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Abstract

The equivalent deterministic input for a certain
physical random process should satisfy some
conditions and be ol certain properties so that it can
be realized easily and reasonably with physical
equipments. These properties and conditions are
proposed in this paper. With the techniques of
separating partial block matrices, the given power
spectrum matrix can be separaled into the summation
of several multiplications of column matrices and row
matrices. Then based on Parseval's theorem and
Fourier transformation, the equivalent deterministic
inputs can be found. The presented method is more
reasonable, and the processes obtained with the
method can be simulated more easily. For cxample, the
equivalent deterministic inputs for atmospheric
turbulence are obtained with the new mecthod.

I__Introduction

If there is a deterministic process for which the
energy responsc of a dynamic sysiem to the
deterministic process equals the mean-square value
response of the dynamic system to a given random
process, the dcterministic process is called the
equivalent deterministic process (or input) of the
system for the random process. The method to find the
deterministic process is called equivalent
deterministic technique (or EDT). So 'if the equivalent
deterministic process for a random process is known,
we can easily usc it to obtain the mean-square value
response of a dynamic system to the random process.

B. Etkin first introduced the concept of equivalent
deterministic inputl!'! in 1961. The EDT that he
proposed was very simple and restricted to one-
dimensional problems. The cquivalent deterministic
input of a dynamic system can be obtained directly. In
1984, he expanded one-dimensional EDT into multi-
dimensional EDTI[2], EDT was further dcveloped by
Xiaol34 and Zhul5!,

Besides EDT, several other methods, such as power
spectrum response methods, system responses (o
random signals in a time domain, have also been
presented elsewhere. There are two distinct
advantages with EDT in solving the mean-square
value response of a dynamic system to a random
process. Because it is a deterministic process, the
equivalent deterministic input (EDI) of a dynamic
system for a random process can be simulated readily
and exactly on physical equipments. Seccondly, the
precision to find the mean-squarc value response of
the dynamic system to the random process can be
controlled easily and effectively.

II._ED! Propertics
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It is necessary [or us Lo propose some standards that
EDI should satis(y. For controlling precision easily
and realizing it cxactly on physical equipments, EDI
u(t) should have properties as [foHows:

(1) u(t) is a one-sided function, Or u(t)=0 for time t <0.
(2) u(t) must be a real function.

(3) u(t) = 0 whent —oo

(4) u(t) #0 when t > M (M is a large positive number)
(5) u(t) # oo for t e [0, +o0)

In addition, because [requency properties of a
dynamic system are bascd on a stable system, the
dynamic system should be stablc when EDT is used to
solve the mean-square value response of the system to
a random process.

[I. New EDT

At first, we nced to define a Hermit matrix. If a
matrix J(w) can be expressed as

Ul(0)U11(0) Ua0)Uii(@) - Unn(@)U11(®)

Twy=| U(®)Uz2(0) Uzo(@)Uzz(®) - Un(w) Uzz(w)

U'1(0) Unn(@) U22(@) Unn(@) - Una(®) Unn(®)

it is called a Hermit matrix. Here superscripts - and *
denote a matrix and the conjugale of a complex
number, respectively.

The discussion on EDT in this paper is mainly
restricted in that the power spectrum matrix @®(w) of
random processes can be written as a diagonal block
Hermit matrix, i.e.

o(0) = . O]

where ® denotes [requency. Actually, a lot ol power
spectrum matrices of random processes such as
atmospheric turbulence power spectrum matrices can
be rearranged into the form of diagonal block Hermit
matrices.

The main consideration about new EDT will be
discussed with an cxample. Assuming that the
transfer function matrix of a stable dynamic system is
G(s), power spectrum matrix of input random
processes is ax(m) and power spectrum response
matrix of the system is ®y(w). So we have

Dy(@) =G (10)Dx()G (i0)




Transpose
y(0) = G(i0) (@G (i)

Here superscripts T and H denote the transpose of a
matrix and the transpose & conjugate of a matrix,

respectively. Assuming 53(0)) has the same form as Eq.
(1), or

Uli(@)Uri(e) Uzae)Uni(e) 0

—T _ ¥ *
2n®x(0) =| Uli(0)Uz(w) Uzxe)Uza(e) 0
0 0 Uss(@)Us3(w)
P2
15
we can write
—T — .J—l )—‘}l
Dy(w) = -G@w)| - |G (i)
2n J2
_ no\- _ o \_
- l—G(iw)( : )G”(im) + LGao| - )GH(im)
2n 0 21 Iz
Further assuming
Pi(0) = [Un(e), Uzn(w), 01"
P2(0) = [0, 0, Uss(@)"
we get

