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Abstract

This paper presents a numerical method for calcu-
lating the internal flow field of circular—to—rectangular
transition ducts and nonaxisymmetric nozzles, This ana-
lysis, based on the solution of N—S§ equations with time
marching scheme, is capable of predicting the internal
three dimensional turbulent flows. To improve the
computational efficiency and alleviate the requirement
for huge computer storage, a new finite volume ap-
proach for viscous terms in 3—D case is proposed. The
B—L turbulence model is used to estimate the Reynolds
stresses. The definition of the mixing length of turbulent
flow in the vicinity of wall corner is suggested. The
principle for choosing the eddy—viscosity is also estab-
lished. An original method for generating high—per-
formance grid inside duct is developed through analytic
transformation. It is ideal to all shapes from circular to
rectangular section for its excellent natures of
orthogonality and controllability.

Three transition ducts with different lengths con-
nected with a convergent—divergent nozzle is investi-
gated in present paper. Numerical results surprisingly
accurately match the test data in all cases, demon-
strating the accuracy and capability of present method.

Introduction

For designer of future jet—engine exhaust system,
more and more interests are focused on the
multifunction nonaxisymmetric nozzles. Its remarkable
character in reducing infrared radiation and significant
capability of vectoring / reversing are very important
for innovative manoeuvrable, stealthy aeroplane. How-
ever the rectangular shape of nozzle has create the de-
sigh problem of transitioning the axisymmetric engine
flow to the nonaxisymmetric nozzle flow, though the
geometric smoothness of transition duct from circular
to rectangular could be achieved by connecting a series
of superellipse cross section. The duct length is a key
dimension to be determined for a given aspect—ratio.
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With a view to minimizing the weight of the propulsion
system installation, the duct should be as short as pos-
sible. On the otherside it must also be long enough to
prevent any separation for which could cause severe
cooling probiem and significant internal performance
loss. Therefore, both experimental and numerical inves-
tigations are intensely conducted in recent years to de-
termine the overall performance of circular—to—rectan-
gular so as to explore the effect of duct dimensions on
the performance [1,2,3,4]. Though tunnel tests could
provide reliable results, numerical modelling is ap-
pealing for its lower cost and higher efficiency.
Unfortunately, because of the highly viscous nature of
the flow inside the transition duct, potential-flow solu-
tion and BEuler solution are incapable of accurately
matching the experimental data. So the viscous effects
must be included in the numerical code. This paper
presents a numerical method capable of predicting the
internal 3—D turbulent flows and access the effects of
duct length on nozzle performance. A new finite volume
scheme for the discretization of viscous terms is pro-
posed to have the advantage over previous method of
less demand for storage and speed of computers. Special
care is payed to the implement of turbulence model in
3-D flow computation.

For transition ducts, to maintain a high perform-
ance, the cross section shape is required to change from
circular to rectangular through a smooth and rapid
progression. This creates the difficulty of grid genera-
tion, because the grid structure fitting well to rectangle
may be unacceptable for the circle. To overcome this
difficulty, an original method for generating high quali-
ty grid analytically inside ducts is contrived. It is suita-
ble for all shapes of superellipse and easy to be extended
to the general duct,

Numerical investigation is conducted on the 3—D
turbulent flow fields of three transition ducts integrated
with a nonaxisymmetric nozzle. Both Euler solver and
N-S solver are used. As expected, the N—S solver gives
excellent results for all cases while the Euler solutions
have a big deviation from the experimental data in re-
gion where the viscosity becomes dominating, say sepa-




ration occurred. To have a insight into the flow patterns
in the transition duct, the 3d view pictures of the
near—surface velocity vector , calculated using N—S
equations, are plotted. The separation pattern in some
of the configurations is fully demonstrated. The
computational results are satisfactory in congruity with
the test and helpful to the understanding the flow
phenomena inside of the ducts.

