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ABSTRACT

Transonic viscous flow past a round leading edge cropped
delta wing is determined by solving the Reynolds averaged
thin-layer Navier—Stokes equations. Three algebraic turbu-
lence models are used and laminar flow is also calculated. In
the calculations the angle of attack varies between 10 and
40 degrees. The Mach number is 0.85 and the Reynolds
number based on the root chord is 2.38 - 105, The results
are compared with experiments.

INTRODUCTION

Computational fluid dynamics has reached a level where
complicated, viscous flows can be simulated by numerically
solving the Navier-Stokes equations. This has focused
interest on cases that cannot be treated with simpler
approximate methods. Vortical flows with shock waves and
the interaction between shocks and boundary laver flows
are cases that should be calculated using the Navier—Stokes
equations. In the experiments it is often difficult to resolve
the smallest details of the flowfield even though they may
be important for the understanding of the overall behaviour
of the flow. Computational methods provide a way to study
the details of the flowfield.

The objective of the present study is to determine the
flow past a cropped delta wing at transonic speed. The
vound leading edge delta wing with a leading edge sweep
angle of 65° was examined in the International Vortex
Flow Experiment on Euler Code Validation'!). The same
wing has been calculated using Euler and laminar Navier—
Stokes codes®>3*), The results of these calculations were
promising. although they could not produce all the details
correctly. Recently, Hilgenstock® has presented results
from turbulent simulations.

The basic structure of the vortical flow past a delta wing
at high angle of attack is shown in Fig. 1. This flow case
is very challenging since the vortical flowfield with shock
waves includes many complex fluid dynamic phenomena.

The Revnolds number of the calculated cases is 2.38 -
10%, and therefore the calculations are performed with
both totally laminar and totally turbulent houndary layer.
The effects of turbulence: are evaluated with either the
Baldwin-Lomax turbulence model’®, the Degani-Schiff
modified'” version of the Baldwin-Lomax model or the
Cebeci-Smith turbulence model®. The purpose in using
several models as well as the laminar boundary layer
assumption is to investigate the effects of the boundary
layer type on the whole solution and to compare the
behaviour of different algebraic turbulence models i1 a
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complex case. In this study emphasis is laid on resolving the
flow details, although the integrated values of lift, drag and
pitching moment are also given. The angle of attack varies
between 10° and 40°, but detailed results ave presented only
for the case o = 10.38°.

The calculations arve performed with a computer code
called FINFLO that solves the Reynolds averaged thin-
layer Navier—Stokes equations with a finite-volune method.
The equations are solved by an LU-factored implicit time
integration method. The scheme is cell-centred and applies
the flux-difference splitting of Roe!®). The code utilizes a
multigrid V-cycle for the acceleration of convergence and
is able to handle multiblock grids. The code has been
developed at the Laboratory of Aerodynamics of Helsinlki
University of Technology!!%-1%).

Fig.1 The structure of the flowfleld near a delta wing with
primary and secondary vortices.

NUMERICAL METHOD

Governing equations

The Navier-Stokes equations can be written in a couserva-

tive form using Cartesian coordinates as
U  OF(U) OGU)y OH(U)

T T T Ty 5. =0 h

wherel =(p pu pv pw e )T, In the present solution,
a finite-volume technique is applied. The flow equations
have an integral form

g = 2 ;
—/UdV—l—/F(U)~(ZS:0 (2)
ot

v 5
for an arbitrary fixed region V' with a boundary S. Per-
forming the integrations for a computational cell 7 yields

L dU; _ N
Vi = > -SF (3)

faces
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where the sum is taken over the faces of the computational
cell and

F=nF+n,G+n.H (4)

Here n, i4n yf—f— . I is the unit normal vector of the cell face
and F. G and H are the fluxes in the a-, y- and z-directions
respectively.

Turbulence models. The effects of turbulence are taken
into account by modifying the viscosity and heat transfer
coefficients. The viscosity is replaced by u + . and the
thermal conductivity by

H e
Pr + Pr;

where u7 is the turbulent viscosity and Pry is the turbulent
Prandtl number. While in laminar regions the Prandtl
number is assumed to have a constant value 0.72, another
constant value of 0.9 is used for Pr;. In the present
calculations three different algebraic turbulence models
have been applied: the Baldwin-Lomax model, the Degani—
Schiff modified version of the Baldwin-Lomax model and
the Cebeci-Smith model. The Baldwin-Lomax and the
Cebeci-Smith models are suitable in their original form
for boundary layer type flows. However, the flow on the
leeside of the delta wing has a strong vortical structure.
In the Baldwin-Lomax model the modification of Degani
and Schiff'™ permits the model to differentiate between
the vorticity within the attached boundary layers and the
vorticity on the surfaces of the separation. Hence, the
length scale is based on the thickness of the attached
boundary layver rather than on the normal distance between
the wing surface and the vortex core. In the Cebeci-Smith
model a method proposed by Stock and Haase!®! is used,
which, instead of requiring the boundary layer thickness,
utilizes a special formula for the turbulence length scale.

