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Abstract

In order to obtain the required relia-
bility level, current practice in the
architectural design of Flight Control
Systems (FCSs) for modern fighter
aircrafts is to incorporate multi-redun-
dant channels of similar type. Problems
encountered with this architecture are
due to common mode failure, instantaneous
sensor-failure, inadequate filtering etc.
Aiming to achieve better performance and
reliability, a Hetero-redundant archi-
tecture for input processing with Kalman
filter in one channel and numerical and
conventional methods in other channels,
has been proposed in this paper. The
architecture, and use of Kalman filter
techniques for input processing and its
performance evaluation through simula-
tion are presented in this paper. Studies
show that 1in the proposed architecture
common mode failures are avoided and the
aeffect of instantaneous sensor-failure
will be less than that for homogeneous
radundant system. Output values estimated
by Kalman Filter closely follow actuals,
maximum steady state error being *1.5%,
and commands based on these values gener-

ate good response. An implementation
scheme with two processors is also dis-
cussed.

1.0 Introduction

New performance demands are continu-
ously imposed on Flight Control Svslem
(FC3) of modern fighter aircraft at a
rate which subdues the potential for
reliability improvements of thesze sys-
tems. These include extended f£light
regimes for multi-mission capabilities
achieved through operational modes such
as command and stability augmentation,
load alleviation, auto landing, ete. The
Flight Control Computer (FCC) being the
central component of F(CS, its desisn
necessitates incorporation of sound fault
tolerant approaches to obtain the

required level of reliability. Due to
the reliability characteristics of elec-
tronic hardware and software, most of

the current FCC architectures incorporate
multiple redundancy. But they do not
handle problems such as common mode fai-
lures, instantaneous sensor-failures etc.
Hence, the search continues for new
fault tolerant approaches to circumvent
these problems. In this context, we have
examined the possibility of improving
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the reliability and performance of a qua-
druplexed FCS through a hetero-redundant
architecture for its input processing
sub-system. This paper presents (i) het-
ero-redundant architecture for input pro-
cessing with Kalman filter in one of its
channels, (ii) formulation of Kalman Fil-
ter for 1input processing, and (iii) its
performance evaluation through digital
flight simulation. Based on the current
practices in VL3I, a realization scheme
for Kalman Filter is also drawn as
described in section 5.4.

Svstem Architec

The flight control systems of modern
fighter aircraft consist of sensors,
FCCs, servo-actuators and displays. The
functions of FCC are data-acquisition
through sensors, data processing to gen-
erate control-commands to servo-
actuators and parameters for pilot-dis-
play. The set of data acquired are of
aircraft motion, ambient, pilot-commands
and positions of control surfaces. A
simplex FCS architecture does not meet
the reliability requirements. Hence, the
design practice is to provide multiple
redundancy in terms of hardware and sof-
tware components. The redundancy level
as well as configuration of each of these
component-groups are dictated by the
required level of reliability and fault
tolerance.
2 o) t

In a conventional FCS, all the chan-
nels are alike in terms of 1its hardware
and software. Each channel employs a
dedicated Data Management Processor
(DMF) and Control Function Processor
(CFP) to perform input-output functions
and control command generation respect-
ively. The input processing in DMP pri-
marily consists of acquisition, coding
and formatting of data for contreol law
processing. The DMP also performs redun-
dancy management functions and voting.
The CFP performs high level manipulation
on voted values as per control laws and
generates commands to servo-actuators.
The inter-channel communication is
limited to logic and data transfer for
voting.

One of the critical problems faced
with these systems is common mode fail-
ure due to near coincident errors. There
have been attempts to reduce the risks
due to coincident errors by running cha-




nnels in loose synchronism and incorpor-
ation of dissimilar codes.(1,2) The exp-
erimental results on dissimilar codes
show that the assumption of indepen-
dence of versions is guestionable and
hence, the expected improvements in reli-
ability too.(3) Another problem encoun-
tered with the conventional systems is
due to its vulnerability to instantane-
ous failures of sensors.

