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Abstract

Inviscid, transonic, convergent-divergent nozzle flowfields are sim-
ulated using the Beam and Warming implicil approzimate facloriza-
tion algorithm. Both two-dimensional and azisymmelric nozzle con-
figurations are considered. Nonlinear artificial dissipation lerms are
explicilly added, and variable time stepping is used for steady stale
convergence acceleration. A procedure for using one-dimensional char-
acteristic relations for boundary condilion enforcement in the azisym-
melric case was developed and implemenied. Studies of several nu-
merical boundary condilion effects on solution accuracy and conver-
gence raie were performed. The algorithm proved to be very robusi,
and solutions on rather realistic nozzle configurations were obtained.
Present computational resulls show good agreement with the available
data. The algorithm with the variable time siepping oplion proved to
be computationally efficient.

Introduction

Nozzle flows play an important role in many aerospace applica-
tions. However, experiments that can duplicate the actual operating
environment of these nozzles can be rather costly, or even impractical.
Hence, it is of great interest to seck to develop computational proce-
dures that could accurately, and efficiently, simulate the flowfield in
such devices. Moreover, it is significant that not only the propulsion
system performance is affected by the nozzle flow, but also the ex-
ternal aerodynamics and aerothermodynamics of the vehicle can be
influenced by it, especially close to the base region.

The present work reports on the efforts for the development of
efficient and robust two-dimensional and axisymmetric Euler solvers
for inlet and nozzle flow applications. The governing equations are
written in strong conservation-law form for general body conforming
curvilinear coordinates. The equations are solved using the Beam
and Warming implicit approximate factorization algorithmll’ 2, 3], in
which the implicit Euler method is used for the time march and central
differences are employed to discretize all spatial derivatives. As usual
with the Beam and Warming scheme, artificial dissipation terms have
to be added in order to control nonlinear instabilities. Here, both a lin-
ear constant coefficient modell®] and Pulliam’s nonlinear modell4 5, 6]
were implemented. Boundary conditions were implemented explicitly
in the present work. Symmetry conditions are used at the centerline,
flow tangency is considered at the nozzle wall, and the entrance and
exit conditions are based on the concept of one-dimensional charac-
teristic relations for the 2-D Euler equationsn' 81,

The ultimate goal of the research work here described would be to
develop the capability of simulating realistic solid rocket motor nozzle
flows. To this end, the following aspects were systematically studied
and are presented here: (1) influence of the magnitude of the artificial
dissipation coefficients and of the type of model in the solution; (2)
implementation of numerical boundary conditions and their overall
effect on the accuracy and robustness of the code; (3) consideration of
realistic nozzle geometries and their effect on the capability of the code
to handle large convergent/divergent section angles and small throat
radii. Moreover, systematic grid refinement studies were performed
aimed at a thorough code validation and assessment of numerical ac-
curacy.

Two-Dimensional Formulation

The Euler equations can be written in conservation-law form for a
body-conforming, 2-D, curvilinear coordinate system as
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The vector of conserved quantities is
- - T
Q@=J""[p pu pv e] 2
The inviscid flux vectors are given by
pU 11%4
F - U+ ps = -1 puV + pne
E=J1 pu F=J
pvU + py oV + pry
(e+p)U—p& (e+p)V —pn

The usual nomenclature is being used here, such that p is the density,
u and v are cartesian velocity components, and e is the total energy per
unit of volume. Moreover, it is assumed in the above that a suitable
nondimensionalization of the governing equations was performed. For
instance, for the internal flow cases considered here, the density is
referred to the entrance stagnation density (p;), velocity components
are normalized by the entrance critical speed of sound (a.), and the
total energy per unit of volume is referred to pa2.

The pressure, p, is obtained from the equation of state for perfect
gases, which can be written for the present purposes as

1
p=(r=1) [ 2o +07)] (@
The contravariant velocity

U
14

The Jacobian of the transformation is given by

components can be written as

&+ Esu +§yv
Nt + Nzt + Nyv

(6)

(6)
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J = (zeyn — Tq¥g)
and the various metric terms can be expressed as

& = Jyr;
&y =—Jz,
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The subject of enforcing numerical boundary conditions has re-
ceived special attention in the present work. It can be shown, using
simple model equations, that improper “extrapolation rules” can even
lead to numerical instability of the overall scheme. Here, the imple-
mentation of numerical boundary conditions was based on the one-
dimensional characteristic relations of the inviscid gasdynamic equa-
tions. The basic concept is that the Euler equations can be diago-
nalized by a similarity transformationl¥]. With this diagonalization,
one-dimensional characteristic relations can be derived which repre-
sent the propagation of flow information along the characteristic lines
(see, for example, MacCormackl?! and Roe[w]). From the local slope
of the characteristics, it is possible to determine how many conditions
should be specified at a given boundary and how many should be
extrapolated from interior information. This is important to guar-
antee the well-posedness of the initial boundary value problem. For
those conditions that must be extrapolated, the suggestion[7] is to use
again the characteristic relations instead of some arbitrary extrapola-
tion rule. The former carries some physics of the phenomena into the
extrapolation process and, therefore, should provide for a more robust
way of enforcing the numerical boundary conditions. The particular
characteristic relation that should be used in each case is the one asso-
ciated with the characteristic speed that is carrying information from
the interior to the boundary.

The one-dimensional characteristic relations could be derived for
a general curvilinear coordinate system. However, they are usually
found in the literature for a Cartesian system. It must be empha-
sized that, at the boundaries where we might be interested in using
these relations, the curvilinear and Cartesian coordinates are essen-
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tially aligned. Moreover, the use of the relations in Cartesian coordi-
nates has the objective of simplifying their numerical implementation.
The formulation used here can be found in MacCormackm, and the
one-dimensional characteristic relations associated with “operation”
in the x-direction for a two-dimensional flow can be written as

9 _10p _u(@_ia_l’)
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ov v
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dp du dp du
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These are derived by assuming that flow changes in a specific “oper-
ating” direction are large when compared with changes in the other
direction, This will allow the elimination, in the above case, of the
y-derivatives in the Euler equations. Hence, we are still left with
4 conservation equations, but only spatial fluxes in the z-direction.
These equations can, then, be diagonalized by premultiplication by
the left eigenvector matrix of the corresponding inviscid flux Jacobian
matrix, as described by Warming et al ¥l In the above, a is the speed
of sound, and it is interesting to observe that u, u, u+a and u—a are
the eigenvalues of the inviscid flux Jacobian matrix associated with
the Cartesian flux vector E. Similar expressions could be derived for
“operation” in the y-direction, but those will not be necessary in our
case.

