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Abstract

In this paper an interactive flow simulation system for the
theoretical investigation of unsteady flow phenomena in
turbomachinery components is presented.

The numerical methods employed for the solution of the |

time dependent Euler equations, the entry and exit bound-
ary formulations and the coupling procedure for relatively
moving grids are described.

The application of the system on the simulation of the
start-up and acceleration process of two relatively moving
cascades is illustrated by figures showing pressure contours
at different time levels.

I Introduction

The efforts for increasing the efficiency of civil jet engines
leads to a new propulsion concept in the 70’s, the so called
Propfan. In order to decrease the fan diameter, the fan
exit swirl and to maintain the propulsive efficiency on a
very high level, Propfan based Ultra-High-Bypass Engines
(UHB) are under development. One of these concepts is
the counterrotating ducted Propfan engine, i.e. the CRISP
concept (Fig. 1).

The institute for propulsion technology of the DLR has
been investigating the flow field of an counter-rotating fan
theoretical as well as in wind tunnel tests. Contrary to the
latter the numerical investigation leads to very ’compact’
data. Therefore it is possible to study fundamental physical
phenomena.

Following this idea an interactive flow simulation sys-
tem is under development by the authors to study and
analyze the unsteady flow phenomena in turbomachinery.
Special emphasis is put on the unsteady effects of the flow
through the blades of the counter-rotating ducted fan ro-
tors mentioned above. -

The whole system has been setup on a parallel com-
puter which provides the necessary computational power
together with the required interactive access.

The system serves as a numerical test facility which
allows the user to alter various parameters like rotor-speed
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Sectional view of a jet engine with 2
counter-rotating fan-rotors (CRISP-Concept)
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Figure 1:

Figure 2: Counter-moving cascade blades

, exit pressure, etc. during runtime of the calculation as
well as request information about the current state of the
system. Through these features the user has the capability
of performing *numerical experiments’ [2].

As a first step towards a 3-D Navier-Stokes code a 2-D
Euler code for the calculation of countermoving cascades

_(Fig. 2) is implemented.

The code is a non-MUSCL explicit TVD scheme based




on Roe’s approximate Rieman solver [8] and the modified
flux approach of Harten [5] and Yee [10].

Since the calculations are carried out on a finite domain,
accurate physical and numerical boundary treatments are
necessary to avoid non-physical results. Practical formula-
tions which satisfy these requirements are decisive for the
simulation system.

The flow mentioned above is characterised by blade in-
teractions which produce periodic unsteady perturbations.
These perturbations have to pass the boundaries without
any non-physical reflections so that the flow field becomes
independent of the boundary location.

In this paper a short survey on the interactive system
will be given. Then the used numerical algorithm is de-
scribed, including the explicit TVD scheme, the fluxlimiter
the method of grid coupling and the boundary conditions.
In the remaining part the results of the calculation of 2D
counter-moving cascades representing a typical transonic
near tip section of the blades of the counter-rotating fan
will be presented.

II System Description

Today parallel computers use up to hundreds or thousands
of nodes (processors) while future systems are expected to
increase the number at least one order of magnitude. Thus
the key issue in developing code for parallel computers is
that it must run on an arbitrary number of processors in
order to exploit massive parallel systems effectively. How-
ever this does not mean that for a given problem size solely
the number of processors must scale keeping the overall
performance somewhere acceptable. The use of parallel
computers should provide the ability to address problems
which probably cannot be solved on existing scalar ma-
chines. This implies that a parallel code must run effi-
ciently when the ratio of the number of processors em-
ployed over the problem size is kept constant at an as high
as possible value.
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Figure 3: The software layout of the flow simulation
system
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The single node of a parallel computer is slower than
the processor of a supercomputer. Thus not only the pro-
cessor itself but also its own local memory is cheaper. This
in turn means that parallel computers posess not ounly a
higher computational performance but also a larger mem-
ory. On the other side the bandwidth to the user interface,
usually a graphic workstation, remains constant leading to
a possible bottleneck when tackling large problems. Rec-
ognizing these points a system consisting of a flow solver
plus a visualization system running on a parallel machine
has been designed. The overall layout is shown in figure 3.
The major components are

Flow Solver An explicit non-MUSCL upwind TVD
scheme formulated on general coordinates,

Data Processing A system which allows single modules
to be arranged interactively to analyze all desired

properties. The system was designed following an
initial idea of AVS [12],

Control Meodule It controls the execution of the flow
solver and of the visualisation system. It processes
the user commands during run time,

Communication System It distributes the commands
and synchronizes all necessary information within the
processor network,

Visualization System A module to visualize directly the
incoming data from the parallel system. It runs on a
graphic workstation,

User Interface A parser that allows commands to be sent
interactively to the processor network while the flow
solver is running. This parser enables basic syntax
checking of commands so that user faults do not cor-
rupt system execution.