Governing Equations

The three dimensional Navier—Stokes equations in
integration form are
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where Q denotes a fixed region with boundary T",
g represents velocity, p is density, p is pressure, e
stands for total energy per unit volume, t, is the
viscous stress acted on the plane ds with outer normal
n, K is ratio of specific heats, p, is Prandtl number.

The effective viscosity coefficient p in turbulent
flow computation is the sum of the molecular viscosity
u. and the eddy viscosity u,. The variation with temper-
ature of the molecular viscosity u, is determined using
Sutherland’s law, while the eddy viscosity coefficient u,
is determined by use of the algebraic model proposed by
Baldwin—Lomax[5]. The modification of this two—layer
mode to three dimensional case is studied in present
study and discribed in the later section.

Solution Method

The computational domain is divided into
hexahedral cells, and the variables are defined at cell
centre (i,j,k). The integrals in equ.(1) are replaced by
discrete summation around the faces (numbered as 1) of
the cell:
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where Vol is cell volume, §, = (S,x,S,y,Slz)Tis the area

vector of cell face. u,v and w are velocity components in
x,y,2z direction respectively. F = (Fx,F y,Fz)Tand p are

‘viscous stress, which will be discussed in later section.

The semi—discretization equations (4) are solved
using the modified multi-stage Runge~Kutta time
marching scheme[6]. The acceleration techniques such
as implicit residual averaging are used.

New Approach to Viscous Terms

In previous methods, the shear stress is needed to
calculate at each of the six faces of one cell (at least
three faces) . It is computational costly very much.
There have been much efforts made towards achieving
solution efficiency by simplification, however most of
those methods suffered non—conservation problem. A
new scheme is proposed in [4] by the first author to
eliminates above mentioned problems. This method has
applied to the two dimensional turbulent flow computa-
tion [7,8] and proven very successful. Here we derive the
three dimensional version in detail.

In local cartesian Coordinates (n,{,n) , the shear
stress at the face between (i,j,k) and (i+1,j,k) has the
form:

aq,
= —p+2u—a——~ud1vq
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Where ¢, 9, q"is the velocity componentin n,
{, n direction respectively.
2

3 udiv = (g), the shear stress can
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be divided into:

normal stress:
Fo—cw ( 2 )* 6
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and tangential stress:
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is the gradient operated on ({,n) plane.
If we take p out and regard it as pressure, the re-

mainder is:

— = oq, = oq

F=F +2an = ko, + pgrad q N
Here grad= ni + C 72

an "o oy




Equ.(7) is actually a general vector form of
deviatoric stress, however it is still not suitable for cal-
culation . We now cast it into finite volume scheme in
global Cartesian coordinate system (X,y,z).
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therefore
gradq =n_ gradu+ny gradv+n, gradw ®)
gg (- gradu)+ j(B-gradv)+ k(n - gradw) (9)

Utilizing (8) and (9), rewrite (7) as:
F= un_gradu + n, gradv+n gradw
+7(Hegradu)+ j(Tgradv)
+ k(% - gradw)] (10)
Now we need to compute gradients of three veloci-
ty components to determine shear stress. It is still too
expensive for computation in present form, further de-
duction is needed.
According to finite volume formula:

u=flz'(uuk+ux+1,ik )
v=%(vi,ik Vi )
w—%(wuk+wl+uk)
It is assumed that:
gradu=%( gradul + gradulwl"k an

gradv , grad w is defined similarly.

In this way , we only need to calculate grad u ,
grad v, grad w one time for each cell, and can utilize
geometric parameters already defined.