For all cases treated in the present work, subsonic nozzle entrance
conditions were considered. Hence, according to the characteristic re-
lation analysis previously described, three conditions must be specified
at the entrance and one must be obtained from extrapolation of in-
terior information. We consider that the stagnation pressure, stagna-
tion temperature and flow entrance angle are fixed at the entrancell1],
Since u — a is the characteristic speed bringing information from the
interior to the boundary, the fourth relation in the set of Eqgs. (8)
is used to obtain the remaining condition at the entrance boundary.
A similar reasoning should be made at an exit station, except that
one must consider both the possibilities of subsonic and supersonic
exit. Although the conditions intended here will always result in a
supersonic- exit after convergence, the solution process is started by
assuming stagnation conditions everywhere in the nozzle, except for
the pressure difference at the exit which will drive the solution to con-
vergence. For a subsonic exit, the exit static pressure is assumed fixed.
The other three conditions at the exit are obtained by extrapolation
of interior information using the first three relations of the set of Egs.
(8), which are the ones associated with the characteristic speeds that
carry information from the interior to the boundary. All four rela-
tions of Egs. (8) are used to obtain the properties at the exit in the
supersonic case.

The other boundary conditions used consider flow tangency at noz-
zle walls and symmetry conditions at the nozzle centerline. For sim-
plicity of implementation, we compute all conserved variables at a
wall boundary. It is clear that, for an Euler formulation, it would be
enough to compute the pressure at the wall and to impose that the
convective flux in the wall-normal direction is zero, This would be the
equivalent, in the present context, of Mavriplist4! weak boundary
condition implementation. However, we have adopted a strong form
of implementation[u] in which the properties themselves are defined
at the wall boundary. Velocity components at the wall are obtained
by extrapolating the U contravariant velocity component from the ad-
jacent point and by imposing the tangency condition, i.e., V = 0 at
the wall. The other properties at the wall were typically obtained by
imposing a zero normal pressure gradient and a zero normal tempera-
ture gradient at the wall. We have also examined here the possibility
of adding a centrifugal-type correction to the wall pressure bound-
ary condition. From an analysis of the inviscid momentum equation
in a direction normal to the wall (r), one finds that (8p/dn) = 0 is
the correct pressure boundary condition for flat walls. For a convex

wall, which typically is the case at a nozzle throat, some centrifugal

influence should be taken into account. This can be done by setting
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where R,
sidered.
In the 2-D case, the centerline boundary condition was imple-
mented by assuming that an extra line of points existed on the other
side of the centerline. Flow properties values at this extra line of
points were determined by a reflection-type boundary condition, i.e.,
by flow symmetry considerations. This type of boundary condition
enforcement is also equivalent to a strong boundary condition imple-
mentation in the sense discussed by Mavriplis[12]. Tests were also
performed by implementing the centerline boundary condition in a
weak fashion. In this case, the last line of mesh points is along the
centerline itself, and the symmetry condition is enforced by imposing
a zero convective flux across the centerline. The pressure at the cen-
terline is obtained by zero-th order extrapolation of the pressure at
the adjacent point. The final results are the same regardless of the
form in which the centerline boundary condition is implemented.

wall is the radius of curvature of the nozzle wall section con-

Axisymmetric Formulation

The axisymmetric formulation implemented is very similar to the
one presented by Nietubicz et al131 This is actually an azimuthal
invariant formulation, in which the Euler equations can be rewritten
still in strong conservation-law form as

9 0% oF
or = 8¢ " 8y

+H=0 (10)
The vector of conserved variables, @, is given by Eq. (2), and the
inviscid flux vectors, £ and F,, are given by Eq. (3). The source term,
H, which arises in the axisymmetric case, can be written asl14
- T
H=J'[0 0 —-p/R 0] (11)
where R = R(£,5,7) is the radial position in the natural inertial
cylindrical coordinate system. We further observe that the axisym-
metric equations given above are a simplification of the more general
azimuthal invariant equations[13] for the case with no body rotation.
The definition of the various terms that appear in the axisymmetric
equations is exactly equal to the one used in the 2-D equations, except
with regard to the Jacobian and the metric terms of the transforma-

tion. In the present case, the Jacobian of the transformation is given
by[15, 16)

T = [R(zeyn — zqye)] (12)
and the various metric terms can be written as
€o = JRyv] Ne = —JRyf
&y = —J Rz, ny = J R (13)
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Due to the term proportional to 1/R in the expression for the Ja-
cobian, the centerline is a singularity of the transformation in the
axisymmetric case.

Implementation of nozzle entrance and exit boundary conditions
in the axisymmetric case has also used the concept of one-dimensional
characteristic relations. Using assumptions similar to the ones adopted
in the 2-D case, we can obtain the one-dimensional characteristic re-
lations for “operation” in the z-direction for an axisymmetric flow

as
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‘We observe that the first two characteristic relations are not changed,
with respect to their 2-D form, but the ones associated with the (u+a)
and (u—a) eigenvalues do acquire a source term in the right-hand side.

At a subsonic entrance, we consider that the stagnation tempera-
ture, the stagnation pressure and the flow entrance angle are known.
The fourth property at the entrance is obtained using the last relation
of the set of Egs. (14), which is the one associated with the character-




istic speed which brings information from the interior to the boundary.
At a subsonic exit, the first three relations in the set of Egs. (14) are
used, together with a known value of exit static pressure, in order to
determine the flow properties at the exit station. For a supersonic
exit, all four characteristic relations are used in order to extrapolate
the interior information to obtain the properties at the exit.

