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Abstract

This paper discusses NASA’s Computational
Aerosciences (CAS) Project of the High Performance
Computing and Communications Program (HPCCP).
The project is aimed at developing advanced, multi-
disciplinary simulation capabilities for aerospace vehicle
and propulsion system design. It is also aimed at
overcoming computational performance barriers by
accelerating the development of parallel computer
technology. The goals and approach of the CAS Project
are described and the challenges to its implementation
are addressed. Specific vehicle class simulations {o be
demonstrated and the principal multidisciplinary
modeling approaches to be emphasized are described.
The computational speed and memory requirements for
representative multidisciplinary applications are
estimated. Finally, the state of parallel computer
technology including programing issues and the results
of performance measurements are explored.

L_Introduction

The influence of computational analyses and design on
the aerospace field has grown steadily and at a very
rapid pace for the past 30 years. In fact, the aerospace
industry has been a leader in the use of numerical
simulation because it has contributed significantly to
improved vehicle efficiency and performance and has
aided in reducing design cost. Most simulations to date
have been single discipline in nature, i.e., aero-
dynamics, structures, and controls have been treated
individually rather than in combination. However, in
reality, the various disciplines are always present
together and interact with each other, often in
complicated nonlinear ways. For example, the modeling
of aeroelastic behavior requires accounting for
interactions between disciplines, e.g., aerodynamics
and structures. A numerical simulation thus requires
coupling between computationa!l fluid dynamics (CFD)
and computational structural mechanics (CSM). Many
other couplings are possible when one considers the
wide variety of vehicles and flight regimes encountered
in modern aviation. Their numerical simulation has
given rise to a new activity called “computational
aeroscience” (CAS), the computational modeling of the
interaction among disciplines and subsystems. Such
interactions are becoming more important because of
the high degree of system integration in modern
aerospace vehicles and subsystems.

The rapid growth in CFD and CSM capabilities has
been largely paced by two factors: (1) improvements in
computational methods (principally numerical
algorithms and physics models); and (2) increases in
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computer performance (principally computing rate and
memory capacity).. Figure 1 from Reference 1 shows
that dramatic improvements in solution-time have
resulted nearly equally from advances in computational
methods and from improved computer technology. Note
that in this example, computer technology improvemenis
have increased by a factor of 1000 over 20 years, while
computational methods have increased by a factor' of
3000 over the same period, for an aggregate speed-up
of more than one million. During the past iwo decades,
the high computational demands of aerospace
applications have been among the driving forces
leading to evermore powerful supercomputers. Now, in
the 1990s, it is apparent that conventional supet-
computers cannot sustain this high rate of advancement
and it is becoming more and more apparent that future
growth in computational speed will increasingly derive
from parallel processing technology.

105 Derived from computational methods
41
10 g Multi-grid
108 |- Conjugate gradient
102 — Successwe over-relaxation
= foi - g~ Gauss-Seidel
§ 100&2 Gaussian elimination i
0.
3 5
g 10° = perived from supercomputer hardware
t% 104
103 Vector supercomputer
102
101
100 &= - | -
1970 1980 1990 2000
Year
Figure 1. Performance improvement for scientific

problems (Reference 1).

in the last several years a wide variety of parallel
computers have become available for exploring the
issues of using parallelism in scientific computing in
general and CFD in particular. Most of the early
computers that appeared between 1983 and 1987 were
rather experimental in nature and served mainly for
research investigations in areas such as algorithms,
languages, and operating systems for parallel
computing. In 1988 and 1989 several members of a first
generation of parallel supercomputers became
available. The term “supercomputer” is used here




because the Thinking Machines CM-2, the Intel
iPSC/860, the NCUBE2, and other parallel computers
are comparable (in their larger configurations) both in
memory and peak computational speed to the
performance of the most powerful conventional super-
computers, e.g., the Cray Y-MP. However, it is well
known that these computers are still very deficient in
their systems aspects, i.e., in their ability to handle a
large number of users. Now, in 1992, we are at the
threshold of a new generation of parallel super-
computers which offers considerable improvements in
computational power over the previous generation as
well as an improved software and user environment.

Recognition of the imponrtance of parallel computing
technology and computational methods to the
advancement of science and engineering has fostered
the United States government’'s creation of the High
Performance Computing and Communications Program
(HPCCP)1-3, HPCCP is a multi-agency effort with major
participation by DARPA, NSF, DoE, and-NASA and is
aimed at accelerating the availability and utilization of
the next generation of high performance computers and
networks. An important goal of the program is to
achieve a thousand-fold improvement in useful
computing capability by 1996 and to enhance the range
of scientific and engineering disciplines that can
effectively exploit this computational capability. These
goals will be realized by achieving a computational
performance of 1 trillion floating-point operations per
second (1 TFLOPS) on a wide range of important
applications and with the development of associated
system software, programming tools, and improved

algorithms for a wide range of problems. The principal
mechanism for accomplishing this increase will be
based on improvements in hardware, systems software,
and applications software utilizing massively parallel
computing concepts.