According the definition of gradient:

[ fds
Vol

gradf = lim
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we have:
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Where ¥, is the cell face area vector, f; stands for func-

tion value at face /.
Application t<3 u,v,wlead to :

graduzﬁé[—i'ulsh +—j‘u y + kus, ]
=g, i+8,i+8,k (13a)
and
gradv=g T+ gvzfi' +.gv3E (13b)
gradw=gwlT+gw27+gW3E (13¢)

Finally the shear stress is expressed as:
F= ug +pgradq
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Practically only following six parameters are need-
ed to be computed and stored for each cell:

g, =‘—/2;7 Eu,sk 1

B12 =ﬁ)§ Sy +v,8y)

g”:—Vlo_l,é (w,S,+w,S,) s
B2 _I_/.-l,é (v,8,)

gy = VolZ (7,8, +%,S.)

Z (WI lz

Their values at cell face are determined by simple
averaging the values of adjacent cells.
Now looking back to the definition of

J
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can be discretized as:
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P=p+ 3@ T8, + 8 (16)

To sum up , the calculation of shear stress is only
requiring computation of six parameters mentioned
above . Itis really a great reduction on CUP time.

Grid Generation Method

For integrity, the method of forming
circular—to—rectangular transition surface is briefly
discribed here. The coordinate system is shown in Fig.1.

Fig.1 Coordinate System and Surface Grid

Since a circle, an ellipse and a rectangle are all spe-
cial cases of superellipse. the transition duct can be
formed by connecting a series of superellipse cross sec-
tions to achieve the geometric smoothness. A general
superellipse is defined by the equation

y\" z\"

¢) () - (n
When n=2,equ.(17) defines a circle while a=Db, or
otherwise an ellipse. When # is going to be infinite,
equ.(17) defines a rectangle with height ofa and width
of b.

The area enclosed by a superellipse can be obtained

from the equation

(g>(4ab) (18)

where T refers to the “gamma function” and is defined
as
-t -1

w
Ti=J, @ t"" )dt (x>0 (19)
which can be accurately calculated using standard pro-
cedures of orthogonal expansion, say, Chebyshev
polynomial expansion, for instance.

458

The cross section area A, , the minor and major
axes a,b are functions of x in general and must be de-
termined first for the design of transitions. For present
used configurations, all the areas of three transition
ducts are held constant while the axes a and b are con-
strained according to the equations

a(x)=R—(R-H)(x / LY3-2(x / L)]
b(x)=R—(R-W)(x / LY[3-2(x / L)]

Where L is the duct length, R denotes the radius of
entrance, W and H are the rectangle width and height of
transition exit respectively.

Once A, , a(x) and b(x) are known, the transition
surface is determined by finding out #(x) from equ.(18).
For practical computation, a rectangle (n=o0) can be
accurately approximated with # = 100.

After determining the transition shape, we proceed
to grid generation. Usually, an "O” type grid is prefer-
red for circle kind ducts, however it concentrates too
many points on the centre and is deficient for rectangu-
lar section. “H” type grids have the advantage of grid
efficiency and is especially suitable for rectangular sec-
tion, but it is not easy for conventional method to gen-
erate a satisfactory grid fitting well to the circular sec-
tion.

Since grid quality has great impact on computation
results, a new grid generation method has been con-
trived for this particular kind of duct. This method
basically breaks the 3d grid into a number of 2d grids
which are generated on each cross section and related to
each other through analytic transformation, therefore
the smoothness of this composite grid is guaranteed.
The main idea is presented as follows.

The equ.(17) , defines the general cross section
shape of the duct and nozzle, can be rewritten in com-
plexion function form as

[ G e

where o is the imaginary angle, i=v — 1.

The grids on this section are obtained through fol-
lowing procedure.

First, prechoose the basic grids on a square
(a=1,b=1). The grids are formed by simply dividing
the square using two families of orthogonal straight
lines. The grid number and thickness distribution at
each direction can be determined just according to your
requirement .

The second step is to map the square onto a unit
circle, The process is discribed briefly as follows.

For { —[(Cosa)2+(Sina)2]_%e

circle

i
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€
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and ¢ = [Cosa)”+(Sina)"]"l7

square

Their relation is found by setting that the imaginary an-

gles keep unchange during the mapping as
corresponding grid points

= Cos"a+Sin"a]:’ 4

0

C circle square (2 1 )




Therefore the grid point on the unit circle can be
found using the formula above from the corresponding
point {4, OnN the square.