2.2 Proposed Architecture

A guadruplex FCS architecture employ-
ing heterogenecus hardware and software
components which are incorporated at the
conceptual stage of design of FCS, has
been propvosed. The schematic of Hetero-
Redundant architecture of FCS is shown in
Fig. (1). Each of its channels performs
processing of input , control-law and
output in different ways. The sub-system
for input-preocessing employs Kalman
Filter (KF), two numerical methods viz.,
Modified Euler (MEU) and Runge Kutta-4
(RK-4) and Conventional (CONV) technique
to compute the states of aircraft in four
different ways. In each channel bound-
ary-exceedence of flight envelope is
identified through a functional module of
Boundary Controller (BC). The redundancy
management and voting are performed in
each channel by a RM/V module.(4) The
data computed by an INVC (INVerse Calcu-
lation) module is compared with the out-
put of each voter to establish the inte-
grity of voter. An INTP (INTerPolater)
module is also employed in each channel
to interpolate data such as aerodynamic
derivatives, gains etc. stored in look-up
tables. Based on the voted outputs, com-
mands for normal and boundary contrels
are computed by the module of control-law
processing in each channel. These com-
mands are routed to the actuators which
move the control surfaces to effect the
reguired motion of aircraft.

2. 2.1 W Kal Filter?

Process control systems use estimation
techniques viz., maximum-likelihood,
least sguare, Kalman filter, eto. These
techniques are also adopted for applica-
tions such as calibration of inertial
systems, estimation of aircraft control-
parameters etc.(5)

Each of the input processing tech-
niques viz., MEU, RK-4, CONV and KF ,is
different from the others. MEU and RK-4
compute the states by solving a system
of differential equations, taking only
the initial values of states to start
with. Conventional technique employs
direct measurement of state variables
with limited filtering, normally,
effected through averaging. Whereas, Kal-
man Filter optimally estimates the state
variables. Hence, the occurrence of com-
mon mode failures due to near coincident
errors could be raled out.
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The conventional input processing sub-
systems do not have capability to cope up
with instantaneous sensor-failures. Kal-
man Filter being a Gauss-Markovian pro-
cess, estimates the states bazed on
prior estimates and the current measure-
ments. The control commands based on
these estimates would generate better
response. Thus, the effects of instan-
taneous failures would be less.

In a conventional FCS, the states of
the aircraft are measured, averaged and
the control commands are generated acc-
ordingly. The noise in the measured
states would directly affect the perform-
ance of the system. Whereas, the Kalman
filter estimates the states optimally
from the measured data resulting in a
better response of aircraft.

Thus, the Kalman Filter renders better
advantages to input processing.

20 o F lati ¢ Kal Fil
Input Processor

The recursive and discrete nature of
Kalman Filter makes it suitable for the
estimation of states of an aircraft in
real-time. A state-space model of Kalman
Filter is described in Appendix-1. Fig.
(2) shows the block schematic of Kalman
Filter Estimator. The mathematical desc-
ription of a system given below, forms
the baszis for estimation of its states.

A dynamic system of discrete, time-
varying and recursive type, can be
expressed as

X(k+1l)= &(k).X(k)+F(k).U(k)+W(k) (1)

Z(k+1) = H(k+1).X(k+1) + V(k+1) (2)
Where, X is an (nxl) state vector, U
is an (nxl) control vector, & is an (nxn)

state transition matrix,F is an (nxl)
control influence matrix, Z is an (mxl)
observation vector, H is an (mxn) obser-
vation matrix and k (= ¥,1,...) is index
for discrete time. () and V are indepen-
dent Zero Mean White Gaussian zequences
representing plant noise and measurement
nolse respectively.

Here, the system is driven by the
pilot inputs U(k) which are measured.
The state-measurements Z(k) are linearly
dependent on the states X(k) of the air-
craft. These measurements are made at
discrete points in time. Hence, the Kal-
man filter becomes a discrete time pro-
cessor on them and estimates the states
X(k) at time k. The measurements of U(k)
and Z(k) would be invariably corrupted
by noige. The nolse contents in control-
inputs and measurements of states are
denoted by WM(k) and V(k) respectively.
The aircraft with FCS forms a dynamic
systen. The input processor is modelled
as Kalman Filter to estimate the states
viz., Angle of Attack (a) and pitch rate
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(q), of the aircraft under symmetrical,
longitudinal maneuvers. Then, this model
is studied under different conditions of
flight and pilot inputs.

