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ABSTRACT

Flutter flight tests are both time consuming and
costly as result of the large number of flight tests
performed. This involves a careful increase in
flight speeds at different flight levels to open up
and establish a flutter—free flight envelope. The
introduction of powerful 386 and 486 personal
computers enabled the development of algorithms
for parameter identification techniques in a user
friendly environment. This paper mainly describes
the implementation of the half power bandwidth
method in the on-line modal analysis system to
provide rapid estimates of structural damping and
frequency trends. Other parameter estimation
methods are available to assist the flight test
engineer but are not utilised in the on-line system.
The performance of the different evaluation
methods is illustrated from flight flutter test data.

INTRODUCTION

To safely conduct flutter tests, proper preparation,
instrumentation and flutter monitoring techniques
are required. This must be linked to an accurate
parameter identification algorithm to verify that
aeroelastic instabilities are not present during
flight. In the past this required heavy user
interaction and tedious hand calculations before
being able to establish frequency and damping
trends.

In this context it was necessary to develop a cost
effective flutter test facility. To achieve this

algorithms were implemented in the MATLAB™M
mathematical analysis workspace. This allowed
the use of flexible analysis tools with no memory
restrictions.

In subsequent sections, flutter testing will be
analysed in view of excitation, signal condensation
and parameter estimation. Broadband frequency
domain methods are utilised to provide estimated
frequency and damping estimates from random
aileron excitation.

DATA PREPROCESSING AND DATA
ANALYSIS

The nature of the testing procedure requires the
use of particular signal and analysis functions
which may differ from those used in standard
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modal testing. Although an aircraft in principal
has a large number of degrees of freedom, there are
usually only a limited number that contribute
significantly  to  flutter behaviour and,
consequently, only these modes need to be tracked
as functions of flight conditions.

The extraction of the excitation response from a
noisy environment is an important task since
atmospheric turbulence is present even when the
structure is artificially excited. This is the reason
why averaging and data smoothing procedures are
applied. The data processing depends on the
testing approach which is followed as well as the
capabilities of the system identification algorithms
available.

In case the forcing signal is measurable, both
excitation and response signals can be transformed
into the frequency domain by taking the Discrete
Fourier Transform. The autopower and crosspower
functions can then be obtained by an overlap
averaging scheme.  Once these functions are
available, a system identification technique can be
applied to the transfer function or power spectral
density.

The flutter software package provides a variety of
identification algorithms which include :

Orthogonal Polynomial Curve Fitting,
Half Power Method (DFT or MEM based),
Approach of Eliminating Lobe Effects
(AELE),

Laplace Analysis and the

Complex Exponential Curve Fit.
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Methods 1 and 5 are well known and need no
further explanation [1),2]. A brief explanation of
the remaining techniques is provided here.

The half power technique is related to the
bandwidth of the mode at half the peak power as
illustrated in figure 1 [3]. The natural frequency is
associated with the resonant peak while damping is
obtained from :

¢ = bandwidth/(2fy)

where fy; = natural frequency

The AELE method was originally developed for the




identification of heavily damped, strongly coupled
and higher order dynamic structures {4].
Nevertheless, it was implemented to check its
performance against other well-known techniques.
The principal of this method is very simple and
only algebraic calculation is needed for the
identification process. For each mode only three
sampling points around each resonance are
required. The parameters are then extracted while
eliminating the effects of the modes already known
as calculation proceeds.  Finally an iterative
procedure is used until the deviation in modal
parameters are all within certain criteria.

The Laplace transform procedure consists of
differentiating the transfer function twice which
tends to sharpen the peaks. The resulting function
is then scanned for peaks. The modes with the
lower energy values are then discarded while
frequency and damping values for the remaining
locations are computed. The ratio between the
first and second derivative is used to estimate
damping [5]. In this implementation the method is
applied locally to peaks chosen from the transfer
function, thus avoiding computational modes to a
large extent.

So far, the estimation of signal spectra assumed to
take place by means of Discrete Fourier Transform,
but this is not the only way to estimate the power
spectrum. Signal modeling approaches such as the
Maximum Entropy Method (MEM) can be used to
reproduce the most prominent features of the
spectrum [6]. The method makes no assumption
regarding data outside the time interval specified
and is thus least affected by unavailable data. In
addition, short data samples can be used without
compromising spectral resolution.