Spatial discretization

The calculation of the fluxes is performed in two stages.
The inviseid part of the flux on the cell surface is calculat-
ed by solving approximately a locally one-dimensional Rie-
mann problem. The viscous part is centrally differenced
and treated separately from the inviscid part. Since the
thin-layer approximation has been adopted, only those vis-
cous terms evaluated in the normal direction of the wall are
retained.

For the calculation of the inviscid part of the flux, the
rotational matrix 7' is utilized

P =T F(TT)) (5)
where F' has the same functional form as in Eq. (4)

The computer code includes two alternative ways to cal-
culate F:: the flux-difference splitting developed by Roe!®,
and the flux-vector splitting method of van Leer!!?). In the
present study. Roe's method has been used. In the calcu-
lation of the fluxes. either by Roe’s or van Leer's method,
the evaluation of the solution vector on both sides of the
cell surface is performed with a MUSCL-type approach.

Boundary treatment. At the free-stream boundary the
values of the dependent variables are kept as constants. In
the calculation of the inviscid flux at the solid boundary
the flux-splitting is not used. The only contribution to the
momentum flux arises from the pressure terms. The wall
pressure is evaluated using a second-order extrapolation
from the interior cells. The viscous fluxes are evaluated
by setting u = v = w = 0 at the wall.

Solution Algorithm

The discretized equations are integrated in time by applying
the LU-factorization*"?. This is based on the approximate
factorization and on the splitting of the Jacobians of the
flux terms. The resulting implicit stage consists of a
backward and forward sweep in every coordinate direction.
In the integration a spatially varying time step is utilized.
Since the Jacobian matrices are evaluated approximately,
the time-step size is lmited. With the present time
integration scheme the limitation is more severe with van
Leer’s method than with Roe’s method.

In order to accelerate the convergence, a multigrid cycling
is used. The method of Jameson'!? with a simple V-cycle
has been adopted. The spatial discretization applied on the
coarse grid levels is of the first order, which allows the use
of a larger C'F'L-number on those grid levels.

WING GEOMETRY AND
COMPUTATIONAL GRID

The wing selected for these calculations is the round leading
edge cropped delta wing used in the International Vortex
Flow Experiment on Euler Code Validation!!). The leading
edge sweep angle is 65° and the wing has a taper ratio of
0.15. The reference length for the Reynolds number and
moment coefficient is the root chord ¢,.. The wing profile is
constant over the span and is defined at the root by

+£(0.1183v/7 — 0.21012 + 0.35012? — 0.340623)
y = 0<2<04
NACA 64A005
04<e <1

. The grid used in the calculations is a single-block structured

128 % 48 x 64 O-0 grid. The outer edge of the grid with
free-stream boundary conditions is a sphere centred at the
middle of the root chord with a radius of 10¢,. The number
of cells in the near normal direction to the surface is 48.
The grid is heavily clustered on the wing surface to obtain
approximately 25 cells in the boundary layer. According to
earlier experience this gives sufficient resolution to describe
the boundary layer. The height of the cells on the surface is
about 3-107%, resulting in a y* value of the order of 1 in the
middle of the first cell. The grid is also slightly clustered
on the leading edge and the trailing edge and also on the
tip to obtain better resolution in areas of large gradients.
The grid is nearly orthogonal near the wing surface except
at the trailing edge and the tip. The grid is generated
using a transfinite interpolation method. The wing surface
is shown in Fig. 2 and the grid near the wing is presented
in Fig. 3. Since only symmetric cases are calculated, only
half of the wing is modelled.
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Fig.3 The grid near the cropped delta wing.