HPCCP is driven by the recognition that
unprecedented computational power and its creative
use are needed to investigate and understand a range
of scientific and engineering Grand Challenge
problems. NASA has selected two Grand Challenge
areas. The first area concerns the modeling and data
analysis of earth and space physics phenomena. The
second, which is our focus, is computational aero-
science (CAS), specifically defined as the integrated,
multidisciplinary numerical simulation and design
optimization of aerospace vehicle and propulsion
systems throughout the flight envelope. NASA initiated
the CAS Project within Ames, Langley and Lewis
Research Centers to carry out the development of
computational methods and computer technology
necessary to advance CAS maturation. This paper
briefly describes the goal, objectives, and approach of
the project, then discusses the challenges confronting
multidisciplinary modeling and the exploitation of
parallel computers. (For a more in-depth treatment, see

Holst et al. 4

Il. Computational Aeroscience Projec

The overall goal of the CAS Project is to develop the
necessary computational technology for the numerical
simulation of complete aerospace vehicles for both
design optimization and analysis throughout the flight
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envelope. It is recognized that accomplishing this goal
requires advancing technology in numerical algorithms
and computer programming, as well as computer
hardware and software. Therefore, the goal is
supported by four specific objectives that encompass the
previously mentioned technologies:

(1) Develop advanced multidisciplinary computational
models and methods that can effectively utilize
massively parallel computers.

(2) Accelerate the development of advanced computing
system hardware and software technologies capable of
sustaining a TFLOPS performance level on multi-
disciplinary applications.

(3) Demonstrate and evaluate computational methods
and computer system technologies for selected
aerospace vehicle and propulsion systems models on
scalable, parallel computing systems.

(4) Transfer the results of computational methods and
computer system research to the aerospace and
computer industries.

The CAS Project strategy for meeting these
objectives consists of a coordinated research effort in
algorithms and application codes, systems software and
parallel testbed systems. Research in algorithms and
application codes will focus on a selected number of
problem areas, referred io as Grand Challenge
applications. Code research will start on both
conventional and existing massively parallel computers
and will migrate to more advanced parallel computers
as early in their development cycle as is practical. The.
advanced systems will serve as platforms for
applications code research and for demonstration of
well-defined pilot codes. Testbed system software from
the manufacturer as well as that developed within the
CAS Project and by HPCCP patrticipants will be carefully
evaluated to ensure an adequate software environment
for efficient code execution. Efforts will focus on critical
issues of the programming environment, compilers, and
resource management. Testbed system hardware will
also be evaluated by benchmark programs and the
results evaluated. Results of evaluations will feed into
improved and more advanced testbeds.

|. Grand Challenge Application

Four Grand Challenge computational problem areas
have been chosen for the CAS Project. These include
two primary and two secondary Grand Challenges. The
primary Grand Challenges are the High Speed Civil
Transport (HSCT) effort and the High Performance
Aircraft (HPA) effort. The two secondary Grand
Challenges are the NASP-Derived Vehicle (NDV) effort
and the Aerobraking effort. The four are associated with
NASA efforts with supersonic transportation, high
performance aircraft, air-breathing hypersonic flight, and
atmospheric re-entry. They represent the entire speed
regime from incompressible to hypersonic and extend
into the high-altitude noncontinuum regime. In addition,
they offer a broad range of important muiltidiscipline
couplings.  Finally, exploratory work has been
performed with parallel computational methods in these
problem areas to demonstrate feasibility of efficient
parallel implementation.




The HSCT effort involves integrating the disciplines
of aerodynamics, structural dynamics, combustion
chemistry, and controls into a series of computational
simulations of civilian supersonic cruise aircraft and its
propuision system. Emphasis within the airframe portion
of this program will generally be placed in landing
simulation; transonic to supersonic cruise simulation;
efficient coupling of the aerodynamic, propulsion,
structures, and control disciplines; and efficient
implementation of multidisciplinary design and
optimization. The propulsion portion of the effort will
focus on enabling propulsion technologies for an
environmentally sound HSCT vehicle: low NOx
_combustors, low noise nozzles, and efficient inlets.
Multidisciplinary calculations (including complex control
systems), very high temperature structural liners, and
_complex kinetic-aerodynamic flow strategies will be
used to study ways to minimize NOx emissions and
thereby minimize atmospheric ozone depletion.
Additional calculations will treat complex, multi-
disciplinary physics associated with source noise
reduction through use of mixing nozzles.

The HPA effort will integrate the disciplines of
aerodynamics, thermal ground-plane effects, engine
stability, and controls into a series of computational
simulations about a powered lift aircraft undergoing a
transition maneuver, i. e., the transition from hover to
forward flight and a fighter aircraft undergoing a low-
speed, high-g turn. (Additional secondary computations
associated with hover in ground effect and transonic
cruise will also be performed.) This area will focus on
the efficient coupling of the agrodynamic, propulsion,
and control disciplines for simulation of these unsteady
maneuvers. The control system for the powered-lift
transition maneuver will consist of coupled aerodynamic
and jet-implemented reaction systems. The control
system for the high-g turn will consist of conventional
aerodynamic controls, advanced forebody devices and
a thrust vectoring control system. The main purpose of
the propulsion effort is to develop compression system
stability models that can be used in a near real-time
simulation of the entire propulsion system. The focus
will be on simulating engine behavior operating with
highly distorted in-flow, since the selected maneuvers
distort the flow into the engine and may substantially
reduce engine thrust or lead to compressor system
surge or stall. Coupled to the internal aerodynamic
simulation, the transient behavior of a complete high
performance aircraft can be studied.

The NDV effort involves efficient coupling of the
disciplines of aerothermodynamics; structures; finite-rate
air and combustion chemistry; and controls to simulate
an air-breathing hypersonic vehicle. A finite-rate air
chemistry model will be required for the highest speed
portions of the simulation. In addition, the propulsion
module requires the use of a hydrogen-air combustion
model. Structural loads and thermal analysis will play
an important part of this overall simulation effort,

The Aerobrake effort involves the efficient coupling of
aerothermodynamics and finite-rate chemistry (including
radiation and structures) to simulate an aerobraking
vehicle during atmospheric entry. In this effort, the
disciplines of aerothermodynamics and structures will
play important roles. A complex chemistry model
including multiple temperature scales and radiation will
be required. In addition, some of the simulations will be
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performed at very high altitudes such that a continuum
flow assumption is not valid. Under this condition, a
particle simulation technique with vastly different
algorithm characteristics will be used. This will provide
an extreme test for the versatility of the various parallel-
computers to be used in the CAS Project.

