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Abstract Q system noise variance matrix
- R measurement noise variance matrix
Based on Kalman filtering theory, this paper pres- T filter sampling rate
ents an adaptive target tracking real—time filter used in t time
Integrated Fire / Flight Control (IFFC) system. First of u control _
all, a target maneuvering acceleration model is assumed, Ve chase aircra.ft velocity
in this paper, as a second—order Gauss—Makove process Ve target velocity
which can follow the target maneuvering automatically. X target state
And a nonlinear time—varying target tracking filter mod- Y measure.ment value L
¢l is described in the roll-stable line—of—sight (LOS) @r  chaseaireralt angular velocity in LOS
coordinate system. Then, in order to meet the require- coordinate system
ments of real—time, the filter model is decoupled and oL LOS angular velocity in LOS
lincarized into three channels’ filter models, and the coordinate system
measurement values are preprocessed before the filtering v azimuth angle
caleulations start. Thirdly, with the Kalman filtering the- # elevation angle
ory used, an adaptive target tracking real—time filter is A increment of a variable
Okj Kronecker function

designed. Finally, a lot of simulations are performed in
é(*) Dirac function

2,0 adaptive factors based on target states

accordance with the estimating accurancy, filtering
convergent rate, adaptability to target maneuvering,
real—time requirements, etc. of the filter. The simulation Superscripts

conclusions show that the adaptive target tracking filter

developed in this paper has satisfactory performances. . first derivative with respect to time

second derivative with respect to time

1 .Nomenclature T transpose of matrix or vector
A estimator
Symbols - vector

ar chase aircraft acceleration Subscripts
ar target acceleration
D target range X,¥,2 direction of vector component in LOS
H measurement matrix coordinate system
K gain matrix
k integer which takes on all values from 1 11 .Introduction

through N (N = duration of run / sampling -

rate) At present, all of the fighter aircraft with high per-
P predictive error matrix formances are equiped with a fire control system which
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can perform weapon delivery calculations with high ac-
curacy. Besides the chase aircraft states, the target states
including target position,velocity and acceleration are
needed in fire control solutions. But being limited by
present technical conditions, airborne tracking systems
can not provide all of the target state parameters directly.
And the target states obtained by the present trackers
(e.g. radar, electro—optical tracker,etc.) contain a lot of
measurement noises, which can not be used in fire con-
trol calculations directly and have to be processed by fil-
ters. Therefore,there must be target tracking filters in ad-
vanced airborne fire cnotrol systems, especially in IFFC
systems.

So called aerial target tracking filter is actually a fil-
tering algorithm accomplished by airborne fire control
computers, which provides the accurate estimations of
target position,velocity and acceleration by processing
the chase aircraft states and the noisy measurements of
target states. The algorithm has been studied for many
years not only for improving the accuracy of estimation,
but also for meeting the requirements of real—time com-
putation.~® This paper presents an adaptive real—time
filtering algorithm with high convergent rate and high es-
timating accuracy.

II.Description of the Filter Model

According to the second—order motional equations
of an aerial maneuvering target and the relative geometry
between the chase aircraft and target, a nonlinear
time—varying target tracking filter model is described in
the roll—stable line—of—sight (LOS) coordinate system.

The relative motional math. model of an aerial ma-

neuvering target in LOS coordinate systemis: &8

D (wiy + 01z)D + (arx — arx)
ory |=| —20vD/D—(arz—arz)/ D )
Dz —2w1zD /D +(arr —ary)/ D

For a fighter with fixed weapon delivery system, the
weapon line angular velocity @w is as same as the chase
aircraft angular velocity @r. So the weapon line

motional model is: @®

{

U=Wrz —OFz (2)

V=0@ry — OFy
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In air battles, targets are usurally in highly maneu-
vering movement, and the maneuveringﬁ ‘model is
multiform and stochastic. So, it’s difficult to develop the
math. model of the target acceleration 7. But it’s very
important to select the model of @r with respect to the
improvement of filtering accuracy. Today, the widely
used assumption is that the target acceleration is fit in a
first—order Gauss—Makove process.¢~%7 In order to im-
prove the estimating accuracy of target acceleration and
for the convenience of making smooth estimation, the
target maneuvering acceleration model is assumed, in
this paper, as a second—order Gauss—Makove proc-

ess. 69

The target acceleration model is:

drx
dry
drz
—darx — QD + Vix)—oirarz + @rzarr
=| —dary —Q(Vrr + 0rzD)—wrzarx
—darz —QVrz —wryD)+wrvarx
+ W) 3)
where,
@ar Vo)
Vz*Vr)
_(ar - ar)

+(2)

W(t)=Vr +oL x Vr.

i
(FreVr) \2

W(t) is related to the forces and moments acted on
the target, and it is considered as a zero—means white
noise whose varance is E[W(t) W)= (6t —1).