The parallel computer and the workstation used for visu-
alization are coupled directly via special hardware to allow
fast data transfer.

III The Numerical Algorithm

Currently the upwind TVD scheme for the Euler equations
devolped by Harien and Yee[10] using Roe’s approximate
Riemann solver is implemented. The solver is parallelized
using a domain decomposition method [3].

In the following subsections the TVD scheme followed
by the currently implemented flux limiter and the grid cou-
pling method used are described. The latter is of special
interest since each cascade is calculated using a grid fixed
to the local blades. Thus these two relatively moving grids
have to be coupled in such a way that there is no additional
error introduced into the scheme. Also a short describtion
of the used boundary conditions is given.




TVD Scheme The two dimensional Euler equations in
general moving coordinates ¢ = £(z,y,t),7 = 7{(z,y,t) may
be written as
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where U = {p,pu,pv,e} is the conservative variable vec-
tor, I' = (&, F + £,G + £&U)/J and G = (n.F + 1,G +

7U)/J are the fluxes in ¢ and 7, respectively. The carte-
sian fluxes are F' = {pu,pu® + p, puv,u(e + p)} and G =
{pv, pvu, pv? + p,v(e + p)}. The time integration method
is a four step Runge-Kutta method which may be written
as
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where a; = 0.091, ay = 0.24, a3 = 0.42, and oy = 1 and
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The numerical flux in ¢ for the Harten and Yee non-

MUSCL scheme in a pseudo finite volume formulation is
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the flux in 7 is obtained by substituting ¢ by  and j
by k, respectively.
® is a function which contains the flux limiter function
which is described in the next section (for details see[10]).

Flux Limiter = The flux limiter (g) is a nonlinear func-
tion that switches the numerical scheme to first order ac-
curacy in local extrema which occur near discontinuities.
The currently implemented limiter is the minmod Limiter
which may be written in the scalar case as

g; = minmod(A_uj, Ayu;) (5)
where

. sign{a)min(|al, |b]) if sign(a) = sign(b
m‘mmod(a,b):{ Qg ( ) (| |’I D othe‘iw(isz g ( )
(6)

and Aiuj = :i:(uj;ﬂ - Uj).

Grid Coupling To couple the two relatively moving grids
a local pointwise method must be found that allows the
transport of the mass, momentum and energy fluxes from
one grid to the next in time accurate manner [11]. The
method must not introduce spurious oscillations nor should
it decrease the accuracy of the scheme.
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In the presented method sheared cells are used as shown
in figure 4. Both grids are locally reconnected as the grid
is moving and the metric terms are recalculated. Thus the
only error one may expect is due to the local change in the
metric terms introduced by these sheared cells.

Boundary Conditions In turbomachinery applications one
usually finds four types of boundaries: solid wall, period-
icity, inflow and outflow (see also fig. 2).

The solid wall boundary condition is realized via the
mirror cell technique [7] and the momentum equation nor-
mal to the surface. The motion of the solid boundary has
also to be taken into account.

Figure 4: Grid coupling via sheared cells. While the
grids are moving relatively slightly sheared cells are
formed at each time step. The cells are formed using
nearest grid lines.

The periodic and interprocessor boundaries can be pre-
scribed exactly by an overlapping grid.

The inflow and outflow boundary conditions are more
difficult to treat, because the prescribed flow is charac-
terized by blade interactions which produce periodic un-
steady perturbations. These perturbations have to pass
the boundaries without any non-physical reflections. On
the other hand additional properties are essential hecause
of the assignment of the interactive simulation system:

o The formulation of the boundary conditions should
be accurate in a wide physical range, ie from zero flow
and non-moving blades (steady state) up to relative
supersonic flow and moving blades (unsteady flow).

e The physical parameters which specify the problem
should be aliered by manipulating the boundary con-
ditions interactively.




The implemented inflow-outflow boundary conditions
combine the non-reflecting treatment with the far field flow
values.

The non-reflecting boundary approach is based on non-
reflecting boundary-conditions developed by Giles[4]. The
formulation which is applicable for steady and unsteady
problems is coupled with the occurence of periodic bound-
aries and therefore particulary suitable for the mentioned
flow problem.