By(@) = L ([G(i0)P1(0)] [GGo)Pi(@)]"
i

+ [G(i0)P2(0)] [Glio)Pa(@)]")

In terms of the relationship between a relation

function and a power spectrum function

R(1) = [Rij] = J D(w)e do

we have

PR

Ryy(0) = of; = 2_1151 (GO P LIG(0 P ()] do

+ %f (GG PAw)}j[Gi0)PAw)]jdo
TE “oa

From parseval's thcorem

oo

cgjz{ yf(t)dt=l—j Y)Y (0)do
- 2n

new EDT can be derived. H_ere Y((o)_is the Fourier
transform of y(t). Thus if Pi(w) and P2(w) are the
fourier transforms of ui(t) and u2(t), we can derive

the conclusion that the mean-square value response
o2 of the stable dynamic system with a transfer
function G to a random process x(1) with a power
spectrum ®x equals the summation of the energy
responses of the system to deterministic processes
ui(t) and uz(t). Here ui(t) and u2(t) are called
equivalent deterministic inputs of the system for the
random process X(t). In general, the solution of EDI is
not unique.

IV. EDI for Atmospheric Turbulence

As an example, using new EDT, we can get the

equivalent deterministic inputs of an aircraft for
atmospheric turbulence with given power spectrum
matrices[4].

1. Longitudinal Motion of an Aircrafl

The longitudinal dynamic equation of an aircraft is

d (ytl) - Xl?l + EIII @

o

Here Xi=[Ws Wy, Wyl and y1 denotes the
longitudinal motion parameters of the aircraft such
as [V,a,wz,ﬁ]T. Wy and Wy denote the velocity
components of the atmospheric turbulence in the
directions of x coordinate and y coordinate,
respectively. Wyx denotes the gradient of Wy in the
direction of x coordinate. The two-sided atmospheric
turbulence power spectrum matrix is

Dw,wy 0 0
Dy (w) =
%y (@) 0 Dw,w,  Dwywy,
0 DwyWy  Pwywy,
where
L
wow= = L of,

2
1+ &%)
v

1+ 12(E% m)z
o Lwy v
v 22

1+ 4% o)
%

W,

(0/V)*
1+ @Lg)
v

DWWy = Dw,w,

(I)wywyx = M (bwywy
1+ 4Lk jg
Vv

DWW, = DWWy
where V, L, Lw and ow denote the velocity of the
aircraft, the wing span of the aircraft, the relation
scale of atmospheric turbulence and the strength of

atmospheric turbulence.

Using new EDT, we have
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P1(®) = [Uni(w), 0, 0]

P2(0) = [0, Uzz(w), Uss(@)]"

Ull((l))=0'wx4’—2—lﬁx— S
v 1+ L%‘-im
A\
W 1+ Zﬁﬂim
Un(w) = ow, 4/ b4 A
Y, 2

[1+ Mim]

where

Uss(o) = —0/V  Uy(w)

1+ 2o
Vv

Using inverse Fourier transformation, we can obtain
the equivalent deterministic inputs (one-sided
functions):

ui(t) = ow, 4 [2Y expe Yop
L Lw,

Wy
un® =ow, 4/ —Y— (V3 +(1-V3) Y Jexp- Y
2Lw, 2Lw, 2Lwy

and for 4L = 2wy ,

v v

u3s(t) = ow ZLw, [VB v? + (1-2?3)V3 .
Yy
Vo v ooand, (2Lw,)’

A

4
- gl_-_v_@_\%[z] exp(-._V_[)
2(2Lw,) 2Lw,
2L
for 4L , LWy
v \"
2L
u3s(t) = ow, W mYogy exp(- Y ) +
y? 4L 4L
V2 v
c1( ) exp(- 1) + (by -
2LWy Lwy
2
_Cll)(L) t exp(- V_
2Lw, 2Lw, 2Lw,
where
Lw 2L 2
ar=2 V3 =Yy o 4Ly oWy 4Ly
v 4% v VvV
b1 = -a1

cl=1_(ﬂ - 4Ly,
\'% A%

2. Lateral Motion of an Aircraft

The lateral dynamic equation of an aircraft is
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d&2) (;' 2) - sz’z + Bax2
t