Combine the Eq. (1), (2) and (3), we can obtain the
nonlinear time—varying state equation of target in LOS
coordinate system.

X(6) = F(X) + W (1) “)
where,
X()=[D D arx v wry arz # wiz arrl’ (5




[ D

(wiy + w1z)D +arx —arx

—darx —Q(Vix + D)—wrvarz + orzary
WLy — AFy

F(X)=| —20wiyD/D—(arz —arz)/ D

—Aarz — QU Vrz —wryD)+ Oryvary

WLz — WFz

—2wrzD/ D +(ary —ary)/ D

L —Aary —Q(Vrr + @1zD)— 0rzarx

(6)
Wit)=[0 0 Wx 0 0 Wy 0 0 Wz]T(7)

For the airborne equipments of a typical fighter air-
craft, the target informations available are: target range
D, range rate ]5, azimuth angle v, elevation angle p,
azimuth angular velocity wryand elevation angular ve-
locity @z, so the linear normal measurement equation
is:

Y(t)= HX(t) + V(t) (8)
where,
1 0 0 0 0 0 0 0 0
01 0 0 0 0 0 0 O
06 0 01 0 0 0 0 0
H= )
0 0 0 01 0 0 0 O
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 J

— . -
V(t) is the measurement noise vector. It is also con-
sidered as a zero—means white noise whose varance is

EV ()P T (0)] = R(D5(t — 7).

Eq.(4) and (8) form the nonlinear time—varying fil-
ter model of an aerial maneuvering target.

IV.Processing for Real-T ime Requirements

Eq.(4) and (8) form a nine—dimensional nonlinear
filtering model. If, with the nonlinear Kalman filtering

theory used, the nonlinear filtering model is not linearized
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and decoupled before filtering calculations are
performed, but is applied to filtering calculations
directly, we will obtain an adaptive target tracking
nonlinear filter with high convergent rate and high esti-
mating accuracy and high adaptability to target maneu-
vering.® But the nonlinear filter has nine—dimensional
matrix calculations of plus, minues, multiplication and
matrix converse. The calculations is too much for us to
put the filter into practice. This paper takes two efficient

methods to solve the problem of real—time.

Decouple and linearization

The nine—dimensional nonlinear time—varying
coupled filter model obtained above is divided into three
filter models in range channel, azimuth angle channel
and elevation angle channel respectively. And let the
coupled values be substituted by corresponding
estimators. So we can obtain the linear and decoupled fil-
ter models of three channels.

Range channel:

D 0 1 0 D
D |=| dir+d1z 0 1 D
drx 0 -0 -2 arx
i 0
+ — arx

N
| —QVex —Drylrz + Drzdry

0
+| 0 [Wx(1) (10)
| 1
) |:1 0 0:| .
)=
1 01 0 D |+ Vi) (11)

Azimuth angle channel:

v 0 1 0 v
A A Tl

oy |={0 —-2D/D —1/D OLy

~ A
arz 0 QD+ arx -2 arz

— W Fy 0

+ arz/ﬁ +| 0 \Wz(r) (12)
—QV ez 1




Y2 ( [1 00 12X 13
2(t) = 01 0 wory |+ ¥Va(f) (13)

arz

Elevation angle channel:

I 0 1 0 u
. A A A
wrz (=] 0 —-2D/D 1/D DLz
ary 0 —(961—&\1‘}() -2 ary
— WFz 0
+| —arr /D |+| 0 [Wr() (14)
—QVrr 1
u
— 100 .
Yi(t)= wrz |+ Va(t) (15)
0 0
ary

The filter models in three channels are similear in
form, so they can be described in the general form as
follews:

{f(z) = A()X(t) + BU(t) + GW (1)

— — — (16)
Y()=HX(t)+ V(1)

W(t) is the system noise vector, and it is considered
as a zero—means white noise whose varance is
E[W(OWT ()] = 0(1)6(t — v). V(t) is the measurement
noise vector. It is also considered as a zero—means white
noise whose varance is E[V(1) VT (1)] = R(1)d(t — 1).