V. Multidisciplinary Modeli

The analysis of aerospace vehicles and propulsion
systems is determined by complex interactions of many
disciplines. These interactions can be treated in various
ways depending on several factors, e.g., the
characteristics of the disciplines involved, the complexity
of the interaction, the accuracy desired, and the
computer resources required. The CAS Project will
investigate several techniques for coupling discipline
variables. This section describes three principal
approaches to be studied: direct coupling, matrix

sensitivity, and hierarchical modeling with zooming.
Di Coupl

Direct coupling treats the action of one discipline on
another by directly coupling either at boundary
conditions or at the fundamental equation level. The
approach is relatively straightfarward in implementation
and is used for both analysis and design optimization.
The simulation of wing flutter is an example of the direct
coupling approach. Flutter occurs when the dynamics of
the wing structure and the air stream interact to create a
violent and potentially destructive oscillation of thé wing.
Flutter simulation involves the following computational
steps:

(1) Using an initial condition or undeflected geometry
and a suitable time-accurate CFD model, compute the
aerodynamic loads on the wing at time level t.

(2) Using these aerodynamic loads and a suitable CSM
model, compute the structural deflections of the wing at
time level t.

(3) Using the wing deflections and aerodynamic solution
at time level t and the CFD model, compute the
aerodynamic loads at time level f+df.

(4) Using the wing deflections at time level ¢, the
aerodynamic loads at time level t+dt and the CSM
model, compute new wing deflections at t+dt.

(5) Repeat steps (3) and (4) until convergence to a
steady state or a periodic oscillation (flutter) is obtained.

In each of these individual disciplines (i.e.,
aerodynamics or structural dynamics), only the surface
conditions (i.e., the boundary conditions) from the other
discipline are used. For the aerodynamic loads
computation, only the shape of the wing surface is
required. For the structural deflection computation, only
the surface pressures are required. Controls could be
added to this computation by simply adding a control
surface coupled with.an active control law integration
scheme.

An example of simulation of wing flutter control is
presented in Figure 2. In this work5, the results were
obtained by solving the modal structural equations of




motion, a simple control law equation, and the full
potential form of fluid dynamics equations, all in a fully
coupled manner. Wing flutter was established with the
control surface fixed (upper figure). Next, the control
surface was activated {middle figure)} so that its
instantaneous deflections reduce and maintain the wing
steady (bottom figure). The various shades of gray on
the wing surface represent levels of instantaneous wing
pressure.

Aeroelastically oscillating wing

Control surface activated

Active control suppresses oscillation

Figure 2. Computed pressures on a low aspect ratio
wing with and without a contro! surface activated to

suppress flutter. Meo= 0.9, a = 0°, simulated altitude =
30,000 ft. (Guruswamy and Tu®).

Another example involves viscous dominated flow
and concerns a numetrical investigation of the tail buffet
on the F-18 aircraft 6.7. The F-18 leading-edge
extension (LEX) generates a strong vortex which
enhances wing lift at high angles of attack. The twin
vertical tails are canted to intercept the high energy flow
in the vortex to increase their effectiveness. However, at
moderate-to-high angles of attack, the LEX vortex bursts
and starts buffeting the tail. In the 20° - 30° range, the
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buffet is severe enough to cause premature structural
fatigue.

As an initial step in the study of the tail buffet, the
authors simplified the problem by assuming a weak
coupling between the aerodynamics and structures.
The solution was obtained in two paris. In the first part, a
flow field was obtained for a rigid tail by solving the
Reynolds-averaged Navier-Stokes {(RANS) equations
using a time-accurate, implicit procedure and a
multizone grid. In the second part, the tail was assumed
to be flexible and its aeroelastic deformation was
computed using a finite element representation and the
unsteady airloads as a forcing function. Figure 3 shows,
at one instant in time, computed particle traces and
limiting surface streamlines on the LEX, wing, and
deflected leading edge flaps at a Mach number of 0.243
and angle of attack of 30.3°6. The computed results
were qualitatively confirmed by flight test and indicate
that there is unsteady LEX vortex breakdown in the
vicinity of the tail. The unsteady flow field of the burst
vortex generates an unsteady loading on the vertical tail.
Figure 4 shows the calculated displacements of the tail

Figure 3. Computed particle traces showing LEX vortex
breakdown and forward surface flow pattern, F-18
aircraft: Moo= 0.243, o = 30.3°, ReL = 11x108 (Rizk et
al.b).

First bending mode, 15 Hz
Second bending mode, 49 Hz
First torsion mode, 74 Hz

Displacements

] | ! ]
2
Time

Figure 4. Vertical tail generalized displacements, F-18
aircraft: Meo = 0.243, o = 30.3°, ReL = 11x106 (Rizk et
al?).




due to the unsteady airloads?. Figure 5 shows good
compatrison between the predicted airload frequency
and the frequency measured by sub-scale and full-scale
wind tunnel tests and flight test at angles of attack of
about 30°7,
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Figure 5. Comparison between computed and

measured airloads frequency for F-18 aircraft vertical tail
(Rizk et al.7).
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Figure 6. Structured mesh used in the aerodynamic
calculations of a propfan (Srivastava et al.®).