The mathematical relationships between
the states a and g are given by the equ-
ations below.

& = Za.o + Zq.q + Z6e.6e . . . (3)
q = Ma.a + Mg.q + Mse.8e . . . (4)

Where, a and q are angle of attack and
pitch rate respectively. Z¢) and My
are dimensional derivatives of aircraft
and §e is control command to elevator. A
controller which generates elevator com-
mands O8e as a linear function of the
alrcraft states a and q, has been
deployed. The controller squations under
normal and maneuver-limiting conditions
are as follows:

e = Kl(a-ap) + K2%q + BSet . (5)
8e = K3(a-arn) + Kd*g + Jet .. (6)

Where, §e is the elevator control com-
mand, fet i3 the trim value of elevator
command, K()s are control gains, «, ab
and oL are the estimated, desired and
limiting values of angle of attack resp-
ectively.

Then the set of simultaneous differen-
tial equations (3) and (4) are trans-
formed from continuous time to discrete
time for the Kalman Filter process,
These equations can be expressed in
vector form as below.

X = A.X + B.U o (7)

Where, A (2x2) is the system matrix, B
(2x1) is the input vector, X (2x1) is
the state vector and U is the control
input. (.) and T denote rate of change
and transpose respectively. Hence, for
piteh-~axis control,

X=[aaqlT, E = [ Zse Mse 1T

Za Zq
A = and U = [8e].
Ma Maq

The initial condition X(@)= [at ge]lT
is given.

Then transformations through matrix
exponential are performed to get state
transition matrix ® from system matrix A
and control influence vector F from
input vector B. Then, these equations are
solved following the steps in Appendix-1.
The simulation exercises carried out are
explained below.

3.8 Flight Simulation

The performance of Kalman filter for
input-processing of FCS has been evalu-

ated through simulation exercises on a
6DOF simulation model of a fighter air-
craft. These exercises were restricted to
symmetrical longitudinal maneuvers. The
model has a representation of rigid body
dynamics of aircraft, pilot inputs and
the channel with Kalman filter for input
processing. The types of pilot inputs
reckoned for simulation were ramp, step
and pulse as per MIL-A-PUB861A. The ope-
rating points of aircraft were selected
to cover the flight envelope at its boun-
dary at low Mach numbers. The state-mea-
surements were synthesized by adding
white noise to the states initially gen-
erated by simulation. The details of air-
craft model, state synthesis and filter
model are dealt with in the following
sections.

3 or t ade

The aircraft model is represented by
the set of kinematic equations given
below. (8)

Forces:

U= rv-qw-g5in8 + (§S Cxt + T)/m L. (8)
v= pw-rut+gCosd Sin® + 88 Cyt/m ... (9)
W= qu-pv+gCosd Cosd + as Czt/m o (1)
Moments:

P = [(Iy - Iz)ar + @Sb C1t]/Ix o (1)
q = [(Iz - Ix)pr + QSE Cmt]/Iy Lo (12)
r = [(Ix - Iy)pa + @Sb Cnt]/Is Lo (13

Where, u,v and w are components of
velocity along X,Y and Z axes respect-
ively; p,q and r are roll, pitch and yaw
rates; Ix,Iy and Iz are moments of iner-
tia about X,Y and Z axes respectively and
Ixz = @. Cxt,Cyt and Czt are total force
coefficients along X,Y and Z axes and
Cit,Cmt and Cnt are rolling ,pitching
and vawing moment coefficients,
g,5,b,o,m,T and g are dynamic pressure ,
wing area, wing span, mean aerodynamic
chord, mass, thrust and acceleration due
to gravity respectively. § and 6 are
Euler angles.The dot (.) represents the
derivative.

