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Abstract
The problem of failure tolerant
estimation in multisensor navigation
systems 1is addressed. A fault tolerant
scheme is given for multisensor
navigation systems. The local estimates

of different subsystems are fed into a
master filter to give a global optimal
estimate of the system state in the
absence of failures. The failed subsystem
can be detected and isolated by using
chi-square test or GLT (generalized
likelihood test). The failed subsystem is
then switched off from the master filter,
the remained local estimates of unfailed
subsystems are recombined in the master
filter to give a most accurate estimate.

The results are applied to a
SINS/GPS/Doppler integrated = navigation
system for illustration.
Introduction
The current approach to
cost~effective achievement of

high-accuracy navigation in aircraft is a
multisensor navigation system that
includes one or more inertial navigation
systems (INSs) and one or more navigation

reference sensors such as a global
positioning system (GPS) receiver,
Doppler radar, terrian aided system,

air-data system, TACON, VOR/DME etc. The
data from these subsystems are processed
by an integration filter (master filter)

that computes the minimum mean square
error (MMSE) estimation of aircraft
position, velocity, acceleration, and
attitude. The integration filter
typically resides in a mission computer.
In multisensor system, different
sensors are combined into several
subsystems. When all sensor outputs are
blended wusing one Kalman filter, the
accuracy of the estimate of navigation
states is superior to that of local
filters of its individual subsystems.
However, this one Kalman filter scheme
dose not have the capability of fault
tolerance. In the presence of sensor
failures, the estimate conditioned on all

sensor measurements will not be correct,
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of the integrated
{1)

system will degrade considerably. Kerr

first proposed an idea that the above
problem can be solved by using
decentralized filtering techniques.,

Brumback and Srinath(Z) considered the
design of an integrated nmnmultisensor
navigation system for which fault
tolerance in the presence of soft
failures is desired. A fault tolerant
system will be presented in this paper.
The objective is to develope an
estimation algorithm that eliminate the
effects of a failed sensor, so that
reliable system performance is achieved.
In this paper, a FDI algorithm is
proposed, which is used to determine the
validity of the local estimates, and a
failed sensor can be identified from
analysis of the invalid local estimates.
The combining algorithm for decentralized
estimation in multisensor system is used
to estimate the error states of the
integrated navigation system by
processing the measurements from unfailed
Sensors.

then the performance

The above results are applied to the
design of a fault tolerant multisensor
navigation system which is composed of

three sensors: a SINS, a GPS receiver and
a Doppler radar forming SINS/GPS and
SINS/Doppler subsystems. The two
subsystems provide two measurements for

two local estimators, the local estimates
are fed into a master filter to construct
the MMSE estimate of the aircraft
navigation state. When one of the
subsystems has failed, the correspondent
local estimate will be switched off from

the master filter. After the
reconfiguration, the master filter can
give a most accurate estimate of

navigation state in the presence of the
subsystem failure. Simulation results are
presented to evaluate the performance of
the system.

Combining Algorithm for Decentralized

Estimation
In most applications of Kalman
filtering to multisensor navigation




system, only one Kalman filter is used to
compute a single, optimal estimate of the
aircraft navigation states based on all

available sensor data. However, if one
sensor failes, its output is no more
correct and the "centeralized" estimation

given by the single Kalman filter is not
reliable anymore., A fault tolerant
estimation can be obtained if we |wuse
decentralized estimation. The
decentralized estimation scheme is based
on different subsets of the available
sensor data. The multiple local estimates
can be compared to determine if they are

in agreement wihtin their expected
uncertainties. If all estimates are in
agreement, no failures are declared, and

it would seem reasonable to combine these
local estimates into a global estimate.
The global estimate is the most accurate
estimate which can be computed by a
single Kalman filter which processes all
sensor data.