The third step is to map the unit circle onto a
superellipse with exponential of nlusing the relation

{ (22)
For each grid point {...(y+iz) on the circle, we can find
out the correspondent point {,,.(y+iz) from equ.(22).
The forth step is to sketch the unit superellipse
{ouperct® the general superellipse with minor and major
axes of a and b. This will be done by a simple extension
transformation

n . n -
cupere [Cos"a+Sin"g] 7= el

Ynew = &Y supere (23a)
Zaoew = DZgupere (23b)

For any cross section with given n,a,b , repeating
3rd and 4th step, then the grid is generated. It can be
casily confirmed that the boundary point(y,,,,z
transformed from equ.(23) is content to equ.(17).

The grids generated using present method in differ-
ent sections of transition duct are shown in Fig.2—4, the
surface grid is given in Fig. 1. It can be seen that the
grid on rectangle is of surely orthogonal “H” type, when
on circle section, it possesses the “O” type grid charac-
ter but dose not concentrate on the centre. The whole
grid is smooth and almost orthogonal. The thickness
distribution of grid is easily controlled through ad-
justing the basic grid. The success of this kind of grid is
further confirmed by the satisfactory computational re-
sults discribed later.
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Fig.4 Grid on Rear Section of Transition Duct

Turbulence Model

For simplicity, the algebraic eddy viscosity model
of Baldwin and Lomax is applied. The attraction of the
model is that it does not require the determination of
the edge of the boundary layer in N—S computation.
Before we introduce the modification in 3d
computation, the original model cited here.

For the inner region of the shear layer, the eddy
viscosity is given by

py=pl’l @l (24)
where
I=0.4y[1—exp(—y " /26)] (25)

v =Jp, 1,7/ n, (26)

and o is the vorticity.
In the outer region, the eddy viscosity is given by
“’t,a = pKCchkaleb (27)

where K is the Clauser constant, C,, is the constant
given in [5], and

Fw=minimum(ymameax> kaymangiff/ Fmax) (28)
where C,, is a constant. The quantities y,,.and
Faxare determined from

F(y)=vylolll —exp(—y " /26)]

Fraxds the maximum value of F(y) that occurs in a pro-
file and yg,,Js the value of y at which F__ occurs. The
function Fy,,,, the Klebanoff intermittency factor, is de-
termined from

C 5 —1
Fop= [1 + 5.5<y—“’°"—) ] (29)

where y is the normal distance to the surface and Cyy,is
a constant. Uyds the difference between the maximum
and minimum velocity magnitudes in a profile.

The original model is basically proposed for one
wall case, but the internal flow inside a duct is a flow
between walls, The eddy viscosity is theoretically ef-
fected by each of the walls. therefore adaptation to the
original model must be made.

Because of the full symmetry of the considered con-
figurations, only one forth of the flow domain is
actually computed. Practically we are calculating the
turbulent flow in a corner of two walls with the other
two side of symmetric planes. In this case, the normal




distance y used in equ.(25) and (26) are suggested to be
replaced by
2Y, Y,
y= 1 (30
Y, Y, 4 (YYD 2y, Cosy)’

where Y,, Y, are the distances to the two wall
respectively, y is the angle included between the two
walls. The formula suggested above is established ac-
cording the following facts.

First, if the two walls cross at a right angle,

equ.(30) becomes Buleev’s mixing length
2Y, Y,
y= 1 (31)

2 2\2
Y,+Y2+<Y1+Y2>

as used in[9].

Second, when the cross section is a circle, the angle
y between walls is approximately equal to n. Then the
formula reduced to
B 2Y, Y,

Y, +Y,+ ]Yl -Y, !
= minimum(Y ,Y, ) (32)
Jt conforms with the definition of original model in cy-
lindrical coordinate system.