COMPUTATIONAL RESULTS

In all the calculated test cases the Mach number is 0.85 and
the Reynolds number based on the root chord is 2.38 - 108.
The angle of attack a is varied between 10 degrees and 40
degrees. Two different cases are studied: laminar flow and
turbulent flow. The turbulent viscosity is evaluated using
either the Baldwin-Lomax turbulence model, the Degani-
Schiff modified version of the Baldwin-Lomax model or
the Cebeci—Smith turbulence model. In the calculations
five multigrid levels are used, which results in a tenfold
increase in the convergence speed. At moderate angles of
attack about 200-300 iteration cycles are required to obtain
a sufficiently converged solution. This is equal to 1.5-2.5
hours of CPU time on a Cray X-MP computer. The van
Albada flux-limiter was used in the chordwise direction to
obtain non-oscillatory results near shock waves. Typical
convergence histories for C'y, are presented in Fig. 4.

Test Case a = 10.38°

The calculated pressure coefficient distributions on the
upper surface for inviscid, laminar and turbulent cases
are compared with experimental results!?’ in Fig. 5 at
/e, = 0.3, 0.6, and 0.8. As can be seen, the laminar
flow calculations agree better with the experiments than

do the turbulent or the inviscid calculations, especially
at 2/c, = 0.3 and 0.6. Near the trailing edge, however,
at /¢, = 0.8 the turbulent solution is better than the
laminar solution, except near the suction pealk. Thus it
can be assumed that the boundary layer in the experiments
was laminar at z/¢, = 0.3 and z/¢, = 0.6, whereas it
was turbulent at /¢, = 0.8. The computational results
reveal a weak shock wave originating from the wing root
at z/c, &~ 0.6. It is evident that at least this shock
wave induces the boundary layer transition from laminar
to turbulent.
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Fig.4 The convergence history of C' at a = 10.38° using the
Baldwin—Lomax and the Cebeci—-Smith turbulence models.

Figs. 6a—d show the oil flow plots for different cases at
a = 10.38° and Figs. T7a-d present the corresponding
C),-distributions on the upper surface. The total pressure
contours for different solutions at different cross sections
are presented in Figs. 8-11.

Laminar flow. The results of the laminar case show
two suction peaks and two local pressure maximums at
z/c; = 0.3. In principle the suction peaks correspond to
separation lines and the pressure maximums correspond to
reattachment lines. These results — together with the oil
flow plot in Fig. 6a revealing two reattachment lines at
zfc, = 0.3 — indicate that at this section there are two
vorticies. The locations of the centres of these vorticies
can be determined from Fig. 8a, which presents the total
pressure contours. The centre of the primary vortex lies at
1 = 0.75, while the secondary vortex centre, which is not
clearly visible, lies at n = 0.81.

At /¢, = 0.6 there are three clearly visible suction peaks
in Fig. 5 at n = 0.71, 5 = 0.81 and n = 1.0. In addition
there is a very weak local pressure minimum at n = 0.9.
This is consistent with the oil flow plot, which shows three
separation lines. The weak pressure minimum indicates the
development of a fourth vortex which, however, is still too
weak to become a clear vortex. The oil flow plot in Fig. 6a
and total pressure plot in Fig. 8b confirm these conclusions.
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At x/¢, = 0.8 three suction peaks are seen in Fig.5 at
n = 0.71. 7 = 0.83 and = 1.0. There is also a very weak
local minimum at 5 = 0.90. The total pressure plot in Fig.
8¢ reveals four vorticies, the fourth of which is centred at
7 =~ 0.94. This vortex is weak and according to the oil flow
plot it vanishes at /¢, = 0.85.

The oil flow plot in Fig. Ga confirms these conclusions, re-
vealing the three clear separation lines and the weak one
near the tip. The reattachment lines are also visible, al-
though their locations can not be determined as accurately
as the location of the separation lines. Near the root at
x/c, ~ 0.7 there is an area of separating flow. This 1s ev-
idently shock-induced separation which is not found from
the results of turbulent calculations.

The computed skin friction coefficient distributions give
further information about the boundary layer behaviour
on the surface. The skin friction x- and z-components
nondimensionalized with the free-stream kinetic pressure
are presented in Fig. 12 at spanwise section 2z/b = 0.57.

Turbulent flow. At z/c¢, = 0.3 the turbulent calcu-
lations cannot properly describe the vortical flow pattern.
The pressure distribution near the root is relatively good
with all the applied turbulence models, but they all fail to
accurately predict the leading edge separation. Therefore
the suction peak is located too close to the leading edge
and is far too strong.

At a/c, = 0.6 the turbulent solutions capture a clear
primary vortex, the centre of which lies at n = 0.78,
although differences are found concerning the existence of
a secondary vortex. The Baldwin-Lomax model shows
only a primary vortex, while the Cebeci-Smith model
reveals a starting and the Degani—Shiff model gives a clear
secondary vortex. They all overpredict the strength of
the suction peak, and the Baldwin-Lomax model gives no
distinct pressure maximum for the reattachment. Overall
the turbulent solutions are qualitatively good, but there are
quantitative errors in the details.