The problem of combining several
local estimates into a global estimate
has been considered by several
authors(s'q'S). For the navigation
problem considered herein, Tylee's
algorithm(5) seems to be most

appropriate. Tylee considered a system in
which there are N processors, each of
them having its own local measurements.
The measurements may consist of all
system states and not just the states of

local subsystems, so that each local
processor computes its own optimal
estimation of the system state. The

objective is that if any sensor undergoes
a hard failure, the estimates of all
other processors are not affected by the

failed sensor, and the failed sensor
outputs can  be estimated by using
unfailed sensor outputs. But Tylee’s

results are derived based on ignoring the
correlations between the local estimates
that arise from the system process noise.

Zhang(s)have given a sufficient condition
for using unfailed sensor outputs to
generate optimal estimates of failed
sensor outputs, and extended Tylee’s
results by using the upper bound

7
technique proposed by Carlson( ).

In the navigation problem it is
desired that the optimal global
estimation be obtained from the unfailed
sensor outputs. When a failure is
detected, and the faulty sensor is
identified, the estimate that includes
the information from this failed sensor
would be declared invalid. The estimate
that includes information from all other
sensors then becomes new global estimate.
The estimate after failure is the same as
if the failed sensor had never been part
of the system.

Consider the discrete-time model

x(k+1)=¢(k)x(k)+G{k)w(k) (1)
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Assume that there are N sets measurements
from m sensors, then we can design N
local filters for N local models
described by the following equaitons
xi(k+1)=¢i(k)xi(k)+G‘(k)w(k)
v, (k)=H (k)x (k)+v, (k)
i=1,2,-",N

(2)
(3)

where xl(k) is the system state vector

which will be estimated through the
measurements yi(k) from the ith sensor
subset. The noise w(k) and vi(k) are
independent, =zero-mean, white Gaussian

sequences having covariances of intensity
Q{k) and Ri(k) respectively. The initial

state xi(O) is a Gaussian random vector
with zZero-mean and covariance Pi(O), and

is independent of the noise.

Each local filter is a Kalman filter,
which can be used to generate a local
estimate of the system state vector. Then
all estimates of the local filter are put
into a master filter to generate global
optimal estimate of the system state
vector. If a failure occurs in the ith
sensor set, the estimate of the ith local
filter will not be correct, it should not
be put into master filter so that the
global estimate of the system state
vector is always correct. We can also use
unfailed sensor outputs to generate
optimal estimate of the output measured
by failed sensor.

of the 1local
local Kalman

The optimal estimates
states are given by the
filter

X, (k+1/ke1)=R (k+1/k)+

K, (k+1) [y, (k+1)-H (k+1)X (k+1/K)1  (4)
X, (k+1/k)=¢ (k)% (k/k) (5)
K, (k+1)=P (k+1/k)H] (k+1)x

[H, (k+1)P, (k+1/k)H, (k+1)+R, (k+1)]7" (6)
P, (k+1/k)=0, (})P (k/k)®, (k)+

6, (k)Q(k)G] (k)
Pi(k+1/k+1)=[I—Ki(k+1)Hi(k+1)]X
Pi(k+1/k)

(7)

(8)

For generating the global state estimate
estimates Qi
the

A
xg using N local state

(i=1,"',N),

(6)
theorem .

we have following

1:

A
assume Xi

In linear discrete-time

(i=1,---,N) are N local

Theorem a

system,




with the error
if Pij=0 for all i#j,

then the optimal global state estimate is
given by

state estimates
covariances Pii,

(9)

where

ii (10)

Corollary 1: In a linear discrete-time
system, 1if there 1s no process noise,
i.e. Q(k)=0, and initial wvalue Pij(0)=0

for all i#j, then (9) and (10) hold.

If the jth sensor failed, the local
estimate Qj should be eliminated from Qg.