Property values at the nozzle wall are obtained from the flow tan-
gency condition together with the assumption of zero normal pressure
and temperature gradients, precisely in the same fashion as in the two-
dimensional case. As previously discussed, this is the equivalent of a
strong wall boundary condition implementation. In order to avoid the
transformation singularity at the centerline, the boundary conditions
at the nozzle axis of symmetry are implemented in the weak sense by
simply imposing, in the residue computation, that the F flux vector at
the centerline is identically zero. We emphasize that this is somewhat
different from the condition used in the 2-D case, in which V =0
at the centerline and, hence, the convective portion of the F flux is
zero but the pressure term still survives. Here, in the axisymmetric
case, aside from having V = 0, we also have that J=! = 0. Therefore,
F =0 at the centerline.

Numerical Algorithm

The governing equations, both in the 2-D and in the axisymmetric
case, were discretized in a finite difference context using the Beam
and Warming[lv 23 algorithm. The time march is performed with
the implicit Euler method in the present case, which yields first or-
der accuracy in time. All spatial derivatives are discretized by three
point, second order, centered finite difference expressions. The result-
ing left-hand side operators, after local linearization by Taylor series
expansion, are approximately factored in the usual way with the Beam
and Warming scheme. The resulting finite difference equations can be

written, for the axisymmetric case, as
LeLyAG" = R + Ry — AH” (15)

The various operators are defined as

Le = I+At6A" — AterJ 'VeAgd

Ly = I+At6,B" —AterJ VA,

Ry = —Ot&E" +Dg (16)
R, -6, F" 4+ D,

In the above, 6 and §; are central difference operators; V¢ and V,, are
backward difference operators; and A; and A, are forward difference
operators in the - and 7-directions, respectively The At is a forward

difference operator in time defined as AtQ —‘nﬂ - Q The in-

viscid flux Jacobian matrices A" and B", whlch appear in the local.

linearization process through Taylor series expanslons are described
in detail by Pulliaml ] Pulliam and Steger! 5 and Zdravistchl 5] and
their expressions will not be repeated here. The interested reader
is referred to these references for the form of these matrices. More-
over, we observe that the source term was implemented explicitly in
the present work. This approach was employed because the Jacobian
matrix associated with the source term has only very few nonzero
elements, and because previous experience with the present axisym-
metric formulation!!4 15, 16} has shown that this approach does not
cause any numerical instability problems. Finally, the finite difference
equations which are obained in the'2-D case can be written in exactly
the same form as Eq. (15), except that they do not contain the source
term.

In the previous expressions, the artificial dissipation terms nec-
essary for numerical stability of the algorithm have already been in-
troduced. The Euler equations are a set of nondissipative hyperbolic
equations and, hence, they require some form of numerical dissipa-
tion in order to damp high frequency uncoupled error modes and to
prevent oscillations near shocks and other discontinuities17), Since
the spatial derivatives are being approximated by central difference
expressions, these artificial dissipation terms are not automatically
provided by the spatial discretization scheme and they must be ex-
plicitly added. Here, both a constant coefficient artificial dissipation
model®! and a nonlinear model® 9 6 have been implemented in the
right-hand side operators. For the constant coefficient model, the Dy
and D, operators in Egs. (16) are given by
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These are simply fourth difference terms, and the constant value of
eg should be provided by the user. It is typically recommended in
the literature that eg should be of order one. In this investigation,
several tests were conducted varying the value of £5 and these results
will be presented later.

For the nonlinear model, the right-hand side artificial dissipation
operators are given by[6]

DEi,j = D("I) VE (‘71+1.J Jz+1_7 + Jl J IR )
(62-)~A5Ji,jQu - Eei?jAeVeAeJi,iQs,j)
Dy; = D&Y = Y, (0ijadifs +oidliy (18)

(eg.’?jAﬂJiJ@?,j - Eg‘?jAn Valy Ji,ia?,j)

The 65:‘? and e,(;) terms are defined as
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The coefficients of the second difference dissipation terms, v;;, are
defined as

e = Pt =i +pio1l
i (Pis1j + 2pij +Pi-15)
Vs, D341 — 2pij + Pij—1l (20)

(pij+1 + 2pi; + pij-1)

Typical valuest® 61 for the K, and Ky constants are K = 1/4 and
K4 = 1/100. Tests were also performed by varying these constants
in some neighborhood of these suggested values, and the results will
be described shortly. The term oy ; is a spectral radius scaling, which
can be defined in two dimensions as

ois = (VI+afe+g+ i+ ot +m)

We observe that, with the above definition, oy ; is the sum of the
spectral radii of the inviscid flux Jacobian matrices A and B.

At points adjacent to the computational boundaries, the fourth
order artificial dissipation term used in the constant coefficient model
is reduced to a second order term similar to the terms used in the
left-hand side operators. Hence,

(21)

~ADtegJT VAT Q) (22)

(9

(Df )boundary
with a similar expression for the 7-direction. In the nonlinear artificial
dissipation case, the operator used at points adjacéent to the boundary
is obtained simply by settlng 6(‘? to.zero. As discussed by Pulharn[6]
ideally one would like to use in the left-hand side implicit operators the
same artificial dissipation operator used in the explicit side. However,
in the present context, in order to accomplish this in a computationally
efficient way, it would be necessary to implement the so-called diagonal
algorithm (see, for instance, Pulliam and Chausseeug], and Chaussee
and Pulliamug]). Since we did not implement the diagonal algorithm
in the present work, we are restricted in the left-hand side operators
to the use of second difference artificial dissipation terms in order to
avoid spoiling the tridiagonal characteristic of the LHS matrices. The
form of the implicit artificial dissipation terms is already shown in
Eq. (16). With the constant coefficient model, we used e7 = 3¢g, and

with the nonlinear model we used ¢ = 3 (5(2-) + 5(4)). ‘We further

observe that the values of 6(2) and of 6(4) are different for operation in
the ¢-direction and for operatxon in t.he n-direction, as shown in Eqgs.
(19).