After decoupled and linearized, the
nine—dimensional filter model is replaced by three
three—dimensional filter models, which improve the sys-
real—time  since  the

models need not
calculations but

tem performance of
three—dimensional filter
nine—dimensional matrix
three—dimensional matrix calculations, and the three

channels can be processed in parallel.

When a sensor measures, it samples at a regular in-
terval, and its measurement signals are discrete values, so
the filter model (16) must be processed to discret form fil-
ter model as follows: ©
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X(k + 1) = Ok + 1,K)X(k) + T (k + 1,k)ii(k)
+ T2k + LE)W (k)

Y(k) = HX(k) + V(k) (17)

where

«©

Ok + k) =e4T = ¥

n=0

AT
n! ’

Tk + 1,k)=_[::“ BO(Kk + 1,0d7

Tk + 1,k) = fk GOk +1,0dt

[1 0 0]
H:
0 1 0

\TV-(k) represents the sum of the discretization errors and
the uncertainty of dynamic system. Suppose W(k) is a ze-
ro—means white noise series and E [ w (k) wT (N1
= Q(k)d«;. V.(k) is also a zero—means white noise series
and E[V(k)VT ()] = R(k)S+;.

Preprocessing Technique of Measurement Values

In a filter, the higher the sensor sampling speed, the
more the target movement informations measured, the
higher the filtering accuracy. If the filter sampling speed
is too high, it will increase the speed requirement of
computerisation. And omitting parts of measurement
values will affect the filtering accuracy. In order to solve
the problem of filtering accuracy and real—time require-
ments, this paper takes the preprocessing technicque of
measurement values, which measures at high speed and
calculates at low speed after pressing data.Suppose the
sensor measures M times in one filter sampling period
and let

— 1o,
ch(k+1)—M'_ZlY(k+M)
[ — i ]l - i
=Xi,§ (k+A—l) A—[‘_;lV(k+A7)(18)
where,




sz (k + 1) is average measurement value of M
times,

Y® (k + 1) is accurate value,

I—’Tk + 1) is measurement error.

Since each measurement value has a certain noise,

?Zp (k + 1) has certain error too. For improving input
quality of filter, we must correct ?ZP (k + 1). It's difficult
to correct ?;(k + 1) accurately with target maneu-
vering movement considered. And the filtering sampling
speed is high enough (in this paper,T=40 ms ), so that
we can suppose that the manruvering target moves
rectilinearly in a filter sampling period.

Let

Yk+1)=Ycrk+ D) +qg[¥crk+1)— Yer (k)]

=(1+q@)Ycrtk+1)—qYecr(k) . 19)
where,
_M=1
="M

be as the measurement value input filter at the time of
k+1.

1

M_“ L
i LY e+

=i

Yk+1)=(1+gq)

1 - = i
+(1+q)M§lV(k+M)
P S R

M= M

1 &= i
_qu:lV(k—1+M)

1 oy, A
—M(1+q)thY (k+M)

1

M .
—— 1

- =1+~
qu‘,Y (k=1+37)

1

tu

o
INZCEEVD

tm]

The corresponding measurement varance matrix is:

: I I o N IR
R(k+1)—E[MhZIV(k+M)M§VT(k+M)}

1

=—R(k+1) (20)

V. Filter Design

This paper use Kalman filter theory to design the
target tracking filter. Since Kalman filter is the linear
minimal varance estimation and the optimal linear recur-
rence filtering and consider the statistical charactristics of
the values estimated and measurement values, it can not
only be used for steady stochastic process but also for
unsteady stochastic process. For system (17), the general
assumptions of Kalman filter are: system noises Wk)

and measurement noises ~I7f’k) are  zero—means
Gauss—Makove white noise, and [W1,[V] are uncorrelat-

ed each other, i.e.:

EW(E)]=0; EWFEWT ()= 0k)dxs

E[VUeN=0;  E[V()VT()]= R(k)Sx

E[W )V ()] =0;
where , ¢ is Kronecker § function which represents the
statistical charactristics of the target acceleration and
measurement noise. After the measurement signals are
preprocessed ,the recurrence equations of estimating tar-

get movement statistical vector X(k) according to
measurement vector Y(k) are: 9

Xk + 1) = Ok + 1) X0elk) + T ( + 1,)iE(k)
Pk + 1)k) = Ok + 1K) P(klk)DT (k + 1,k)

+ Tk + LEYO Kk + DI Tk + 1L,k)
— 1 Sy,
Yer(k+ 1)=A7 ZY(k+M)

teml

Yk+D)=(04+¢)Ycr(k+1)—qgYcr (k)

where,
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M-1 . . . .
qg= oYY (in simulation, q can be adjusted
optimally)

Rk +1) = Ai{R(k +1)
K(k + 1) = P(k + 1k)HT[HP(k + 1)k)H T
+ Rk + 1)] -1
X+ 1k + 1)= Xk + 1)
+ Kk + DYk + 1) — H?(k + 1k)]
Pk + 1)k + 1) = [I — K(k + )H]P(k + 1lk)

The structure block diagram of the three channels’
target state estimator is shown in Figure 1.