Basically the method consists of estimating the
order and coefficients to a finite order
autoregressive prediction filter which, when applied
to the response signal, renders the prediction error
time history as random as possible. This
corresponds to maximizing the entropy. If no
excitation signal is available, the Hilbert transform
can be employed to generate an equivalent
minimum phase and consequently the complex
transfer function [7].

The major difficulty however, is the selection of the
optimum order of the filter. If the number of poles
or number of data points is too large, roundoff
error can be a problem, even in double precision. If
the order is too small, resonances cannot be
resolved; if too high, spurious peaks may occur.
Order estimation procedures, such as the Akaike
Information criteria [6] can be used for this
purpose. A drawback of this method is the
considerable computing power required compared
to FFT based methods. Sample spectra produced
by the MEM is shown in figure 2 and depicts the
behaviour of the method for different filter order
settings.
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Synthesized Test Case

A simple theoretical example was synthesized to
establish the validity of a few parameter estimation
methods. To simulate a test case a transfer
function was generated for a one-degree-of-
freedom system with natural frequency of 20Hz and
damping coefficient of 0.04. The resuits in Table 1
are as expected with only a scatter of 0.21% in
frequency and 2.0% in the damping coefficient.

To wvalidate the performance of the available
methods in the presence of noise, a disturbance was
added to the signal. Figure 3 shows the real and
imaginary parts of the disturbed transfer function,
while table 1 lists the frequency and damping
solutions.

For the Orthogonal Polynomial Curve Fitting
technique it is clear that addition of disturbed
values over a wider frequency band reduces the
accuracy of results when comparing figures 4a and
4b.

The sensitivity of the time domain Complex
Exponential Curve Fit to noise can be observed
from figure 5 where the singular values of the
Toeplitz matrix are compared at different noise
levels. The algorithm requires a priori information
concerning the number of modes. Since the singular
values are an indication of the expected number of
roots in the signal it becomes difficult to specify
the model order.

FLIGHT FLUTTER TEST PROCEDURE

are conducted an
undertaken to
of the

Before flight {flutter tests
aeroelastic analysis must be
determine the flutter characteristics
structure.

Flutter flight tests are conducted at different
points of the flight envelope in an air-speed build
up approach. Therefore testing starts at high
altitude/low air-speed and proceeds to low
altitude/high air—speed.

The flight test procedure consists of stabilizing
flight conditions followed by forced aileron
excitation  to  induce  symmetrical  and
anti-symmetrical excitation at each point within
the flight envelope. The forcing signals consist of
square waves with random pulse width produced by
a random pulse generator. Responses from force
and accelerometer stations are transmitted via
telemetry to the ground station and displayed on
strip charts. A direct interface between the
front-end and a 386-PC stores 35 channels of data
on virtual disk.

Typically about 4 stations are analysed during
flight, initially selected on the basis of flutter
analysis predictions. Each flight contains about 4
to 5 envelope points, depending on the position in
the flight envelope, for both symmetric and




anti-symmetric excitation.

The frequency and damping values are then plotted
as a function of indicated air speed. Clearance to
the next test condition in the flight envelope is
given once damping coefficients and trends are
determined to be satisfactory.

REDUCTION OF FLIGHT TEST DATA

A menu driven manager was developed which
streamlines the manipulation of data from
acquisition to the point where damping and
frequency versus air—speed trends are displayed.
The flutter engineer can configure the system with
different filter options, decimation procedures and
Welch power spectrum estimations.

Flight data are acquired at a rate of 240 samples
per second for a duration of 40 seconds. In our case
a sampling rate of 240Hz is too high given a
baseband of interest of 30Hz. The time traces are
then undersampled with the final rate being 60
samples per second.

The frequency content of the signal is captured by
performing FFT analysis to obtain the power
spectrum. The power spectrum is obtained by first
removing any linear trend from the time record.
Successive sections are Hanning windowed,
transformed and accumulated with 67 percent
overlap processing [8]. From literature it is known
that the Hanning window is the best choice for
system analysis using a true random signal [9]. The
filter shape of this weighting function is
characterised by a relatively narrow mainlobe and
low sidelobes and gives the lowest possible leakage.