Previous experience with a 2-D transonic nozzle flow pro'blem[81
has shown that the use of a constant time step throughout the flow-
field, with the present numerical scheme, yields a rather slow con-




vergence rate. Hence, a spatially variable time step option was imple-
mented in the present work. The idea in this case is to try to maintain
a constant CFL number throughout the field. There are several sug-
gestions in the literature on simplified ways of implementing a variable
time step option, and the interested reader is referred to the works of
Pulliam[4], Pulliam and Steger[5], and Ying[m] for examples of such
implementations. Here, however, we have decided to use a different
approach which starts directly with the definition of the CFL number

as
c At
As

where ¢ is some characteristic speed of propagation of information
in the flowfield, and As is some characteristic mesh spacing. In the
present implementation, we computed ¢; j as the maximum character-
istic speed associated with either the £- or n-directions. Hence,

ij = max (JU]+ay /2 4+, VI+ay/m+0f) - (20)

Since all of the present implementation is being performed in general
curvilinear coordinates, we take As = A¢ = An = 1. Therefore, the
local time step at a point (¢, §) is given by

CFL

Cij

CFL =

(23)

Aty = (25)
For the cases with variable time stepping, the CFL number must be
provided by the user and it is assumed constant throughout the flow-
field. The above variable time step convergence acceleration procedure
has yielded up to 30 times faster convergence rates than the constant
At option, in some cases.

The characteristic relations given by Egs. (8) and (14), which are
used for entrance and exit boundary condition implementation in the
2-D and axisymmetric cases, respectively, must also be discretized
in a finite difference format. In the present work, these equations
are time-marched using the implicit FEuler method, and the spatial
derivatives are discretized using one-sided, 1st order, finite difference
approximations. For instance, if we consider the exit station in the
axisymmetric case, the four relations given in Eq. (14) can be written

as
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where i = I represents the exit station, and §( )» = ( )"*'—()". The
A terms which appear in the above equations are defined as
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As previously discussed, at a subsonic exit p.gi: is fixed and, hence,
6p} ; = 0. Therefore, using the first three equations in the set of Egs.
(26), we can obtain

Ra

fup ;= —2 . (28)
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If the exit is supersonic, all four relations should be used, and this
yields
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From the foregoing expressions, one can determine the conserved vari-
ables at the exit boundary for an axisymmetric flow case. Similar
expressions could be written for the entrance station in the axisym-
metric case, and for both the entrance and exit boundaries in the 2-D
case. Finally, we should observe that all boundary conditions were
implemented explicitly in the present work, in the sense that no mod-
ification of the LHS matrices was performed in order to account for
the boundary conditions as previously described.

Grid Generation

All grids used in the present investigation were generated using
algebraic schemes. Grid point distribution in the wall-to-centerline
direction, 5-direction, is controlled using exponential stretching func-
tions. The logic in the grid generation code allows for grid point
clustering towards the nozzle wall, or both towards the wall and the
centerline. In either case, the grid stretching factor must be specified
by the user, and the grid n increments are computed for the throat
station. The grid 5 increments at any other station are computed
from the throat increments proportional to the ratio of the local noz-
zle radius, or nozzle height in the 2-D case, to the throat radius or
height. In the entrance-to-exit direction, ¢-direction, the grids also
have exponential stretching in order to cluster grid points primarily
in the throat region, where one can typically expect larger property
gradients. An option that would allow both clustering at the throat
and at the exit, for the nozzle divergent section, was also implemented
due to the appearance of shock waves in the divergent portion of the
nozzle.

With regard to the constant £ lines, two rather different forms
of grid topology were implemented in the present work. In the first
one, which we will refer to here as “straight” #-lines, the constant
£ lines are simply generated as vertical lines aligned with the y-axis
and spanning the nozzle semi-height, as indicated in Fig. 1. Grids
with this topology are easier to generate but they have the drawback
that nominally normal lines do not intercept the nozzle wall at 90°
angles for the convergent and divergent sections. At least in principle,
for realistic nozzles with steep convergent and divergent sections, the
error introduced by extrapolating pressure and temperature at the
wall with a nonorthogonal wall grid should be relevant. Hence, a
second grid topology, which we will refer here as having “curved” 7-
lines, was implemented. An example of such grid is shown in Fig.
2. In this case, the constant £ lines are generated using quadratic
polynomials, in which the point and slope at the wall, and the slope
at the centerline, are fixed. This will allow grids which are orthogonal
both at the nozzle wall and at the centerline.

For all cases treated in the present work, only the upper, or lower,
portion of the nozzle was considered, due to obvious symmetry consid-
erations. However, there are also differences in the meshes generated
for 2-D flow calculations and meshes generated for axisymmetric cases.

Figure 2: Example of computational mesh with curved 5-lines.




The former have an extra grid line “on the other side” of the centerline
in order to ease the enforcement of boundary conditions. In the latter
case, since axisymmetric centerline boundary conditions are enforced
by making the normal flux equal to zero, the centerline itself is the
boundary.

-Two—Dimensional Results

The first set of results that will be considered in the 2-D case
has the objective of validating the solution method and of investigat-
ing the solution behavior with grid refinement. The nozzle geometry
considered in this initial validation phase is the same one used by
MacCormack[H], and which has been experimentally investigated by
Mason et al.l21]. This is a 2-D transonic convergent-divergent nozzle
in which the throat is located half way between the entrance of the
convergent section and exit plane. The total length of the nozzle is
0.38 ft (0.116 m), and the throat half-height is 0.045 ft (0.014 m).
The wall dimensionless radius of curvature at the throat is 2, referred
to the throat half-height, the convergent angle is 22.33°, and the di-
vergent angle is 1.21°. A typical computational mesh used in these
numerical studies is shown in Fig. 3. The grid has 49 points in the
streamwise direction and 22 points in the wall normal direction. Grid
points are clustered towards the wall in the normal direction, and
towards the throat in the streamwise direction, through the use of ex-
ponential one-dimensional grid stretching functions. This mesh uses
the straight n-lines grid topology, previously discussed, and a section
with constant crossflow area was added upstream of the convergent
section,