261 nodes
449 CTRIAS elements
5 CBAR elements

Figure 7. Finite-element unstructured grid for the
structural analysis of a propfan blade (Srivastava et
al.B).
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Aeroelastic effects are also important to propulsion
system performance. This is especially so in ultra-high
bypass fan engines that use long, thin, highly twisted
blades. Long, thin blades combined with high twist and
aerodynamic loading can lead to large amplitude blade
deformation. To study this problem, Strivastava et al.8
performed a numerical simulation of a high bypass
propfan by iteratively calculating the aerodynamic and
structural elements of the blade. Aerodynamic loads
were calculated from an Euler flow model using the
structured grid shown in Figure 6. The aerodynamic
loads were then used as inputs to a NASTRAN structural
analysis using the unstructured grid shown in Figure 7.
Spline interpolation of the aerodynamic data were used
to input loads at the centroids of the structural elements.
Using the new loads, NASTRAN provided an updated
blade shape. The aerodynamic loads were then
recalculated and the process was repeated until
convergence. The convergence history of blade angle
and of thrust coefficient versus power coefficients as a
function of aeroelastic iteration is shown in Figure 8.
The convergence rate is quite rapid and results in a final
converged shape after only four iterations.

Sensitivity Mati

The sensitivity matrix approach® involves the
calculation of a matrix - of sensitivity coefficients where
the coefficients are the derivatives of the system
response of interest (e.g., lift or drag) taken with respect
to the design variables of interest {(e.g., wing sweep or
twist). For the designer, an accurate knowledge of the
sensitivity derivatives of a particular system under
consideration can subsequently be exploited in
potentially useful ways. For example, the sensitivity can
be used in approximate analysis, where if changes in a
system’s response is small, resulting changes in a
system’s response can be accurately estimated,
resulting in a significant saving in computational costs.
In addition, one of the most important applications of
sensitivity detivatives is in design optimization and is
one of the focused efforts within the CAS Project.

In general, sensitivity analysis can be classified into
two categories: hierarchical and nonhierarchical.
Hierarchical methods follow conventional approaches
for each discipline without any communication with other
disciplines” except at the root level (see Figure 1 of
Reference 9). This top-down procedure is not
applicable for systems with lateral links between
disciplines. Most modern aircraft involve configurations
where cross coupling is inevitable. In such cases, it
becomes necessary to use the nonhierarchical
approach.

The nonhierarchical approach is illustrated in Figure
9 for sensitivity analysis of a wing with control surface.
The wing may be considered as a system whose output
consists of the data on aerodynamic pressures,
structural deformations and active control surface
deflections. Suppose that the objective is to reduce the
wing-root bending stress using active controls.
Aerodynamic loads are input into structural analysis,
which outputs elastic deformations and corresponding
stresses. Using sensitivity analysis, a signal based on
the wing-root stress can then be transmitted to deflect
the control surface in such a way that the wing-root
stresses are reduced. During this process, several other
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Pressure
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Bending stress

N at wing root >
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Loads Deformations

Figgre 9. Graph representation of actively controlled,
flexible wing as an example of a coupled system (from
Reference 9).

items of information need to be computed, e.g., how to
move the control surface whose deflections are coupled
with both aerodynamics and structures.

Mathematically, the above process can be expressed
as a set of simultaneous equations, termed “sensitivity
matrix equations”:

[CI(G} = {F}

In this equation, [C] is a matrix of partial derivatives
containing local sensitivity coefficients that relate two
directly coupled disciplines. An entry in this matrix is a
quantity such as the rate of change of wing-rfoot moment
with the control surface deflection. {G} is a vector of total
derivatives containing global sensitivity coefficients that
relate changes in discipline parameters with respect to
design variables. A typical entry of {G} is the rate of
change in the hinge moment with respect to the wing-
root stress, where the wing-root stress is a design
variable. Finally, {P} is a vector of pattial derivatives
representing local changes of quantities within a
discipline with respect to design variables. The success
of this type of analysis depends on accurate and efficient
computation of [C] for nonlinear systems using the direct
coupling method explained in the previous section.

Computational cost constraints usually dictate the
sophistication of the single-discipline modes used in
multidiscipline optimization. Following Hutchinson et
al.10, modeling can be defined at three levels:
conceptual, preliminary and detailed design. As the
design process progresses through these levels, the
computational models become increasingly more
sophisticated. Typically, conceptual design models are
empirically based and expressed algebraically.
Preliminary design models are usually linear
approximations such as aerodynamic panel methods or
structural plate models. Finally, detailed design models
employ state-of-the-art computational methods such as
RANS and finite element models (FEM).

Computational constraints currently limit multi-
disciplinary optimization to the conceptual or preliminary
design model stage. Hutchinson et al.10 employed a
variable-complexity modeling approach that combines
conceptual and preliminary design techniques for wing
optimization of the HSCT wing. Conceptual design-
level algebraic equations were used to estimate aircraft
weight, supersonic wave drag, friction drag, and drag
due to lift. The drag due to lift and wave drag wetre also
evaluated using more detailed, preliminary design-level




techniques. The methodology was applied to the
minimization of take-off gross weight of a Mach 3.0
configuration with a range of 6500 miles. Figure 10
shows the comparison of initial and final wing planform
for two cases. Case 1 employed a trailing-edge
geometric constraint and Case 2 did not. Convergence
was obtained in 20 cycles and resulted in initial and final
design lift-to-drag ratios shown in Figure 11.