At /¢y = 0.8 all the turbulent calculations yield an excel-
lent pressure distribution near the root, but the strength
of the suction peak is overestimated. The Baldwin—Lomax
model captures only one large vortex, while the Cebeci-
Smith model also locates a secondary vortex. The Degani—
Schiff model even finds a distinct tertiary vortex which,
Lowever, is quite weak. In all cases, the centre of the pri-
mary vortex lies at n = 0.78.

The differences between the results obtained with differ-
ent turbulence models can partly be explained by the dif-
ferences in the models. The Baldwin—Lomax model tends
to considerably overpredict the turbulent viscosity in ar-
eas of vortical flow. This characteristic was eliminated by
the implementation of the Degani-Schiff modification to
the Baldwin-Lomax turbulence model. The Cebeci-Smith
model is applied with the modification proposed by Stock
and Haase. This model does not seem to be disturbed by
the presence of a large vortex, and the turbulent viscosi-
ties so obtained are smaller than those obtained from the

Baldwin-Lomax model, although still clearly larger than
those of the Degani—Schiff model. The overpredicted tur-
bulent viscosity of the Baldwin—Lomax model hinders the
development of a secondary vortex. Both the Cebeci—Smith
model and the Degani—Schiff model allow the development
of multiple vorticies.

The qualitative differences in these results are clearly seen
from the oil flow plots in Figs. 6a-d. The shock-induced
separation found from laminar solution in the root area
is not present in any of the turbulent solutions. Most
probably the primary separation in the tests was laminar,
although the reattached flow was turbulent as was the flow
on the upper surface downstream from the midchord near
the wing root.

Test Case o = 20.82°

This case, which is the angle of attack for maximum lift,
is calculated with both laminar and turbulent boundary
layer. The laminar results suggest that the wing has already
stalled. The turbulent calculations with the Cebeci—Smith
model result in a slightly stalled wing, vielding lift and
drag coeflicients a little too small in comparison with the
experimental results.

Laminar flow. The laminar solution suggests that vortex
bursting due to a shock wave occurs at @/c, ~ 0.4. The
intensity of the vortex decreases rapidly after that point
and the whole flow pattern is destroyed. This can be seen
from the oil flow plot in Fig. 13a. The accuracy of the
predicted pressure distribution at x/c, = 0.3 is passable
in comparison with the experimental results. After the
vortex bursting the pressure is essentially constant, which
is a typical feature of separated flow.

Turbulent flow. In the solution with the Cebeci-Smith
turbulence model, vortex bursting occurred at /¢, ~
0.7. Before that point, at z/¢, = 0.3 and at z/c¢, =
0.6, the pressure distributions are relatively close to the
experimental results. At 2/c, = 0.8 the vortex bursting
has suppressed the flow details and therefore the pressure
distribution is clearly in error. It should be noted that in
the experiments the suction peak at /¢, = 0.8 had become
distinctly weaker in comparison with that of /¢, = 0.6.
This is a sign of an approaching vortex bursting. The oil
flow plot of this result is shown in Fig. 13b.

Lift, drag and pitching moment

The coefficients of lift, drag and pitching moment at several
angles of attack are presented in Figs. 15 and 16 and
in Tables 1 and 2. They also include the corresponding
experimental results'!®), The moment coefficient is defined
as positive when it tends to increase the angle of attack and
it is calculated around the point x/c, = 0.57.

The calculated aerodynamic coefficients agree quite well
with the experimental values as long as the wing is not
stalled. Vortex bursting starts too early in the calculations
and therefore the stalling is not accurately predicted. The
results for & = 10.38° show that the Cebeci-Smith and the
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Degani-Schiff turbulence models produce the best results.
At a = 20.82° only the Cebeci-Smith model gives results
that are comparable with the experiments.