3.2 5 —Synthesi

The measured states Z(k) were syn-
thesized by adding white noise compo-
nents Lo the values of states X(k)
obtained by exercising +the 8 DOF model
of aircraft, as follows:

Z(k)=X(k)+N.RAN [5(k),S(k-1)] oL (14)
Where, N is the gain coefficient and

RAN[...]1 is a function of random number
S(k) which is normally distributed.
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3.3 Kalman Filter Model

The
and q,
ter

states of the aircraft ,namely «
were estimated by the Kalman fil-
The noise elements contained in
these states were assumed to be Zero
Mean White Gaussian. The R matrix has
been formed with diagonal elements as the
square of standard deviations of state
parameters a and q viz., {oca} and {oq}.
The elements of matrices ® and F which
depend on flight condition,have been
pre-~computed and stored. For the flight
conditions not stored, the elomental
values of these matrices are interpolat-
ed. The matrix H is also stored apriori.
Based on practical considerations the
sample time is fixed as 20 msec. The
state covariance matrix P is initialized
based on the estimate of 1initial state
noise. The initial values of the states
a and g were set to be trim value of «
denoted by at and zero respectively.

3.4 Scenarios of Simulation

The studies were conducted under the
simulated flight conditions visz.,
(SL,8.7TM), (5@@0m,d.7M), (10000m,d.8M)
and (150@@¢m,@d.8M), which cover the
flight envelope at its low Mach number-
boundary. The pilot commands simulated
were ramp, step and pulse, the amplitude
of each being varied as per MIL - A -
PB8861A and limited to a maximum of 6
deg. The instantaneous sensor-failures
ware simulated by setting the measured
data to zero at the instances of failure,
The Kalman Filter estimates the states
through out the simulation period includ-
ing these instances. The standard devi-
ations of noise in the measurements of «

and q are taken as ©.29 deg. and @.489
deg/sec. respectively.
4.0 Results
The values of states of « and q, both
measured and estimated, under the condi-

tions of flight viz., (5L,@d.7M),
(5000m,3.7M), (10009m,?d.8M) and
(15000m,3.8M), and pilot inputs were com-
puted and stored during the simulation
run. The plots of time histories of
atates a and g, are given in Figs. (3)

through (1#) under normal conditions of

FCS. The duration of simulation run and
hence, that of plots has been fixed as 10
See. which is adequate to observe the

short period behaviour of the aircraft.
The measured values and the corresponding
estimates from the Kalman Filter are
shown by broken and continuous lines res-
pectively. The following are the
observations based on these plots.

1) The filter minimizes the noise
contents in the measured values of
states and smoothens it out.

ii) The estimated values closely fol-
low the measured values.
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1ii) The variations of a and g are
better and smoother with Kalman Filter
compared to those with conventional tech-
nique based on measured values of
states. Normally, the short period
response of the aircraft is gauged from
the variations of « and g. Hence, the
quality of response of the aircraft with
Kalman Filter 1is better than that with
conventional technique.

iv) The maximum error under steady

state conditions is of the order of
+1.56%.
Figs. (11) and (12) show the time

histories of « and @ under the normal
condition and instantaneous failure of
angle of attack sensor respectively. At
the instant of failure, the ratio of the
reduction in the value of angle of attack
under Kalman filter to that under con-
ventional case is ©.4 The ratio of the
error due to deviation of the estimated
value from the actual at the instant of
failure to that under steady state condi-
tion is of the order of 4. The esti-
mated values of « from Kalman Filter have
been found to be closer to the previous
estimated values compared to the conven-
tional case where it has dipped to zero.
With Kalman filter, the maximum error
occurred at the time of occurrence of the
sensor failure. When the sensor recovered
from the failure, the estimated values
also recovered but at a slower rate com-
pared to the conventional case thus,
making the transitions smoother. This
indicates that even under conditions of
instantaneous failure of sensors the air-
craft response with Kalman Filter is
better and smoother than that with con-
ventional technique.