————— Initial design --=-=--|nitial design

Case 2

Case 1

(a) Case 1 final planform (b) Case 2 final planform

Figure 10. Comparison of initial and optimized HSCT
wing planforms, Me = 3.0 (Hutchison et al.10),
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Figure 11. Lift to drag ratios for HSCT optimization, Meo
= 3.0 (Hutchison et al.10),
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In contrast to the above example, a detailed, design-
level optimization would employ a RANS model for the
aerodynamic analysis and a FEM model for the
structural analysis. Figure 12 presents results of an
RANS calculation in the form of a comparison of
calculated and experimental lift and drag coefficients
versus angle of attack for the HSCT wind tunnel model
shown in Figure 13. The RANS solution was obtained
from an explicit multigrid Runge-Kutta code developed
at NASA Langley Research Center 11. A singe zone
grid of 688,00 points was used and the solution required
37 megawords of memory and 3.5 hours of Cray-2 time.
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Figure 12. Comparison of force coefficients for an HSCT
configuration, Mew= 3.0 and Rel| = 6.3x108 (Vatsa et
al.1),

Figure 13. Photograph of the HSCT configuration used
to obtain the results of Figure 10 (Vatsa et al.11).

A typical FEM of a HSCT configuration is shown in
Figure 14 and was used to study the linear static
response for various wing tip loading!2. The linear
system for this problem had 16,146 equations with a
maximum semi-bandwidth of 594. Several hundred
seconds are required to form and factor the stiffness
matrix on a single processor of a Cray Y-MP computer.
About six additional seconds are required to calculate
the displacement from given loads. As is evident from
this example, a typical linear, static structural mechanics
problems is- several orders of magnitude less
computationally intensive than a typical steady, viscous
CFD solution.




Finite element model
(Model is half of figure shown)

2,851 nodes

5,189 2-noded rod elements
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AN
WY
WA

N
2

i
£
e

N

R
RO
N

Stiffness mairix

i
‘ 16,146 equations

499,505 coefficients

584 max. semi-bandwidth
319 avg. semi-bandwidih

Figure 14. Finite-element model of an HSCT aircraft
configuration (from Poole and Overman12).

Hierarchical modeling with zooming is an attempt o
siudy the attributes of a complex system while
minimizing computational cost. The concept has been
developed for propulsion systems13.14 but is applicable
to vehicle systems as well. Hierarchical modeling
involves developing a framework that permits physical
processes resolved from a detailed analysis of a
component or subcomponent to be communicated to a
system analysis peirformed at a less detailed level for the
purposes of evaluating overall system attributes.
Conversely, the system analysis will provide the ability
{0 evaluate which physical processes occurring on the
component and subcomponent level are important to the
system performance. This will allow the engineer or
scientist to focus or “zoom in” on relevant processes
within components or subcomponents. The zooming
concept is depicted in Figure 15.° In this particular
example, a detailed analysis of the fan could be
performed to study, for example, the effect of a new
blade design on system performance. The inlet and
compressor would be modeled at slightly lower leveis of
fidelity 1o resolve such phenomenon as inlet distortion or
upstream influence of the compressor blading. The
combustor, turbine, and nozzle would be modeled in
less detail, perhaps to determine shaft horsepower.

The hierarchical model envisioned for propulsion
simulation is characterized below:

Level 1: Engine system performance model. This model
is & thermodynamic model which calculates the system
efficiency based upon engine configuration and
component efficiencies. It allows rapid evaluation of
various engine concepts.

Level 2: Engine system dynamics and controls model.
'T'hls model is a one-dimensional flow path model, with
simplified. structural elements, conirols, and other

90

Propulsion models, codes
and databases

Expansion

Subsystem modules

subsystem o~
Heat addition /—/D
subsystem
Component moduies
Compressor n]

Inlet

Fan siruts, mé@lﬁ
blades, vanes

Figure 15. lllustrative framework for “zooming in” on a
fan component (from Claus et al.14).

disciplines. It uses component performance information,
design geometry information, and dynamic information
in order to calculate engine thrust and weight as well as
system transient response in order to analyze operability
problems and devise control strategies to handle them.

Level 3: Space and/or time-averaged engine system
model. This model is a two-dimensional (i.e.,
axisymmetric) fluid model. It utilizes axisymmetric
multiple discipline models in an engine system
environment in order to relate component boundary
conditions (primarily input/output conditions) to overall
system boundary conditions in order to simulate
component interactions. The output is also the basic
level about which the “zooming” process is consiructed.
it will be a transient model and address all problems
from Level 2 in addition to providing more detailed
geometry information.

Level 4: Space and/or time-averaged subsystem (or
component) models. These models are three
dimensional. They are multidiscipline models which are
coupled in ways which are compatible with the physics
of the component mode! but are still averaged over
smaller time and space scales. These models must also
bé post-processed in order to connect with the Level 3
engine system model in the “zooming” process.

Level 5. Three-dimensional, time-accurate component
models. This level of simulation consists of a fully three
dimensional, time-accurate simulation of all physical
processes on a component-by-component basis. This is
the most complete level of physical approximation,
representing the most complex physics, and therefore, it
is the most computationally expensive level of
simulation.

A typical propulsion system simulation uses a lower
level analysis (such as Level 2) as a baseline
“complete” engine simulation for which higher
resolution, “zoomed” calculations are periormed. The
baseline analysis uses component performance maps to
provide performance data over a wide range of
operating conditions for both steady-state and transient
simulations. “Zooming” then provides more accuraie
representations of these performance maps by
conducting higher level simulations of the components.