The stagnation conditions at the entrance station considered in
this analysis are Ty = 531.2 °R (294.8 K) and P, = 2117.0 Ib/ft?
(1.0136 x 10° N/m?). We further set the flow entrance angle to zero.
The exit pressure, in the initial condition, is set to P, /3, which guaran-
tees that the flow becomes supersonic in the divergent section for this
case and, hence, the exit conditions are completely determined by the
flow itself after convergence. A summary of the results obtained in this
case is presented in Fig. 4 in terms of the wall pressure distribution,
made dimensionless by the entrance stagnation pressure, plotted ver-
sus the nozzle axial position nondimensionalized by the length of the
divergent section. In this figure, the present computational results are
compared to experimental results due to Mason et al.l21 and to com-
putational results due to MacCormack!! ! obtained on a comparable
mesh. The fine mesh indicated in Fig. 4 is precisely the computational
grid shown in Fig. 3. The coarse grid has half the number of grid points
in both directions along the convergent and divergent sections of the
nozzle. Moreover, it does not have the straight section upstream of
the convergent section. These results use a constant dimensionless
At = 0.01, and a constant coefficient artificial dissipation model with
eg = 1. It is clear from Fig. 4 that the present computational results
on the finer grid do reproduce well the experimental results of Mason
et al.[21], despite the fact that only the inviscid terms are included in
the present formulation. In the present investigation, at least 5 to 6
orders of magnitude drop in the maximum residue in the field were
required before convergence was accepted. Previous experieme[81 has
shown that typically a drop of about 3 orders of magnitude in the
residue is enough for plotting accuracy.

The wall pressure distribution results presented in Fig. 4 indicate
the formation of a shock wave just downstream of the nozzle throat.
The mechanism for the formation of this shock is also discussed by
Back and Cuffeld for an axisymmetric nozzle, and it can be de-
scribed in terms of an overturning of the flow through the curved
throat section. When the flow reaches the straight wall divergent sec-
tion, this causes a local recompression which can only be accomplished
through a shock wave, since the flow is already supersonic. According
to the results presented by Back and Cuffel[22], this oblique shock
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Figure 3: Nozzle geometry and fine mesh for initial 2-D code validation
runs,
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should extend all the way to the nozzle centerline. Despite the fact
that we have here a 2-D flow situation, there is no reason to believe
that this should not be the case here too. Fig. 5 presents the pres-
sure distributions along the nozzle centerline for three different grid
sizes. It is clear from this figure that the coarsest mesh result does
not present the evidence of any shocks. Moreover, a pressure rise just
downstream of the throat can be observed for the finer meshes, but this
is very much attenuated in comparison with the corresponding pres-
sure rise at the wall. This has prompted the question of whether the
amount of artificial dissipation being used was excessive and, hence,
it was damping truly physical property gradients in the field.

In order to investigate this possibility, the problem was solved us-
ing the fine mesh shown in Fig. 3 and various values of the artificial
dissipation coefficient eg. The linear constant coefficient artificial dis-
sipation model was employed for this investigation. Dimensionless
pressure distribution along the nozzle wall and along the nozzle cen-
terline are shown in Figs. 6 and 7, respectively. It is clear from these
figures that at least the first shock-shock reflection at the centerline
is captured by the solution with small values of ¢g. For the higher
values of e g, even the original wall shock is smoothed by the excessive
artificial dissipation. For the value of e typically recommended in the
literature, i.e., eg = 1, Fig. 5 indicates that there is already too much
artificial dissipation in the solution, since the centerline shock is being
smoothed out. Tt is evidenced by Figs. 6 and 7 that the first centerline
shock reflection is much better captured by the scheme with eg = 0.5.
Moreover, even the first shock reflection at the wall is captured by
the solution with eg = 0.5, whereas this feature is not present in the
other results. For eg = 2.0, we notice an appreciable attenuation of
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Figure 4: Summary of initial 2-D validation results and grid refine-
ment study.
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the wall shock, and the centerline shock has almost completely disap-
peared. For values of e smaller than 0.5, i.e., of the order 0.1 to 0.2,
the code diverges in this case.

The effect of mesh topology in the results, i.e., whether nominally
normal lines are truly orthogonal to the wall, or not, was investigated.
The meshes used in this study are precisely the ones shown in Figs. 1
and 2. The solutions are compared in terms of wall pressure distribu-
tions in Fig. 8. In this case, a constant coefficient artificial dissipation
model was used with eg = 1.0. Fig. 8 shows that there is not much
difference between the two results. It is clear that both grids have a
rather good clustering of grid points towards the wall, at least for an
inviscid computation, which justifies the good agreement between the
results despite the locally large differences in the grid near the wall.
Moreover, for nozzles with much steeper convergent and/or divergent
sections, it is not very realistic to try to use the straight -lines grid
topology and these cases were not run. Nevertheless, the above re-
sults show that, even for a 22.33° convergent section, the effect of
grid non-orthogonality at the wall can hardly be noticed to plotting
accuracy.