During the flutter missions only key parameters are
analysed for decreasing damping and instabilities.
Because testing needs to proceed as quickly as
possible only PSD frequency and damping solutions
are taken.

The frequency and damping values are picked off
the power spectral denmsity functions with the
mouse cursor using the half power bandwidth
method. The only problem is that the definition of
some PSD functions degenerates in the higher
range of the flight envelope. This called for a
method where damping values could still be
obtained in a realistic manner without the
inconvenience of hand calculations. In cases where
the peaks are not well defined as result of a low
signal to noise ratio or closely coupled modes a
relative confidence limit is placed on the damping
value. The manner in which this is accomplished is
by basically keeping record of the slope changes on
both sides of the peak value until half power point
is reached. To illustrate, an autospectrum with
two modes at 20Hz and 21.5Hz and damping ratios
of .04 and .025 respectively was generated. The
result is shown in figure 6. This method obviously
becomes invalid when modes are too closely
coupled and is only used if the mode is not present
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in signals from other pick—up locations.

The advantage of this approach is that it is
consistent and that no measurement errors are
possible. The effectiveness of this approach is
reflected in the better definition of the damping
trends.

Once frequency and damping values are available
they are arranged to correlate with predicted
structural modes. Placing of modes are weighted
with a correlation between the predicted mode and
the position of the accelerometer station on the
structure. The operator still retains the highest
authority in the final placing or suppression of
measured modes. This allows the flutter engineer
to Slevote his time to analysis and interpretation of
results.

Finally the frequency and damping trends are
displayed before clearance to the next test point
can be given. Either true damping values are
shown or they can be mapped as a moving average
to place more emphasis on the trend rather than
the damping value itself.

ANALYSIS OF FLUTTER TEST DATA

Aileron Excitation System

The Random Pulse Generator (RPG) on the
aircraft produces a random square-wave as forcing
signal. Since the raw data needs to be
undersampled it was necessary to consider the
spectral implications of decimation on the
excitation record.

The Fourier series of a square-wave can be written
as a sum of odd cosine harmonics. The resulting
series is a complete description of the f{requency
content if each cosine component is plotted against
time and the waveforms added to approximate the
original square wave. The original waveform can
never be regained exactly unless all of the terms for
its Fourier series are included. Even at that
waveforms *©  with  instantaneous  transitions
(discontinuities) cannot be regained exactly. [10]

When discontinuities exist in the original
waveform, addition of its Fourier terms does
provide the exact original at every point except at
the discontinuities. At every discontinuity there
will always be an overshoot (Gibbs phenomenon).

A sample record of the raw RPG signal is
presented in figure 7. As shown in Figure 8, the
FFT of such a square wave will contain frequency
components that are harmonically related to the
basic frequency band where the harmonics of the
30Hz frequency band are visible up to the Nyquist
frequency. To remove the harmonics, the forcing
signal was decimated by a lowpass digital filter to
prevent higher frequency components being aliased
into the basic frequency band of interest. Figures 9
and 10 compare a portion of the original RPG




signal and the decimated signal. The time trace for
figure 9 was obtained by using a FIR lowpass filter
while figure 10 employed a Chebyshev filter with
cutoff at 30Hz [11]. The appearance of the
decimated signals is caused by the removal of the
higher frequency terms by the filters and
characterise the Gibb's phenomenon. The ringing
appearance for the Chebyshev filter is visible and
reflects the loss of data removed to avoid aliasing.
In both cases filter overshoot clearly appeared after
the signals were bandlimited by lowpass filters.

Figures 11a and 11b compare the power spectrum
of the RPG signal without prefiltering with the
undersampled signals using Chebyshev and FIR
lowpass filters. A comparison between the transfer
functions did not show a significant difference
between the bandpass limits with and without
pre-filtering.