VI.Simulation and Evaluation

In order to test the performances of the filter de-
signed in this paper, a lot of digital simulations are car-

computerising

AR

computerising

and Upg @, rmandrzﬂ

— Kalman filter

ried out. In simulation, the target maneuvering regularity
is assumed as:

D = 600 + 2007 + 572 (m) 1)
v=0.1+0.01T +0.00172 (rad) (22)
p=0.1+0.017 +0.00172 (rad) (23)

The target acceleration is supposed to have a sudden
change when the filter has run for 6 seconds so as to test
the adaptability of the filter to target maneuvering. The
measurement noise and system noise are simulated with
Monte—Carlo method.

The simulation data are taken from FX aircraft.
And the root—mean—square (RMS) error of the range
measurement noise is 15 meters, the RMS error of the
range rate measurement noise is 12 meters per second,
the RMS error of the angle measurement noise is 5
milliradian, the RMS error of angular velocity noise is 5
milliradian per second, the filtering period is 40
milliseconds.

measurement
values

|

d

— L

annel preprocessing

measurement
values

D ch

computerising
AV

computerising

and u ® T and I',

computerising
A
H

computerising

and u ® I and T
B p 1y 2u

4——}___—_:

:(> Kalman filter

v channel time

delay

JL___.

Kalman filter

computerising
Q and 4

u channel

Figure 1. The Structure Block Diagram of the Three Channel/
Target State Estimator
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The estimating error curves of the target states are
used in evaluation of the filtering results. The diffinition
of the estimating errors is:

A
AXi(k) = X:(k)— X:(k), i=1,2,3.

Some of the simulation conclusion curves are given
in follows to dermonstrate that the filtering algorithm
developed in this paper has high performances.

Since each element in the filtering gain matrix has
similear characteristics, only one gain curve is given in
discuss. As shown in Figure 2, in the initial period, the
magnititude of the gain is high and has fluctuations,
which means that the correction to the state prediction is
strong and the filtering system works not stable yet. Af-
ter 2 seconds, K becomes stable, i.e., the filtering system
becomes stable.
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Figure 2. A Curve of the Filtering Gain

40
301
201
£ 10{]
< |
. vM.f‘\zL
gc: 0 N
] \l/‘(
-101 |
\\,/Y (a)
~20 b : : .
012 3 45 6 7 8 9101112

t(s)

1119

404
301

“» 201

ERRAD (m/

10

(b)

0

pnes

123 4 5 6 7 8 9 101112

t(s)

(c)

01 2 3 4567 8 9101112

t(s)

(d)

012 34566 7 8 9101112

t(s)




N w E=S
(] o O

—
o

ERR Aa_,(m/s%)

_‘\Oa

]

K
b

q

_20 4

_3 9
0 (e)

-40

012 3 45 6 7 8 89101112

t(s)

Figure 3. Filtering Error Curves Varying with Time

In Figure 3, the filtering error curves varying with
time are shown, When the filtering system is stable, the
filtering errors are much less than the measurement
varance, which means that the filtering accurancy is high.

When testing the adaptability of the filter to target
maneuvering, this that the target
acceleration arychanges suddenly at t=6 seconds and

paper assums

the changeing regularity is shown in Figure 4.
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Figure 4, Target Acceleration Component a rx
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Figure 5. Filtering Error Curve When a ry
Changes Suddenly

As shown in Figure 5. When the target acceleration
arx changes suddenly at t=6 seconds, Aarx (i.e. the es-
timating error of arx) increases suddenly. But Aarx

decreases into the range of = 10 m/s? in less than 2
seconds, which means that the filter has very good
adaptability to the target maneuvering.

As the
algorithm developed in this paper has high convergent

disscussed above, real-time filtering
rate and high estimating accuracy and high adaptability
to the target maneuvering. And this paper is significient
in prepairation to the target state estimator of airborne
fire control system and in improving the accuracy of air-
borne fire control system and tracking maneuvering tar-
get.
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