In an attempt to establish the robustness of the present method to
more demanding 2-D nozzle geometries, the flow through a convergent-
divergent nozzle with steeper convergent and divergent sections was
investigated, The particular geometry investigated has a 45° conver-
gent section and a 15° divergent section, and various values of dimen-
sionless wall radius of curvature at the throat (R,,,))) were considered.
A typical computational mesh for this investigation is shown in Fig. 9,
in which the case of a nozzle with Ryaq1 = 0.625, nondimensionalized
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Figure 6: Effect of artificial dissipation coefficient on the 2-D nozzle
wall pressure distribution.
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by the throat semi-height, is considered. The meshes used in this case
have the curved 7-lines grid topology. The grid shown in Fig. 9 has
41 x 22 points in the streamwise and normal directions, respectively.
The nozzle exit pressure was set low enough such that the flow would
be supersonic at the exit after convergence. The values of dimension-
less wall radius of curvature at the throat considered were 2, 1.5, 1
and 0.625. It is clear that a smaller R,y poses a more stringent test
to the formulation. This has manifested itself in the present simula-
tions by requiring larger values of artificial dissipation coefficients to
maintain numerical stability for the smaller values of throat radii. A
constant coefficient artificial dissipation model was again employed in
this investigation. Wall and centerline pressure distributions for the
cases of Ryoy = 2 and Ry, = 0.625 are shown in Fig. 10. Fig. 11
presents contours of constant dimensionless pressure for the case of
Ryan = 0.625. Despite the fact that larger values of artificial dis-
sipation coefficients are used for the cases with tighter throat radii,
it is clear from Fig. 10 that a stronger shock is formed in the case
of smaller radius, and that the expansion through the throat is also
faster in this case. Moreover, the observation that nozzles with tighter
wall radius of curvature at the throat do require larger amounts of ar-
tificial dissipation had been previously reported by Sitval23], In that
case, it was found that an explicit, upwind, MacCormack-type scheme
needed some explicitly added artificial dissipation in order to maintain
stability for the solution of the flow through an axisymmetric nozzle
with longitudinal cross-section much similar to the one shown in Fig.
9. Here, the same sort of behavior is being observed for a centered
Beam and Warming-type scheme.

Another important point to be considered is the effect of the nu-
merical boundary condition schemes used in the present implementa-
tion. The first aspect studied deals with the pressure boundary con-
dition at a wall. As discussed by MacCormack[7], in the inviscid flow
case, the zero normal pressure gradient boundary condition is only
strictly correct if the wall is flat. For curved walls, a centrifugal-type
acceleration term must be taken into account in order to determine the
pressure at the wall. In order to make sure that no other effect would
be influencing the results of this study, the computational meshes
used in the present investigation have the curved 7-lines grid topol-
ogy, which guarantees grid orthogonality at the wall. The same nozzle
geometries discussed in the previous paragraph were used in this study.
It is clear that, the tighter the wall radius of curvature, the more pro-
nounced the centrifugal acceleration effect should be (see, for instance,
Eq. (9)). The present computational results have indeed shown this
feature and, for the cases with R, jj = 2 and Ryanl = 1.5, the ef-

fect of the centrifugal acceleration term is completely negligible[24].
For the cases with Ry, = 1 and Ryaql = 0.625, the effect is still
small but one can see some differences in the wall pressure distribu-
tion, especially for the case with the smallest radius. The comparison
of the results, in terms of pressure distribution at the wall, with and
without centrifugal term correction for the case with Ry, = 0.625,
is shown in Fig. 12. A comparison of the same results in terms of wall
Mach number is shown in Fig. 13. It is clear that, even for this case
with the smallest throat radius, the effect of the correction is indeed
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Figure 8: Effect of the wall grid orthogonality in the 2-D transonic
nozzle results.




very small. Moreover, the major significance of the possible effect of
the present difference in boundary condition implementation would
be in the position of the transonic nozzle sonic line. However, Fig. 13
makes it evident that the position of the sonic line is not affected at all
by the difference in the wall pressure boundary condition implemen-
tation, not even in the worst case. Therefore, although it would be
worth implementing the curved wall-type boundary condition because
it is more correct and it does not cause any increase in computational
time, at least for the cases analyzed here it would not significantly
increase the accuracy of the results.

The effect of “weak” versus “strong” boundary condition enforce-
ment at the nozzle centerline was also subject of investigation in the
2-D case. The major purpose of this study was a preparation for
the analysis of axisymmetric cases. In 2-D, both forms of centerline
boundary condition enforcement can be conveniently, and accurately,
implemented. This is not so in the axisymmetric case due to the
transformation singularity that exists at the centerline. Hence, it is
most desirable to use a weak boundary condition enforcement in the
axisymmetric case. Therefore, the objective here was to evaluate the
effect of using the centerline boundary condition implemented in a
weak fashion for the 2-D case, in comparison with all the previous re-
sults already available. The nozzle geometry and grid shown in Fig. 3
were used for this investigation, It was observed that the difference in
the form of boundary condition implementation did not change either
the converged results or the convergence rate. Convergence history

Figure 9: Typical computational mesh for study of the wall radius of
curvature at the throat effect (in this case, Ry, = 0.625).
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Figure 10: Effect of wall radius of curvature at the throat on nozzle
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Figure 11: Pressure contours for nozzle with dimensionless wall radius
of curvature at the throat equal to 0.625.

plots for the two cases are shown in Fig. 14. The highly oscillatory
residue plot for the strong boundary condition case, for very low values
of maximum residue, are believed to be related to the low accuracy of
the equipment in which this simulation was run and are not related to
the form of boundary condition implementation itself. These results
provided confidence that implementing the centerline boundary con-
dition in a weak fashion for the axisymmetric case would not cause
any problems.

Axisymmetric Results

Initially, the solution of an axisymmetric nozzle flow was attempted
using the same constant coefficient artificial dissipation model which
was used in the 2-D computations. However, it was found that the
axisymmetric solutions behave in quite a different way with regard to
the values of the constant artificial dissipation coefficient ¢g. Whereas
an increase in ¢ would always increase the stability of the scheme in
2-D, obviously at the expense of spatial resolution, the same was not
true for the axisymmetric case. It was observed, in the axisymmetric
case, that there existed an optimum value of ¢ for which the solution
is stable and the spatial resolution is good. If we decrease eg from
this value, initially a degradation of the spatial resolution occurs, and
eventually the solution becomes unstable as ¢ tends to zero. Increas-
ing g from its optimum value, we notice that the numerical solution
tends to become more oscillatory. Initially, these oscillatory solutions
are stable, fully converged solutions. As we keep increasing eg, how-
ever, the numerical solutions again become unstable. Moreover, it was
observed that this optimum value of €y is almost one order of magni-
tude smaller than the corresponding best value of this coefficient that
should be used in a 2-D nozzle problem with the same convergent and
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Figure 12: Effect of centrifugal term correction on wall pressure
boundary condition for nozzle with R,y = 0.625. Wall pressure
distribution.
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divergent angles, and the same R,y at the throat.