Third, when y increased, y increases. This is to say
that the integrated effects of two wall on eddy viscosity
decrease . It is in conformity to physical fact.

After redefining the y, there are still problems ex-
isted in selection of which wall is used in the calculation
of u; where the u,,p,, and 7, in equ.(26) are defined. In
some of references, this problem is avoided by calcula-
ting two sets of eddy viscosity respecting to the two
walls then taking the minor one. This kind of treatment
is obviously unreasonable for it ignores the different
degree that thetwo walls affect the y,on a specific point.
Really the effective degree of each wall could be meas-
ured approximately by a virtual length as

Yo=Y, [1—exp(—=F" /26)]

o Vet

y = i, m
where y,, is the distance to the wall m. The bigger-the y
,the less the wall has influence on the point. Therefore,
the selection principle could be formed as:

For a given point , its yr is determined from the
wall which holds the minor y.

Substantially, the equ.(30) is constructed to consid-
er the combined influence of the two walls, and the se-
lection principle is used to determine of which wall the
Py Tyand p are used in equ.(26).

y

(m=12)  (33)

Boundary Condition

At inflow boundary, the total pressure and total
enthalpy are held constant and the flow angles fixed.
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For subsonic inflow as in present cases, thevelocity is
extrapolated from the interior. The static pressure and
densityare obtained from gasdynamic relations.

At the outflow boundary, since the main flow is
supersonic, no condition is prescribed, all the variables
are extrapolated . In the region of boundarylayer, if the
flow is subsonic, the static pressure is determined from
the assumption of zero normal gradient of pressure.
The other flow variables are still extrapolated from in-
terior points.

In the symmetric planes, the mirror reflection
treatment is used. An alternate method is to treat the
plane as a slip boundary with zero cross fluxes, only
pressure is needed to extrapolated from interior .

For wall surface, no—slip condition is imposed. As
cell faces lie along the surface, the fluxes of mass, mo-
mentum-and energy across the faces are set to zero. The
surface pressure is simply extrapolated from interior.
The shear stress is found from an improved wall func-
tions formula derived by the first author in [4] as

1,=q/y if vy <11.225,

or otherwise

1, = (Qagryp,T, )H—"Za‘, a=2logEy" )"~
where E=9.793,c=0.4187. The formula has been con-
firmed very efficient in [7,8].

The use of wall functions can reduce the need of se-
vere mesh refinement near wall, and satisfactory results
could be achieved even on relative coarse grids.

1

Result and Conclusion

Three transition ducts with length of 0.5,0.75 and 1
times of entrance diameter( denoted by d), integrated
with a convergent—divergent nozzle through a short
uniform duct connection, are investigated in present
study. The ratio of width to height of transition exit is
as high as 6.33. The same models have been tested in the
static test facility of Langley 16—Foot Transonic
Tunnel, NASA [3]. Their geometric details refer to [3].
By virtue of the full symmetry of the configurations and
axial inflow conditions, only one forth of the internal
region is actually needed to calculate. The grid number
for the one—quarter—domain is 56 x 16x 18 with clus-
tering to the wall. A typical iteration number of 800 is
needed to reduce the maximum residual three orders of
magnitude for turbulent flow computation, and only
half the iterations for a converged Euler solution. All
this calculation is completed on a personal computer.

Fig.5—7 show the computed static pressure ratio
distribution and comparison with the experimental
data. For the case of L / d=1, because there is no sepa-
ration observed both experimentally and numerically
(refer to Fig.8,11) in the transition duct, the Euler solv-




er gives good enough results. However N—S solution
dose show improvement in the region of sidewall where
viscosity becomes dominating. When the L / d reduced
to 0.75, as shown in Fig. 6, the Euler solution still re-
mains valid for most region except in the rear parts of
both transition duct and nozzle sidewalls. In this case, a
small region of separation occurred in the vicinity of
sidewall centerline and near the exit of transition duct
(refer to Fig. 9,12). Significantly, the N—S solver almost
reproduces the experimental results. Once again, the
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N-S solution accurately matches the test data in the
case of L/ d=0.5 as shown in Fig. 7, but the Euler so-
lution has a big deviation from the measurement along
sidewall, implying the separation is becoming severe.