Figure 16 presents a multiblock grid used for an
axisymmetric representation of a modern turbefan
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Figure 16. Multiblock grid for an axisymmetric
representation of a complete engine (Stewarn15).
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Figure 17. Comparison of computed and experimental
time-averaged total temperature profiles for a three-
dimensional turbomachinery computation (Mulac and
Adamczyk16),
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configuration® that provides the framework for a Level 3
simulation. A Level 4 example is provided by results of
a three-dimensional, average-passage flow model
(MSTAGE) which was used to obtain a time-averaged
representation of the flow through the first four stages of
an axial flow compressori6. Figure 17 shows good
agreement between the spanwise computed and
experimental {otal temperature profiles at the first three
rotor exits. The computed results are obtained by both
mass averaging and simple arithmetic averaging. The
calculation used approximately 374,000 grid points and
required 122 million words of memory. Two hours were
required on a multitasked, eight-processor Cray Y-MP
computer io reach convergence.

V. Computational Requirements

Computer speed and memory requiremenis for
multidiscipline models depends first on the single
discipline models selected and secondly on the
multidisciplinary approach taken. CFD is present in
nearly all CAS applications of interest and is usually the
most demanding discipline for computer speed and
memory. Holst et al.4 recently estimated the
computational requiremenis for both CFD and
multidisciplinary applications. They examined a number
of state-of-the-art, three-dimensional applications in
which the RANS equations were solved for a steady,
viscous flow using a simple algebraic turbulence model.
The grids were coarse o save computer resources but
adequatie for attached flow. A baseline requirement for
computer speed and memory was estimated from this
data. The baseline computational requirements were
set at 600,000 grid points, 25 megawords of run-time
memory, and 10 hours of CPU time on a single
processor of a Cray Y-MP computer. In addition,
estimates were made for incremental increases in
computer speed and memory as simulations became
more complex. Factors that determined these
increments included grid refinement, gas modesl,
turbulence model, and the complexity of the flow
physics, e.g., unsieadiness, flow separation, shock-
wave/jet/wake/vortex interactions, etc.

Holst et al.4 also estimaied the incremenis in
computer speed and memory needed to extend
aerodynamic simulations to multidiscipline simulations.
In the process, they examined several complication
factors including:

(1) Computational requirements for several disciplines
(aerodynarics, structural dynamics, controls, and
chemistry/combustion) associated with both the airframe
and propulsion elemenis of an aircraft must be
accommodated in a single computation.

(2) Interface algorithms between the various disciplines
will complicate the simulation and effectively add new
computational requirements.

(3) Introduction of new physics as a result of inter-
discipline interactions will create new computational
requirements, e.g., flow unsteadiness caused by flexible
structures or unsteady control surface deflection.

(4) Numerical optimization design applications will
create significantly larger computational requirements.




Figure 18 presents a representative envelope of
computer speed requirements (in floating-point
operations-per-second) needed to achieve a solution
within one hour (derived from the estimates of Holst et
al.4). The left-most bar represents the estimated range
of computer speed for an aerodynamics simulation
alone. The bottom of the bar represents the computer
speed needed for the baseline aerodynamics simulation
described above. The top of the bar represents the
estimated computer speed required for the extension of
the baseline simulation to one that combines improved
pressure and skin friction accuracy, unsteady flow,
complex shock-induced boundary layer separation and
Reynolds stress turbulence model. For example, such a
simulation can be associated with an extreme maneuver
condition at a petformance boundary, but is, of course,
well beyond current computer capability. The next bar to
the right represents the estimated computer speed
required when a finite element method structural
analysis is coupled to the aerodynamic model.
Successive bars to right represent, in sequence, the
addition of thermal analysis; addition of control laws and
deflected control surfaces; addition of thrust vectoring
and jet controls; and addition of such external
propulsion effects as inlets and jet plumes. Thus, Figure
18 represents an estimate of the envelop of computer
speed required for a representative set of
multidisciplinary models. As one goes up in each bar,
the computer requirement increases due to increased
aerodynamic requirements; as one goes to the right, the
computer requirement increases due to the addition of
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Figure 18. Computer speed estimates for representative
multidisciplinary models.
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representative estimate and does not include all
possible multidisciplinary models or all possible
disciplines; real gas chemistry, for example, is not
included. Computational requirements for detailed flow
simulations of a complete propulsion system (e.g.,
turbojet engine) are not included. These requirements
are difficult to estimate accurately but are generally
equal to or greater than those for vehicles. Design
optimization is also not included, but it can be expected
to increase the computer speed required by a single
analysis by a factor of 10-1000. The actual factor
depends on the complexity of the simulation and the
number of design perturbations selected. In general,
however, one expects design optimizations to involve
cruise conditions and therefore use less complex
aerodynamics models.

The envelope of computer speed requirements
spans five orders of magnitude. The lower bound of 109
floating-point operations-per-second {1 GFLOPS) is
within the capability of today’s supercomputers.
However, the upper bound is well beyond any.computer
system planned. The CAS Project goal of 1012 FLOPS
(1 TFLOPS) lies approximately midway between these
extremes. Although the speed required for the most
complex multidiscipline simulations lie beyond 1
TFLOPS, many important applications will be possible.
With further improvements in algori*hms the range of
possible applications will expand even more.