5.8 Realization Scheme

Due to the rapid advancements in the
VLSI circuits, fast processors and mem-
ories are available and this has lead to
the realization of real-time Kalman fil-
ter and supporting modules. The realiz-
ation of Kalman filter for real-time data
processing of +this nhature has been, in
general, limited by the relatively com-
prlex mathematical operations necessary in
computing estimates through Kalman £il-
ter algorithms. (7) With the rapid devel-
opments of VLSI circuits, it has beconme
technologically feasible to realisze Kal-
man filter for real-time processing of
this type. Out of the many proposed arc-
hitectures, the ons with two dedicated
hardware processors has been pro-
posed.(7,8,9,10,11,12) These processors
would carry out all the required computa-
tional tasks to be performed by Kalman
filter. The computations are cyclically
performed through an ordered set of
steps. In order to avoid delay between
cycles of computation, the new data could
be shifted into the array from the top,
row by row as the calculation proceeds.
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The flow model employing two pro-
cessors based on VLSI approach of Yeh is
shown in Fig. (13).(7.,13) Processors 1
and 2 perform computations indicated
inside the rectangular blocks as per the
algorithm given in Appendix-2. Fig. (14)
shows the block schematic of Kalman fil-
ter used for the estimation of timings.
The total time taken by one cycle is
estimated to be 130 us which is well
within the allowable time limits.

o) = o

The proposed hetero-redundant archi-
tecture with Kalman Filter for input
processing avoids common mode failures
due to reasons discussed in section
2.2.1. The Kalman Filter minimizes the
noise content in the measured values and
smoothens it out which results in
optimal control commands rendering gocd
alrcraft response. The results under
different conditions of flight and pilot
inputs viz., ramp, step and pulse, show
that the estimated values closely follow
the measured values. The maximum steady
state error of the estimated value with
respect to actuals is of the order of
+1.5%. Under the conditions of instan-
taneous sensor-failures, the ratio of
the reduction in the value of a estimated
by Kalman filter to that obtained under
conventional technique was of the order
of @.4 This shows that the filter has
the capacity even to minimize the
effects of instantaneous sensor-fallures.
Thus, the proposed architecture with Ka-
lman filter in one of its channels ren-
ders better performance and reliability.
The recent advancements in VLSI Circuits

have made the real-time realization of
the scheme feasible.
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The Kalman filtering problem can be
stated as follows

X(k|k-1)= O(k|k-1)X(k-1|k-1) +

F(k|k-1)U(k-1|k-1) (I.1)
P(k|k-1)= 2(k|k-1)P(k-1|k-1) 8T(k|k-1) +
Q(k-1) (I.2)

G(k)= P(k|k-1)HT(k)[H(X)P(k|k-1)HT(k)+
R(k)1-1 (I.3)

X(k|k)= X(k|k-1) + G(k) [ Z(k)

-H(K)X(k|k-1)] (I.4)
P(k|k)= [I-G(X)H(k)] P(k|k-1) (1.5)

On simplification by substitution from
(I.5), equation (I.3) becomes,
G(k)= P(klk)HT(k) R-1(k) (I1.8)

Where , P and G are state covariance
and Kalman gain matrices respectively.

Equations (I.2) and (I1I.5) are referred to
as time updates and equations (I.1) to




(I.4) are referred to as measurement
updates. In equation (I.1), the last est-
imate is projected forward using the
dynamics of the equation model. Equations
(I.2) and (I.5) give the error
covariances necessary to calculate the
gain matrices. Equation (I1.3) gives the
Kalman gain matrix for wupdating. In equ-
ation (I.4), this estimate is updated
using the new observation Z(k).

Appendix-2 Steps of Algorithm

The steps of algorithm for implementa-
tion of equations I.1 through 1.6 of
Appendix - 1, are given below

Step 1

%(k|k—l) = @(k|k-1) &(k—1|k—l) +
F(k|k-1) U(k-1)

Step 2 _

P(ki{k-1) = 2(k]k-1) P(k-1{k-1) 2T(k|k-1)

+ Q(k-1)
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Step 3
Compute HT(k) R-1(k)
Step 4
Compute P-1(k|k-1)
Step &
P-i(k|k) = P-1(k|k-1) + HT(k) R-1(k) H(k)
Step 6
G(k) = P(k}k) HT(k) R-1(k)
Step 7
AZ(k) = Z(k) - H(k) X(k[k-1)
Step 8
R(k|k) = X(k|k-1) + G(k) AZ(k)
The results of each step need to be

stored for use in latter steps as new
entries.
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