(Fi’l+111+1_F n+1)}
(28)
Where E; ﬂ*l implies that the terms are evaluated

using Qi,j7*1 and so forth. This explicit scheme is 2nd
order accurate in time and space. Also because of its
simplicity in solving equations, the program can be easily
vectorized. However, for the explicit method the timestep
size must not exceed the maximum by the CFL condition.
An approximate linearized stability analysis for the
inviscid equations yields the following inviscid time step:

I e A A e T

where a is the speed of sound.

The equation (2.9) was usually multiplied by a factor
(denoted as CFL) that is smaller than one. Ths choice of
At affects the rate of convergence tremendously and will
be discussed in the next section.
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Local Time Step

In order to increase the convergency rate of the
numerical computation, different varying timesteps are
proposed by many investigators, such as space varying
Ati0 in Beam—Warming scheme.  Present work will
employ a locally varying timestep proposed by Kunzll,
This time step is derived from the linear stability analysis
of Navier—Stokes equation, which is more complete than
the conventional local time step. Its form is:

At = Min [ Ate, Aty ]
AG

= Min | , (2.10)
[U+ayVEVE+ | V] +ay¥iVy
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[7(VEVE) +IVEVE) ViV )
where IMAG and REAL are input parameters

corresponding to operational CFL number and Von
Neumann number respectively. Both values are restricted
to be less than 1 in order to ensure numerical steady. In
{2.10), At¢ comes from hyperbolic consideration, which
corresponds to convection effect and have the same form ag
the conventional time step. Aty is obtained from parabolic
consideration, which includes the correspondence effects of
viscosity and grids system.

Grids system

In order to perform the computation, the multizone
approach is employed to get grid—system. The major
advantages of this method are: (1) individual subgrid can
be achieved by simple spacing technique and get good
resolution. (2) subgrids can be easily calculated by parallel
computing. (3} it's convenient in adding dense grids over
flowfield of large gradient. (4) suitable for large
computation on machine of smaller memory.

In the calcuation of transonic proiectile. the first ovid
spacing normal to the wall are required to be fine enough
so that the y* can be controlled at less than 5. It implies
that the first Ay is set to be 0.00002D and the entire
turbulent boundary layer can be obtained. H grids are
adopted here for simplicity. Different subgrid boundaries
are connected by the same grid distribution, and to be the
boundary condition of each other in next iteration.

Results and Discussions

Generations of the Grid Systems

The turbulent flow fields past a
secant—ogive—cylinder—boattail(SCOBT) projectile(Fig.1)
at zero angle of attack at freestream Mach number of 0.94
and 0.97 are computed for the present study. Surface
pressure distribution is predicted to compare with
measurement.

The computation is performed on two grid—systems:

(A) Projectile with extended boattail: The flow field
around the flat base of SCOBT projectile is approximately
predicted by the extended projectile. This projectile is
extended from the cylinder base to 2.52D afterward by a
circular cone of 7.640, where the diameter of cone is 0.2D.
This grid system is composed of two subgrids, which is
shown in Fig.2. The two grids are (1)31x75 grid points to
cover the freestream region, and (2)106x50 grid points
around the projectile. The range of computation domain
are: 10D from the nose of the projectile to freestream
boundary, 14D {rom mno reflection -boundary to the
projectile surface, 12D downstream the nose.
(B) Projectile with flat base: This is the real geometry of
the projectile and three subgrid—systems covers the
computational domain. The grid points of these

subsystems are (1)31x75, (2)111x51, (3)45x31 (Fig.3). The
subgrid systems 1 and 2 are generated the same as those
for the extended projectile. Subgrid—system 3 covers the
base flow region. Distance of 6.2D downstream the base
corner to the outer boundary is chosen. The grid
resolution is highly dense near the base corner in order to
predict the corner expansion. Because of the abrupt
change near the corner, the computational result by this
grid system is more difficult to be obtained than that by
the former grid—system.