Because the flow values at the far-field are not known
beforehand they have to be calculated during the integra-
tion process, but without violating the linear theory on
which the non-reflecting approach is based. They should

also perform user specified quantities. The complete im-
plementation is described in more detail in [1].

The currently implementd periodic boundary conditions
do not in general allow different pitch to chord ratios to be
handled. In special cases where simple multiplicities are
used several passages may be simulated to overcome this
difficulty. This of course is only advisable in special cases
where the number of passages is small.

IV Results

In the following section the results of the simulation of
a 2D flow case, the unsteady flow through two cascades
moving in opposite direction, will be shown. These cas-
cades represent a typical transonic near tip section of the
counter-rotating fan rotor.

The simulation process consists of the start-up and ac-
celeration of the blades prior to the steady operating point
of the fan. The far-field boundary conditions at this oper-
ating point are:

Ty, = 288.15K

pli = 101325.0N/m?
a1|1 = 0°

uly = —241.9m/s
’ll.l]j = 12095m/3
Myl = 0.2503

where the subscribt I denotes values for the first rotor and
IT denotes values for the second rotor.

Profile Figuré 5 shows the transonic profile for both
cascades. Typical parameters of this profile are:

e The maximum thickness is 0.05 located at 40% chord
length.

e Radius at the trailing edge 0.004.
o Leading edge thickness 0.008.

All variables are related to the chord length.
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Figure 5: cascade profile

Cascade The first cascade moves downwards while the
second one moves upwards. Both pitch to chord ratios are
1 and the stagger angles are 150° for the first and 158°
for the second cascade. The steady flow field of a single
cascade was investigated in wind tunnel tests at the DLR
cologne [13].

Grid A body-fitted structured multiblock grid is used
for both cascades. The grid consists of an O-grid around
the profile and four H-grids. Latter ones simplifies the han-
dling of the periodic, entry and exit boundary.

The number of grid points is 2440 for each cascade. The
formulation of entry and exit boundary conditions allow a
location of entry and exit boundary close to the cascades.
Therefore the grid within the passage is not too coarse
despite the low number of grid points.

The flow solver is parallelized by the idea of domain
decomposition as mentioned in section III. For this calcu-
lation 32 processors are used. Therefore the complete grid
is subdivided into 32 patches which are mapped onto unde-
pendly working processors. Figure 6 shows the subdivided
multiblock grid.

Calculation Because of the mathematical properties of the
Euler equation system —it as an Initial Boundary Value
Problem— the calculation has to start with physical cor-
rect data. Otherwise the time integration could yield to
non-physical results. The only flow field known beforehand
is the so called 'zero flow condition’.

Therefore the flow velocity in the complete computa-
tional domain is equal zero at time step n= 0 . The simu-
lation process is then started by lowering the far-field pres-
sure at the exit boundary form -2~ = 1.0 to ;ﬁ—t = 0.8.
As a consequence a rarefraction wave propagates from the
exit boundary towards the entry boundary. When the rar-
efraction wave reaches the entry boundary a flow field has
established in the complete computational domain (Fig. 7).
Then both cascades are accelerated by the same constant
rate.

The sequence of the figures 8 to 12 show the pressure
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Figure 9: pressure contours time step n = 4000, lst Figure 11: pressure contours time step n = 6500, 1st
cascade 60%, 2nd cascade 100% final 'rotational speed’ cascade 76% final 'rotational speed’

Figure 10: pressure contours time step n = 5500, 1st Figure 12: pressure contours time step n = 7500, 1st
cascade 68% final ’rotational speed’ cascade 84% final ’rotational speed’
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Figure 13: pressure contours time step n = 18000, peri-
odic state is reached

IV Conclusion

An interactive simulation system on a parallel computer
is presented. It is under development by the authors to
study and analysize the unsteady flow in turbomachinery
components.

As an example results of an inviscid calculation of the
flow through countermoving cascades are shown.

The results indicate that the formulation of the grid
coupling and the implemented solid, entry and exit bound-
ary conditions work well. Further studies for a quantitative
study on the accuracy of the scheme will be done.

For the detailed analysis of the flow phenomena the
used O-grid around the profiles gives a good resolution of
the flow field at the trailing and leading edge regions, but
for shocks which occure within the cascade the grid is much
too coarse.

Future work will cover the development of a three di-
mensional system with Navier-Stokes solver for the theoret-
ical investigation of viscid unsteady flow. This can only be
achieved by using computers consisting of a few hundered
processors.
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