VI, Parallel Computing

This section briefly explores parallel computers as a
means of meeting the CAS Project goal of a sustained
computing rate of 1 TFLOPS. This is indeed an
ambitious goal as it represents 1000 times the current
achievable sustained rate for CFD applications on
current supercomputers such as the Cray Y-MP. It is
generally accepted that sequential processing computer

designs are not sufficient to meet the high-performance
computing demands of the Grand Challenges. While
sequential processing has the advantage of achieving
near peak performance for most applications of interest,
increased processing rates depend entirely on
advances in circuit technology to decrease cycle time.
For example, to reach 1 TFLOPS using a single
sequential processor requires a cycle time of less than
3x10-13 seconds (assuming 3 cycles per floating-point
operation). However, the current state-of-the-art in
advanced gallium arsenide and silicon devices limits
cycle times to about 2x10°? seconds1?. It is evident that
some as yet undiscovered technology would be needed
for a sequential computer to reach 1 TFLOPS,

New computer architectures have been invented to
overcome circuit technology limitations. Vector
computers were introduced in the mid-1970s and
employed pipelining to achieve a floating-point result
every cycle. These computers have produced
significant performance increases for applications that
have a high vector content. A more revolutionary step
was the introduction of parallel processing employing
the concurrent operation of multiple microprocessors.
Hennessy and Jouppil® estimate that the CPU
performance of microprocessors has improved by a rate
of 1.5 to 2 times each year during the last six to seven
years, whereas improvement rates for mainframes
averaged about 25% per year. They quote two major




factors which have contributed to the high growth rate of
microprocessor performance:

(1) The dramatic increase in the number of transistors
available on a chip.

(2) Architectural advances, including the use of Reduced
Instruction Set Computer (RISC) ideas, pipelining, and
caches.

in Figure 19 these trends are summarized by
comparing the performance of microprocessors to that of
single processors on vector supercomputers of the last
decade. The single processor performance of vector
supercomputers within the last decade has only
improved by approximately an order of magnitude!®. In
contrast, around 1987, microprocessors experienced a
dramatic increase in their floating-point capabilities. If
we restrict ourselves to the Intel family of micro-
processors, we see an improvement from the Intel
80387 to the Intel i860 that is approximately two orders
of magnitude greater. This large performance gain can
be directly correlated to the performance of the
corresponding parallel systems. The current Intel
iPSC/860, which uses the i860 processor, is widely
regarded as the first true supercomputer produced by
Intel, whereas its predecessor, the iPSC/2, was at best
an expetimental research computer.
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Figure 19. Comparison of supercomputer and micro-
processor tloating-point performance (from Reference
19).

Estimates and studies investigating future trends in
microprocessor performance are highly optimistic.
Gelsinger et al.20 gstimate that by the year 2000 a single
chip is expected to have four processors with a
combined performance of about 1 GFLOPS. Thus, the
rate of microprocessor performance increases is
expected to remain higher than that of traditional
supercomputers. Even though these arguments do not
address bandwidth-to-memory ratio, memory size, /O
devices, and other important aspects of supercomputer
systems, it is believed that microprocessors will be the
pacing item in the future development of massively
parallel systems. (See Lundstrom2? for a more detailed
discussion.)
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Massively parallel computers with enough
performance to tackle realistic applications have existed
only in the past few years. However, one can find
numerous results in the fiterature. (See Holst et al.4) An
important issue in all parallel applications is their
performance relative to conventional supercomputers.
To address this issue, Bailey et al.22 developed the NAS
Parallel Benchmarks, a set of programs representative
of principal computational and data movement
requirements of modern CFD applications. The
benchmarks represent a novel approach to
benchmarking in that the problems are specified in a
“pencil and paper” fashion, i.e., the complete details of
problem to be solved are given in a technical document.
Except for a few restrictions, benchmarkers are free to
select the language constructs and implementation
techniques best suited for a particular system. Three
benchmarks cast as “simulated” implicit CFD
applications are LU, SP and BT. Each was run on a
single processor of the Cray Y-MP supercomputer and
on the Intel iIPSC/860 and Thinking Machines CM-2
parallel computers. The LU benchmark consists of a
regular-sparse block (5 x 5) lower and upper triangular
system. The SP benchmark consists of multiple
independent systems of non-diagonally dominant,
scalar, pentadiagonal equations. Finally, the BP
benchmark consists of multiple independent systems of
non-diagonally document (5 x 5) block tridiagonal
equations.

Table 1 shows a comparison of the performance for
the three benchmarks computed with a 643 grid and for
a two-dimensional unstructured grid flow solver20. The
results show that the NAS Parallel Benchmarks perform
somewhat slower on the parallel computers than on the
Cray Y-MP whereas the unstructured grid code performs
somewhat faster. One can conclude that the current
generation of parallel computers performs at a level that
is approximately equal to that of a single Cray Y-MP
processor and, thus, they are at the low-end of the
supercomputer class.

No. of Time/lter.
Application System Processors {sec) MFLOPS
YMP 1 173 246
iPSC/860 64 3.05 139
NAS Benchmark 128 1.90 224
L cm-2 8K 5.23 82
16K 3.40 125
32K 2.29 186
YMP 1 1.18 250
iPSC/860 64 2.42 122
NAS Benchmark ) oK o5 30
186K 5.26 56
32K 2.70 109
YMP 1 3.96 224
NAS Benchmarke | iPSC/860 64 4.54 199
BT CM-2 16K 16.64 54
32K 9.57 94
YMP 1 0.39 150
Unstructured iPSC/860 64 0.31 188
Grid CFD 128 0.19 308
Code
cM-2 8K 0.43 136

Table 1. Performance comparison of selected NAS
Benchmarks and unstructured grid CFD code on Cray
Y-MP uniprocessor, iPSC/860, and CM-2.