Some of the results obtained in this investigation are shown in
Figs. 15 and 16.  Fig. 15 presents the wall pressure distributions
whereas Fig. 16 has the centerline pressure distributions. The nozzle
geometry and computational grid used in this investigation are the
axisymmetric counterpart of what is shown in Fig. 3. The behavior
previously described can be clearly seen in the various curves shown
in Figs. 15 and 16. It was found that, in this case, the best value of
the constant artificial dissipation coefficient was around eg = 0.075.
The corresponding convergence histories for some of these solutions
are shown in Fig. 17. We observe that the case with eg = 0.050 seems
to be close to a lower bound in the value of the artificial dissipation
coefficient for stability. From Fig. 17, we can see that the solution is
apparently converging until about 11000 iterations, when it starts to
slowly diverge. It is interesting, however, that the pressure distribu-
tions at the wall and centerline for this case, after the 16000 iterations
for which this simulation was run, seem to be quite reasonable, as
one can see from Figs. 15 and 16. On the other hand, the pressure
distributions for the case with g = 0.750 are highly oscillatory and
unrealistic, but the convergence process is stable. Simulations with
eg = 1 were also performed for this configuration and the numeri-
cal solution process is stable, but the pressure distributions look even
worse than those for the case g = 0.750. Further increase in ez, how-
ever, makes the solution unstable. Nevertheless, a situation, as here
described, in which an increase in the amount of artificial dissipation
in the solution produces the opposite effect of what was intended, is
not acceptable.

It seems to us that the oscillations that appear in the solutions with
larger values of € are due to the natural tendency of the fourth differ-
ence dissipation terms of producing oscillations every time the scheme
sees steep property gradients (see, for instance, Pulliam!®! for a discus-
sion of this point). Somehow, this tendency seems to be exaggerated
in the axisymmetric case, and it is destroying the corresponding nu-
merical solutions. The remedy employed here was to implement the
nonlinear artificial dissipation modellﬁ], which uses a blend of second
and fourth difference terms, and in which the fourth difference terms
are automatically turned off, as previously described, everywhere there
are strong pressure gradients. A comparison of the solution obtained
with the nonlinear artificial dissipation model for the same geometry
is presented in Fig. 18, in which the best result with a constant €g, i.e.,
eg = 0.075, is also shown. Both wall and centerline pressure distribu-
tions are shown in this figure. For the nonlinear artificial dissipation
model, the parameters K3 and K4 were set to the values 0.125 and
0.01, respectively, in this simulation. We observe that this value of Ky
is about half of what is typically recommended in the literaturel® 61,
As a general rule, we also noticed that smaller values of these parame-
ters, as compared to what is typically recommended, tend to produce
better results. However, for the nonlinear artificial dissipation model,
the behavior of the solution process seems to be less sensitive to the
values of these constants than the situation previously described for
the linear constant coefficient model.

A feature which was extensively tested with the present axisym-
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Figure 14: Comparison of centerline boundary condition effect on so-

lution convergence rate.

metric version of the code refers to convergence acceleration through,
the use of spatially varying time steps. As previously described, the
implementation adopted here tries to guarantee a constant CFL num-
ber throughout the field. The convergence history results shown in
Fig. 19 are indicative of the increase in convergence rate which is
achieved through the use of variable time stepping. In this case, the
variable At solution used a CFL number of 10. The nozzle geometry
used for these tests is the axisymmetric version of the one shown in
Fig. 3. As in all previous tests, the exit pressure was set low enough
in order to provide supersonic flow throughout the nozzle divergent
section. It is interesting to observe that, after a few iterations, the

1.2

1.0

OQB Ee
D
= e+ses 0.050
P, 08 —— 0.075
ecEaa 0_1 25
0.4 --== 0.250
0.2
0.0

Figure 15: Effect of the constant artificial dissipation coefficient in the
wall pressure distribution for an axisymmetric nozzle.
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maximum residue drop is essentially monotonic for the case with con-
stant CFL (variable At). On the other hand, all cases run with the
constant At option exhibit some sort of oscillation in the maximum
residue as iterations progress. This observation is also corroborated
by previous 2-D nozzle flow simulations®.

Despite the fact that a linear stability analysis would indicate that
the 2-D, or axisymmetric, Beam and Warming algorithm is uncondi-
tionally stable, it is well known that this is not the case in practice.
In other words, attempts to run the algorithm at extremely large CFL
numbers will lead to numerical instability or, at the best, very slow
convergence. Using again the axisymmetric counterpart of the noz-
zle geometry shown in Fig. 3, we performed a study of the value of
CFL which would yield the fastest convergence rate. A summary of
the convergence rate results obtained in this case is presented in Fig.
20. 1t can be seen from the figure that the fastest convergence rate
is obtained for CFL = 5 in this case. A CFL =1 yields essentially
the same convergence rate as a CFL = 10. Moreover, for the cases
with a CFL number larger than 10, a “soft start” procedure had to
be implemented because the code would diverge if, for instance, we
would attempt to run it from the stagnation condition already with
CFL = 50. For this CFL = 50 case, for example, this soft start was
implemented by running 10 iterations with CFL = 10, then another
10 iterations with CFL = 20, and finally letting the code converge
with CFL = 50. Nevertheless, the asymptotic convergence rate, i.e.,
after these few initial iterations, is well defined for all cases, and the
fastest convergence is obtained with CFL = 5, as previously dis-
cussed. For all of these cases, the spatially variable At was computed
according to Eq. (25), and the nonlinear artificial dissipation model
was used with K, = 0.125 and K4 = 0.01.