Surface Pressure

The computed pressure coefficients along the projectile
for Mach numbers of 0.94 and 0.97 are compared with the

experimeital datal314 and shown in Figd and Tig.b
respectively. For the case of Mach number 0.94, the
calculated value is consistent with the experiment even
near the shock. The expansion is majorly due to the
change of projectile curvature, and the shock is formed
because of acceleration of fluid and the back pressure.
Same degree of accuracy is obtained by the different
grid—system with the extended boattail and with the flat
base. In the case of Mach number 0.97, similar result is
observed. The only difference caused by the different
Mach numbers is the shift of shock wave location. This
phenomenon can be seen in the Mach contours also. In
Figures 6 and 7, the mach number contours are illustrated
by the range from M _=0to Mm:1.2.

Iteration History

The convergence criteria of explicit schemes is always
crucial. It's not easy to control especially in the flowfield
of highly stretched grid system, strong viscous effect and
critical ~ phenomena. There coexists the strong
viscous—inviscid  interaction, shock—boundary layer
interaction and separation flow near projectile base, the
critical phenomena are more evident. In order to obtain
better convergence, Kunz's locally varying time step is
adopted here instead of the conventional inviscid time
step. Figure § plots the iteration history in the case of
projectile with extended boattail at Mach number of 0.94
if conventional inviscid time step is employed. . The
residuals are difficult to be reduced to an acceptable level
even after 20,000 iterations in the region of suhgrid2. The
residual for the subgrid 1 of free stream region is raised to
a constant level after an order of magnitude drop. Inviscid
CFL is chosen as 0.5 in the computation. Therefore, it is
difficult to accept the computed results by employing this
conventional inviscid time—step.

When the Kunz's local time step is applied, the
constants in eq(2.10) are chosen as REAL=0.1,
IMAG=0.9. The term Aty considers both the influences of
grid—resolution and viscosity. During the computation,
3.6% of subgrid 1 and 41.57% of subgrid 2 employing Aty,
and the rest employing Atc(which is the inviscid time
step) as the time step. Figure 9 indicates that residuals in
two subgrid—systems are efficiently lowered continuously.
It is also noted that the time step of IMAG=0.9 is larger
than inviscid CFL=0.5. It means that the larger local
time step is taken in the inviscid region of uniform grid
spacing, but a smaller time step(REAL=0.1) is chosen in
the region of greater Ay and viscosity. The comparison of
Fig.8 and 9 implies that employing Kunz's local time step
is superior to conventional time step for the case of
projectile with extended boattail.

Iigure 10 plots the iteration history for the case of
projectile with flat base if conventional inviscid time step
of CFL=0.5 is applied. Same characteristics are observed
for two subgrids(grid 1,grid 2) as those for the two
subgrids in Fig.8. The residuals for the third subgrid(grid
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3) of base region continuously oscillate severly because of
the complexity of recirculation flowfield. If Kunz's local
time step of REAL=0.05 and IMAG=0.7 is applied, the
percentage of the Aty used in respective subgrids 1,2 and 3
are: 7.43%, 29.2%, 87%. The convergence is significantly
improved by employing the Kunz's local time step(Fig.11).
This figure shows that (1) the oscillation of gridl is
eliminated, (2) the convergency is improved for the
subgrid 2, (3) convergence characteristics for subgrid3 of
base region is greatly improved and is different from the
former iteration histories of all others.

Conclusion

The application of the explicit scheme of MacCormack
is successfully adopted for the computation of the
turbulent transonic flow past projectiles with extended
boattail or flat base, if the locally varying time step of
Kunz is adopted. The convergence is difficult to judge if
the convemtional inviscid time step is applied and the
residuals can not be reduced to an acceptable level. The
convergence can be achieved and greatly improved if the
Kunz's local time step is used. The use of local time step
leads the possibility of employing explicit scheme for
solving Navier—Stokes equation.
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Figure 2 Grids system of extended SCOBT projectile.
Figure 3 Grids system of flat base SCOBT projectile.
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