It is needed to mention that the computed pressure
is in a higher overall level than the measured. It is be-
lieved that the overall error may be due to the difference
of reference total pressure p, between the experiment
and computation. The total pressure pt is defined at the
exact entrance of transition duct in the present study,
but in the test, it is measured in average at a station
much more upstream.

Fig. 8,9,10 show the 3d view of the near—surface ve-
locity vectors. It is easy to find that there is no separa-
tion for the case of L /d=1. When the relative length
of transition duct reduced to 0.75, the separation begins
at the rear part of transition duct sidewall. The result is
congruous with the test. If the length is further de-
creased to 0.5, the flow separates immediately when the
sidewall begins expanding as shown inFig.10. Two pairs
of vortexes are formed after separation along the
sidewall. The separation causes velocity profile deficit
near sidewall throughout the nozzle. resulting signifi-
cant loss of internal performance.

3
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Py

Fig.8 3D View of Near—Surface Velocity Vectors
on Half of Configuration with L /d=1




Bottomwall

Fig.9 3D View of Near—Surface Velocity Vectors
on Half of Configuration with L /d=0.75

To have a clear view of the internal flow patterns,
the velocity vectors are also plotted on the symmetric
plane of sidewall-to—sidewall. Fig.11 shows the
tangential component vectors on this divergent plane
for the case of L /d=1. The flow is in a normal style.
Fig 12 shows the case of L./ d=0.75, small region of
separation is easy—seeing. The near—sidewall flow after
separation is in a centripetal direction, indicating that
strong secondary flow exists. When the relative length
L/ dis reduced to 0.5, as shown in Fig.13, the situation
becomes more severe, since the separated flow, occupied
a considerable area, causes much stronger secondary
flow in a pattern of one pair of vortex in each sidewall
nearby.

On the another symmetric plane (bottom—to—bot-
tom), the velocity vector fields of three configurations
have no essential difference. For the conciseness, only
one such plot is given in Fig.14 for L. / d=0.5.

Mach number contours on the two symmetric

planes are illustrated in Fig.15-20 for all
configurations. Since such contours for similar configu-

rations are not found from available references, no
comparison is made here. All the contours have the
same feature that the iso—Mach lines concentrate in the
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Fig.10 3D View of Near—Surface Velocity Vectors
on Half of Configuration withL /d=0.5

nozzle throat region , owing to the rapid acceleration of
speed. For same reason, the boundary layer is thin and
the effect of viscosity is in a low altitude in the area. Ex-
cept in the separation region, the respective contours
for different configurations are in a similar fashion.
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Fig.11 Vector on Symmetric Plane (S—S)
withL /d=1
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Fig.15 Mach Number Contour (§m =0.043)
on (B—B) Plane with L /d=1
Fig.12 Vector on Symmetric Plane (S—S)
with L / d=0.75
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Fig.13 Vector on Symmetric Plane (S—S)
with L/ d=0.5

Fig.16 Mach Number Contour (§m = 0.0414)
on (S—S) Plane with L. /d=1

Fig.14 —Vector on Symmetric Plane (B—B)
withL/d=0.5

Fig.17 Mach Number Contour (6dm =0.0435)
on (B—B) Plane with L / d=0.75
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0.298

Fig.18 Mach Number Contour (ém = 0.0425)
on (§-S) Plane with L / d=0.75

Fig.19 Mach Number Contour (ém ~ 0.045)
on (B—B) Plane with L. / d=0.5

Fig.20 Mach Number Contour (5m x 0.04)
on (S—S) Plane with L /d=0.5
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