Influence of Pick—up location

Analyses on transfer functions and autospectra
were performed for several response stations on the
wing tips and outboard weapon stations. The half
power method together with single- and
multi-mode polynomial curve fits were used to
determine -the influence of different pick—up
locations on results. The frequency and damping
values are summarized for comparison in tables 2
to 4. ‘The locations presented in the table can be
described as:

o W - Wing

e PSS — Port, Starboard

e LE,TE - Leading and Trailing Edge
e FLR - Front and Rear

e VH - Vertical and Horizontal

Results resemble flight conditions at an altitude of
8000m and {flight speed of 260 KIAS. The first
three modes are tabled with rows corresponding to
the mode numbers. Most of the modes were found
at more than one location, as was to be expected.
Flutter analysis predicted low damping for mode 3
within the flight envelope and was confirmed
during the flutter tests. The measured damping
solutions were lower than the predicted values, but
it is known that, in general, random data yield
lower damping values.

Due to different locations the scatter of the
analyzed data reached 18% in damping for the half
power method while 15% and 23% were reached for
SDOF and MDOF polynomial fitting respectively.
The scatter in frequency reached 2% for the half
power method and 1% for both single— and
multi-mode curve fitting. In addition, the
damping values for MDOF fits tend to decrease
when the number of modes in the analysis are
increased.

The effect of higher turbulence levels with
increasing flight speeds is visible in the higher
scatter values of table 5, which were obtained at

1365

370 KIAS.

The polynomial curve fitting algorithms are not
restricted to equal frequency spacing and therefore
function values which do not satisfy a certain
coherence level can be neglected. However, this
approach didn’t improve the scatter margin.
Table 6 compares the percentage scatter below and
above mean value for frequency and damping at
coherence levels of 0.5, 0.6 and 0.8 obtained from
MDOF polynomial fitting.

In general the half power method provided results
with a smaller scatter margin. This may partly be
attributed to the fact that the algorithm uses only
the response spectra while, with transfer function
fitting techniques both turbulence and the RPG
signal contribute to the response.

Some scatter may be caused by accelerometers
which are not optimally placed with respect to
maximum modal deformation. Therefore it
becomes a trade—off between the value obtained
from the optimum placing and the mean value
obtained from different locations.

Influence of Different Estimation Methods

The same methods were used to evaluate the modal
characteristics with data obtained from a flutter
flight test. All the results presented were obtained
with. symmetric excitation at a flight level of
8000m at speeds ranging from 260 KIAS to high in
the transonic region.

The exact values are not known and therefore no
direct evaluation of the different analysis methods
can be done. However, it is possible to draw
conclusions from the comparison between the
methods using the same flutter data.

The Complex Exponential Curve Fit didn’t reveal
reliable results. As shown in figure 12, no clear
indication of the model order can be deduced from
the singular values. Employing a Least Squares fit
did not improve the results either.

Several response locations were analysed and then
averaged. The averaged values are shown in
table 7. The scatter due to the different estimation
methods reached values of 1.44% for the frequency,
and even 21.4% for the damping coefficient.

It is apparent that mo two methods employed
yielded similar results for all the modes. This may
be true, but each method is based on its own
mathematical principals to reach a final result.
Figure 13 shows the damping trends for the
different methods at each velocity. It is clear that
even though the tendencies are at different levels
they resemble the same trend. The tendencies are
even more accentuated in figure 14 if damping
trend is weighted as a moving average.




CONCLUSIONS

The objective of flutter tests is successfully
accomplished using the MATLAB based data
manager and has proven to be an effective tool in
flutter flight testing.

Since the forcing system excites the modes of
interest, it is possible to determine the frequency
and damping trends of critical modes at points
within the flight envelope.

The results from the half power method correlate
well with orthogonal polynomial fitting techniques.
For transonic test points scatter was marginally
lower compared to transfer function techniques.
Although robust, it is effective and confidence is
established in damping solutions.

Accuracy of damping and frequency differs using
different estimation methods but nevertheless it is
possible to establish similar tendencies from modal
data. It is therefore fair to say that flutter testing
can be conducted in a safe manner.
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Figure 4. Check of polynomial fitting with varying frequency bands.

No poize 10% noise
METHOD anuency‘ Damping Frequency Damping
{Es) tio (Bs) ratio
Polynomial Curve Fit 20.00 040 19.97 040
AELE 18.96 041 19.92 037
Laplace Analysis 20.04 040 20.27 040
Complex Exponential Fit 20.02 040 20.02 042
Half Power method 18.99 040 18.97 041
Scatter 2s % of mean Scatter a5 % of mean
Freguency 3 .21/.19 Frequency 3 5512
Damping : .50/2.0 Damping : 7.5/5.0

Table 1.