The main issue in massively parallel computing is
designing efficient algorithms that result in high,
sustained performance. (See References 23-25 for
more information on performance issues.) Simply
stated, an ideal algorithm is designed to keep the
processors fully occupied performing calculations with
minimal overhead while at the same time minimizing the
total number of calculations needed to solve the
problem. Clearly, since increases in computing rate are
gained by performing tasks in parallel, purely sequential
operations must be kept to an absolute minimum. At the
same time, care must be taken to avoid using highly
inefficient algorithms simply because they are highly
parallel.  Shadid and Tuminaro26 performed a
comparison of explicit and implicit algorithm
performance on an NCUBE-2 parallel computer that
illustrates this point. Their results, shown in Table 2,
give the operation count, CPU time, and computing rate
for four different algorithms applied to a simple
convection-diffusion problem. The purely explicit Jacobi
method has a computing rate (1000 MFLOPS) which is
nearly six times faster than the highly implicit multigrid
scheme rate (318 MFLOPS). On the other hand, the
muitigrid scheme time-to-convergence (6.7 seconds) is
more than 300 times faster than the Jacobi method time-
to-convergence (2124 seconds).

algorithm operation cpu time MFLOPS
(billions) (sec)

Jacobi (explicit scheme) 3820 2124 1800

Gauss-Seidel 1210 885 1365

least squares 259 185 1400

multigrid (implicit-like scheme) 2.13 67 318

Table 2. Computational statistics for a CFD convection-
diffusion problem implemented on an NCUBE-2
computer (from Shadid and Tuminaro26),

Granularity is an important factor to consider in
developing efficient parallel algorithms. When dividing
an application into paralle! pieces, granularity describes
the size of each piece. Let us assume an application is
broken up into n independent tasks. A task may, for
example, involve the calculation of velocity at a grid
point in a fluid dynamics simulation. Mapping the
application across all processors will on the average
result in G = n/N tasks assigned to each processor
where N is the total number of processors. G is called
grain size and may represent, for example, velocity
calculations at a cluster of grid points. For any given
processor and interprocessor communication
characteristics, there is a minimum grain size, Gmin,
such that if n>NGmin , one will achieve high relative
performance. In other words, grain size must be large
enough so that there is sufficient work to be performed
by each processor to offset the relative overhead
associated with interprocessor communication. The
number of “grains” should also be large enough so that
all processors can be usefully empioyed. It is apparent,
then, that massively parallel computers are only well
suited to large problems. The more nodes there are in
the computer system, the greater the required problem
size. In fact, a linear performance increase with
increasing nodes can be achieved only as long as the
problem size also increases linearly with the number of
nodes24.27. An example of linear performance increase
is found in the direct solution of turbulence by means of
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solving the full Navier-Stokes equations with no
averaging or turbulence modeling. Figure 20 shows the
performance of such an approach for various grid sizes
as a function of the number of processors4. These
calculations, performed on the Intel iPSC/860 and Intel
Delta parallel computers, indicate that performance
continues to increase at a steady rate only as long as
the number of grid points also increase.

Intel iPSC/860 and Touchstone Delta Computers
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Figure 20. Execution speed vs. number of processors
for a direct simulation computer code run on the Intel
iPSC/860 and Intel Delta massively parallel computers
(from Reference 4).

Partitioning refers to how an application is
subdivided among processor nodes and is another
important factor. Most mathematical modeis of the
physical universe offer abundant opportunities for
partitioning. Spatial partitioning occurs when strong
interactions are localized within subdomains and when
weak interaction occurs over long distances or not at all.
In this widely-used strategy28.29 a subdomain is
assigned to each processor. Information is only
occasionally exchanged between processors, resulting
in low relative overhead. Functional parallelism is
another decomposition strategy; it consists of
decomposing the model into functional domains
associated with different time or length scales. For
example, functional domains can be assigned for each
discipline within a multidisciplinary simulation model.
To illustrate multidisciplinary partitioning, consider a
powered-lift aircraft simulation, schematically
represented in Figure 214, The scheme could, for
example, be used to simulate a vehicle in hover and to
study its controllability. The simulation includes external
aerodynamics {Navier-Stokes), a propulsion system that
includes a reaction control system (RCS), and an aircraft
control system that includes a routine for computing
aircraft dynamics. A conceptual mapping of the
simulation onto a parallel computer is shown in Figure
22. Each iteration would start with a communication
step to update data to all processors. This would be
followed by the parallel computation of fluid dynamics,
structural dynamics, and propulsion system and control
models. Each of these models would be mapped into
processor modes via spatial partitioning in such a
manner that idle time would be minimized. At the end of
an iteration, a communication step could update
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iteration n

information between models and a regridding step
would then reflect changes in aircraft position and
control surface positions. In summary, one can see that,
with the increased complexity of paralielism, granularity,
and partitioning, implementation of multidisciplinary
models on parallel computers will be significantly more
challenging than on conventional computers.

VIL. Concluding Remarks

The CAS Project is a bold attempt to greatly enhance
our ability to utilize computers to improve aerospace
design quality and to decrease design time. Achieving
this is indeed a challenge. Meeting this challenge
requires the development of new multidisciplinary
simulation technology and new powetrful parallel
computers to perform the simulations. Examples
presented herein demonstrate that efforts have been
underway in multidisciplinary simulation for the past
several years. Results are encouraging, but progress
has been hampered by the lack of computer power.
Exploiting parallel computer technology is the strategy
taken to overcome this limitation. The resuits of
benchmark studies presented herein show that parallel
computers have reached supercomputer status.
However, the algorithm and programing challenges to
exploiting their full potential are formidable. The hope is
that through the coordinated research efforts of the CAS
Project these barriers can be overcome.
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