Table 1 The lift, drag and pitching moment coefli-
cients at o = 10.38°, Ao = 0.85 and Rc = 2.38 - 10°
with various boundary layer types.

o = 10.38°, Re = 2.38 . 10°, Ma = 0.85
Test Case Cr Cp Crnst
Laminar 0.4798 | 0.0795 | -0.0117
Baldwin-Lomax | 0.4737 | 0.0811 | -0.0123
Degani—Schiff 0.4659 | 0.0794 | -0.0095
Cebeci-Smith 0.4696 | 0.0804 | -0.0103
Experiments 0.4467 | 0.0805 | -0.0082

Table 2 The lift, drag and pitching moment coeffi-
cients at a = 20.82°, Ma = 0.85 and Re = 2.38 - 10°
with various boundary layer types.

a = 20.82°, Re = 2.38- 10°%, Ma = 0.85
Test Clase 843 Cp Crm.57
Laminar 0.7086 0.2658 -0.0256
Degani—Schiff | 0.7107 | 0.2685 | -0.0196
Cebeci-Smith | 0.8594 | 0.3157 | -0.0147
Experiments 0.9515 | 0.3521 | -0.0283

CONCLUSIONS

Transonic viscous flow around a round leading edge cropped
delta wing has been calculated at Ada = 0.85 and Re =
2.33 - 10°. Both laminar and turbulent boundary layer as-
sumptions have been used applying three different algebra-
ic turbulence models. The basic features of the flow are
resolved and up to four vortices can be found from the so-
lutions. The details are dependent on the turbulence mod-

elling applied.

At o = 10.38° downstream from the wing apex to the
middle of the wing the the laminar solution is closer to
the experimental results than are the turbulent solutions,
but towards the trailing edge the turbulent solutions agree
better with the experiments. The computed lift, drag
and pitching moment values agree quite well with the
experimental values.

At o = 20.38°, which is just below the stalling in the
experiments, the calculations show vortex breakdown too
early, and as a result the calculated lift and drag coefficients
are too small. Only the results of the Cebeci—Smith model
are comparable with the experiments.

Of the three turbulence models, the original Baldwin—
Lomax gave the poorest results, presumably because of its
excessively high turbulent viscosity. The two other models,
the Cebeci-Smith model and the modified Baldwin-Lomax
model, yield comparable results at « = 10.38°.
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Fig.7 a. Cp-distribution at o = 10.38° using laminar Fig.T c. Cp-distribution at o« = 10.38° using the
boundary layer. Degani-Schiff turbulence model.

Fig.7 b. Cp-distribution at o = 10.38° using the Fig.7 d. Cp-distribution at o = 10.38° using the
Baldwin-Lomax turbulence model. Cebeci-Smith turbulence model.
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Fig.8 a, Total pressure contours at z/c, = 0.3 for
a = 10.38° using laminar boundary layer.

Fig.8 b. Total pressure contours at z/c, = 0.6 for
a = 10.38° using laminar boundary layer.

Fig.8 c. Total pressure contours at z/c, = 0.8 for
« = 10.38° using laminar boundary layer.

- Q5
o0 “

Fig.8 d. Total pressure contours at a/c, = 1.05 for
o = 10.38° using laminar boundary layer.
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Fig.9 a. Total pressure contours at z/c, = 0.3 for
o = 10.38° using the Baldwin-Lomax model.

Fig.9 b. Total pressure contours at &/c, = 0.6 for
o = 10.38° using the Baldwin-Lomax model.

Fig.9 c. Total pressure contours at z/c, = 0.8 for
o = 10.38° using the Baldwin—Lomax model.

Fig.9 d. Total pressure contours at z/c, = 1.05 for
o = 10.38° using the Baldwin-Lomax model.
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o = 10.38° using Degani—Schiff model.

Fig.10 a. Total pressure contours at @/c, = 0.3 for

Fig.11 a. Total pressure contours at 2/c, = 0.3 for
o = 10.38° using the Cebeci—Smith model.

a = 10.38° using Degani-Schiff model.

Fig.10 b. Total pressure contours at z/c, = 0.6 for

Fig.11 b. Total pressure contours at z/c, = 0.6 for
a = 10.38° using the Cebeci-Smith model.

Fig.10 c. Total pressure contours at z/c, = 0.8 for
o = 10.38° using Degani—Schiff model.

Fig.11 c. Total pressure contours at ©/c, = 0.8 for
o = 10.38° using the Cebeci-Smith model.

e —

Fig.10 d. Total pressure contours at z/c, = 1.05 for
a = 10.38° using Degani-Schiff model.

Fig.11 d. Total pressure contours at z/c, = 1.05 for
o= 10.38° using the Cebeci—-Smith model.
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Fig.12 a. Cy_ -distributions at section 2z /b = 0.57.

Fig.13 a. Surface streamlines of o = 20.82° using
laminar boundary layer.
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Fig.14 a. Cp versus « for different solutions.
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Fig.13 b. Surface streamlines of o = 20.82° using

Cebeci-Smith turbulence model.
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Fig.14 b. Cp versus « for different solutions.
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