Check of methods on generated data.
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Autospectra of excitation signal with (a) Chebyshev and (b) FIR
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Wing Accelerations Outboard statien MEAN | Pere.
PWLE | PWTE | SWLE SWTE | PFV SFV PRHE . | SRH Seatt.,
5.35 5.34 5.34 5.34 5.37 5.38 535 5.35 5.353 o/0
026 02§ 025 028 026 027 028 028 0258 2/6
7.64 7.61 7.61 7.62 7.70 7.61 7.70 7.641 01
026 024 022 022 030 024 030 0254 13/18
0.26 9.47 9.27 9.33 1/2
014 014 014 014 0/0
Average Scatter
Frequency : 0/1
Damping ratio 1 §/8
Table 2. Influence of accelerometer position using Half Power analysis.
‘Wing Accelerations Qutboard sation MEAN { Pere.
PWLE | PWTE | SWLE | SWTE | PFV SFV PRH SRE Seatt.
5.32 §.31 5.31 5.32 §.32 5.32 5.32 5.32 5,318 0/0
026 023 026 026 028 025 026 025 0256 10/9
7.54 7.53 7.61 1.62 7.51 773 7.67 7.62 7.60 1/2
028 028 035 034 023 036 027 030 030 23/20
9.44 9.27 9.36 1/2
009 | 008 | o085 | 676
Average Scatter
Frequency : 11
Damping ratio o 1312

Table 3. Influence of accelerometer position using multi-mode polynomial fitting.

Wing Accelerations Outboard station MEAN | Pere.
PWLE | PWTE | SWLE | SWTE | PFV SFV PRE SRH Secatt.
5.32 5.32 5.32 5.29 5.32 5.34 532 531 5318 0/0
028 028 {028 031 028 031 2030 030 0288 5/8
7.61 7.57 7.58 7.60 7.53 7.66 7.57 7.59 7.588 1/1
027 026 034 035 028 033 028 034 0306 15/11
9.43 9.28 9.355 | 1/1
013 011 012 8/8
Average Scatter
Prequency t 11
Damping ratio s 10/8
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Table 4. Influence of accelerometer position using single-mode polynomial fitting.
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Mode % Scatter from mean
PSD SDOP 5t MDOP £it
1 0.2 /0.2 0.8 /0.6 1 /e
87 /58 e /66 302 /6.1
2 0.6 /1.0 0.7 /04 1.8 /1.6
£.8 JiT6 T4 /203 Ll faz2

Table 5. Percentage scatter in frequency and
damping with different methods.

Mode % Scutler as funciion of Coberence
>0.5 >0.6 >0.8
1 0.9 0.6 X ] /0.6 0.2 /6.2
158 /id3 129 /194 87 Je5
2 18 /1.3 18 /33 L6 Nt
218 /165 20 /185 219 /279

Table 6. Percentage scatter at different coherence
levels for MDOF curve fits.
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Figure 13. Damping trends for methods in
table 7.
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Figure 14. Damping trends displayed as
moving average.

Estimation Method
Speed Mean Std.dev Scatter,
(KIAS) | AELE Lapl. PSD Poly % of mean
260 5.34 5.43 5.37 5.32 5.37 .0465 9 / 1.2
.033 .028 026 .026 028 .0033 86 / 17.0
290 5.35 5.45 5.39 5.32 5.38 .0562 1.1/ 13
.035 .028 .026 027 029 .0042 8.8 / 214
320 5.35 5.39 56.39 5.34 5.37 .0263 5 / 4
.036 .033 .028 .029 031 .0035 100 / 145
340 5.35 5.46 5.38 5.34 5.38 0543 .8 / 14
.036 034 .028 .029 .032 .0039 1.7/ 147
360 5.35 5.44 5.39 5.34 5.38 .0455 T ]/ 1.2
.038 .033 029 .030 .032 .0043 1.9/ 181
370 5.35 5.44 5.35 5.31 5.36 .0550 1 / 14
.032 029 027 027 .02 .0024 65 / 116

Table 7. Influence of different analysis methods on modal data.
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