Here  X2=[Wz, Wux, Wy,]' and y2 denotes the lateral

motion parameters of the aircraft such as

B, wx, wy, y]T. W, denotes the velocity component of the
atmospheric turbulence in the direction of z
coordinate. Wzx and Wy, denote the gradient of W; in
the direction of x coordinate and the gradient of Wy in
the direction of z coordinate, respectively. The two-
sided atmospheric turbulence power spectrum matrix
is

dw,w,  Ow,wu 0
DPxy(@) = dw,w, DPwuwa 0
0 0 Dwy, Wy,

where

2
1+ 12(9% @)
Oww,= e — Vo,

22
1+ ad¥e gy
v

2
<D\Vuwzx = ___.(_(D.Z_!)—... ‘D\Vsz
1+ @EL )
v
/3
0.4(CYs,)
Dwy, Wy, = 1 2L 5 U%Vy
2Lwy 1+ #Ll o)
v
DW,Wox = _Go/V) dw,w,
1+3L jg
A%

Dw, W, = <I>{vzwzx
Using new EDT, we have
P1(0) = [Uni(w), Uz(e), 01"
P2(0) = [0, 0, Us3(@)]"
where

1+ 2Y3 L g
\'%

Ui(w) = ow, 4/ 2Lw,
\"

Un(w) = —10/V 1y ()

2
[1+ 2LWe )
v

1+ 3L g
TV
0 L, 1/3 .
Un(w) = ow, T (
V Lw, 2L 1+ 4L jp
A%

Using inverse Fourier transformation, we can obtain
the equivalent deterministic inputs (one-sided
functions):




uni(t) = ow, 4/ V_ ({3 +(1-V§) V_expt Y p
2Lw, 2Lw, Lw,
for 3L = ZLw, ,
v \"
3
u22) = o, 4 ] 2o 13V . (1-213)v
viooad, (2Lw,)’
S - V—)V ] expe Ny
2(2Lwy)* ZLw,
for 3L » 2Lw, ,
nV \'%
uz2(t) = Ow, M [ﬂ az exp(- oV 1)+
y? 3L 3L
v 2
1 ) exp(- D+ (b2 -
Lw, W,
2
£2—V——)(—V—) t exp(- )]
2Lw, 2Lw, 2Lw,
where
2
a=@ V3 b . 3Ly, @hw, | 31,
v 4% v v
bz = -a2
ca=1- (iI:W_Z - L)az
A" v
alw, /3
u33(t) = oy, L4/ L4V (= expt- 2V p
4L Lw, 2L 4L
omputational Result
Assume
V =130 (m/s), L =38 (m)

Ow, = Ow, = Oy, = 1.766 (m/s)
Lw, = 2Lw, = 2Lw, = 530 (m)

-0.01978 7.302 0 -9.807
0.001151 -1.061 1 0
0.0005736  -2.807 -1.368 0
0 1 0
0.01978  -0.01884 0
o 0.001151 -0.008113 0
-0.0005736 -0.02161 0.7184
0 1
-0.1408 0.06495 1 0.07528
= -4.000 -2.328 -0.7038 0
-1.000  0.1013 -0.4000 0
1 -0.06504 0
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0.001083 0 0
By= 0.03077 -0.7038 -2.328
0.007692 -0.4000 0.1013

0 0 0

Some computational results are given in Table 1.

V. Conclusion

New EDT presented in this paper is more effective
and reasonable.
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Table 1 Mean-Square Value Responses of an Aircraft to Atmospheric Turbulence

Mean-Square o Oa O o® Gn
Ee Value (m/s) (rad) (1/s) (rad) y
e
=Rt
£8 New EDT 3.206 001357 | 0006761 003190 0.1243
ENQ
Q
- Exact 3.160 0.01347 0.006668 0.03179 0.1244

Mean-Square Sp O Oay Oy G,
= 5 Value (rad) (1/s) (1/s) (rad)

84 New EDT 001832 002969 001558 0.09998 0.1157
Exact 001793 002793 001481 0.09280 0.1103
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