Studies of the effect of grid orthogonality at the wall, of the cen-
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trifugal acceleration correction on the wall pressure boundary con-
dition, and of the wall radius of curvature at the throat were also
performed for the axisymmetric case. However, the conclusions which
can be drawn from this investigation are essentially similar to the
ones obtained in the corresponding 2-D studies. Therefore, we will
not present these results here in the interest of brevity. The studies
of convergence rate, whose results are summarized in Fig. 20, have
also pointed out that the slowest computational points to converge
are typically at the nozzle exit boundary, regardless of the CFL num-
ber used. Therefore, an investigation of the influence of the present
form of boundary condition implementation was performed. The com-
parison was made between solutions using zero-th order extrapolation
at entrance and exit boundaries and solutions using the characteris-
tic relations to determine the boundary properties which depend on
interior information. The axisymmetric nozzle configuration corre-
sponding to the one shown in Fig. 3 was again used for this study. It
was observed that the converged solutions essentially did not change,
regardless of the form of boundary condition implementation. The
use of zero-th order extrapolation at entrance and exit boundaries,
however, has made the convergence rate slightly slower. For example,
Fig. 21 compares the convergence histories for the case with a con-
stant CFL = 10, and the nonlinear artificial dissipation model with
Ky =0.125 and K4 = 0.01.

The consideration of realistic axisymmetric nozzle geometries was
performed by computationally reproducing the experimental results
of Back and Cuffell22]. More information on this experimental effort
of measuring pressure distributions on axisymmetric nozzles can be
found in Back et al125] and Cuffel et al.[26], The particular configu-
ration considered has a 45° convergent section, a 15° divergent section
and a circular-arc throat with dimensionless wall radius of curvature
Ryant = 0.625. Ry, is nondimensionalized by the nozzle throat
radius. More details of the geometric definitions of this nozzle can
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be found in Back and Cuffell?l. A typical computational grid used
in this investigation is shown in Fig. 22. This particular grid has
80 points in the longitudinal direction and 29 points in the crossflow
direction. The ratio of specific heats, v, was taken as 1.35 for this
particular studyf22], instead of the usual value of 1.4 typically used
for air. The nozzle exit pressure was set low enough in order to have
fully supersonic flow in the divergent section. A comparison of the
present results with those of Back and Cuffell??] js presented in Fig.
23. Computational results for a 50 x 25 mesh and for a 80 x 29 mesh
are presented. These simulations were run with a CFL number of 2,
and using Ky = 0.1 and K4 = 0.005 for the nonlinear artificial dis-
sipation model. For the coarse grid, 5 orders of magnitude drop in
the residue were achieved in approximately 600 iterations. About 9
orders of magnitude reduction in the residue were obtained for the
fine grid in 2000 iterations. The agreement between the present com-
putational results, for both coarse and fine grids, and the experiment
- Is quite good. Moreover, except for the region immediately upstream
of the throat, the two computational results are essentially identical.
We observe that the computations do capture the wall shock right

downstream of the throat correctly. The shock-shock reflection at the

centerline, which is much further downstream in this case, is some-
what smeared in the present computations. This can be attributed to
the rather coarse grid in the region where the oblique divergent shock
reaches the nozzle centerline. The authors have attempted a local grid
refinement, on both the streamwise and crossflow directions, towards
the nozzle exit and towards the centerline. However, at least with the
structured grids being used here, this invariably causes further grid
refinement at the wall near the nozzle exit, and we were unable to
obtain a numerically stable solution for this new grid. Back et al.[25],
and Back and Cuffel(22] report that flow separation was observed at
the wall near the exit station for this nozzle. Therefore, although the
subject is still being investigated, at present we believe that there is
more physics going on in this region than we can simulate with the
present inviscid formulation. Hence, as we refine the mesh towards
the exit, and near the wall, numerical instability results.

Finally, the present computational results for the coarse mesh are
compared to the computational results of Marchi et al.l27], for the
same nozzle, in Fig. 24, The calculations of Marchi et al 27 uge a
segregated finite volume formulation, and the results shown in Fig, 24
use a mesh with 1440 X 20 volumes in the streamwise and crossflow
directions, respectively. In general terms, we can observe from this
figure that a comparable resolution of spatial gradients is achieved
with the present method with much fewer grid points. In particular,
with regard to the resolution of the wall shock just downstream of the
throat, we can see from Fig. 24 that the present algorithm is doing a
better job.

Concluding Remarks

Two-dimensional and axisymmetric inviscid, transonic convergent-
divergent nozzle flowfields were simulated using a central difference,
implicit, approximate factorization algorithm. Nonlinear artificial dis-
sipation terms which employ a blend of second and fourth difference
operators were added to the right-hand side Euler terms. Convergence
acceleration to steady state was achieved through the use of spatially
variable time stepping which attempts to maintain a constant CFL
number throughout the flowfield. The algorithm proved to be very
robust, and the solution on rather realistic nozzle configurations was
obtained. The algorithm, with the variable time stepping option, also
proved to be very computationally efficient.

The effects of several parameters were investigated. Among these,
the influence of the wall longitudinal curvature for the axisymmetric

Figure 22: Computational mesh and nozzle geometry for realistic ax-
isymmetric nozzle computations.

106

case was shown to be less significant than previously anticipated[2.4].
A procedure for the implementation of entrance and exit boundary
conditions, for the axisymmetric case, based on one-dimensional char-
acteristic relations was developed. Although the concept of charac-
teristics is of fundamental importance in order to determine which
conditions should be fixed at a boundary and which conditions should
be extrapolated from interior information, it seems that the use of the
characteristic relations themselves for this extrapolation process does
not yield much more accuracy than simple zero-th order extrapolation
in the present case. It was further determined that there exists a range
of CFL numbers for which the convergence is faster. Increase of the
CFL number above this range will actually slow down convergence,
instead of speeding it up.
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Numerical stability problems were observed with very fine grids
near the exit station for nozzles with a very long divergent section. At
present, these problems are being attributed to the fact that the flow
could be separated in this region for the actual nozzle, which is cor-
roborated by experimental evidencel22, 251, The present formulation
does not include this type of phenomenon. Aside from these problems,
however, the present simulations have shown very good agreement
with the available data. The authors believe that the next logical step
as a continuation of the present effort should be directed towards the
implementation of viscous terms.
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