Then (9) and (10) become as

N
A -1A
xg—Pgi)E:lPiixi (11)
i#}
N
-1 Y)-1
Pg—( i§1 Pil ) (12)
i%j

The estimate of the output measured by
the jth failed sensor can be obtained by

A A
v.=H x

j ig (13)

In general, P1j¢0 for all i#j, thus

Theorem 1 can not be applied directly in
this case. This problem can be solved by
using the upper bound technique proposed

7
by Carlson( ).

A composite state vector and
corresponding covariance matrix are
defined as follows:

Xy P Pix

S

Xy Py Pun
Then we have following composite state
equation
% ¢1 X4 G,
= : +| w{k)
N fxet by Xy {x | O
(14)

Processing a local measurement from ith
sensor subset in a global optimal sense,
we obtain
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yi=Hix‘+vi=Hx+vi (15)
H=[0'-0 Hi 0:--:0] (16)
A=HPH'+R =H P H +R (17)
i iTiii i
Measurement Update
x"=x+PH'A! (y -HR) (18)
P'=P-KHP=P-PH A™'HP (19)
The jth element of (18) is
A+ A T, -1 A
X =X +P H A (v,-H.x,) (20)
The jk element of (19) is
+ T, -1 T
ij~ij—PjLH1A Hlpkl (21)
Note that:
(a) When j=i, measurement v, affects only
local state X, i.e.
A+ A T, -1 A
X, =X +P H/A (yi—Hixi) (22)
(b) For j#i, measurement y, dose not

A . A+ A
affect xj, leaving xj=xj.

(c) For j#i, if Pij(0)=0, Pij(k) remains

zero afterwards, then
+ T,-1 T
P =P ~P HA H. P, (23)
Therefore, if the 1local estimates are
initially uncorrelated, then the local
measurement sets can be processed
independently, and they remain
uncorrelated forever,.
Time Update
A A
Xy ¢, %4
: = : (24)
A A
Xu Jket ¢N XN |k
P11 P1N
L PH1 PNN k+1
- T
¢1 Py PlN ¢1
. : : +
o 1| P P »T
! N N1 NN |k N




QL ¢F ---a ] (25)

From (24) and (25), we know that state
update can be separated, if there is no
process noise, i.e. @=0, and Pij(0)=0 for

all i#j, then covariance update can also
be separated. Thus Corollary 1 is proved.

If Q#0 in (25),
remain zero even though Pij(0)=0 for all

i#j. Note that

then Pij can not

G,
C et 6}-eay 1=
Gy
T
G, Q- Q G,
: (26)
. T
From matrix theory, we know that
Q -+ Q r.Q
Do s (27)
Q s Q rNQ
1/r1+---+1/rN=1, OSI/riSI (28)

The right hand side is an upper bound of
the left hand side.

Substituting this result in (26) then
yields the following upper bound on the
covariance P

P L™
. <
Pyt 7" Punfues
® Pia 7 Py ¢
: +
T
®ul| Pwa " Punix ¢y
r
Gl riQ G1
(29)
T
GN rNQ i GN
Thus we can obtain the following

partition results

- T T
P, (=¢,P,# +G T QG (30)
P =6 P. ¢'=0, if P =0 (31)
Ji o Tigii ji

A similar upper bound to that of (27) can
be placed on the initail value of the
state covariance.

Failure Detection and Isolation

for Subsystems

In multisensor systems, multiple
local estimates can be computed with each
estimate being dependent on a subset of
the available sensors., These local
estimates can then be combined to obtain
a global estimate of the system state. If
subtle sensor failures occur that cannot
be detected by sensor self-test, local
filter performance will be degraded, and
overall system performance will be
affected. An approach is therefore needed
to determine the validity of a local
filter estimate computed from sensors
that are subject to subtle failures.

Chi~-Square Test

We model the problem of failure
detection as that of detecting a signal
of unknown magnitude that occurs at an
unknown time, and assume the following
model for system state x(k) and
observation y(k):

x{k+1)=¢(k)x(k)+G(k)w(k) {32)
v{k)=H(k)x(k)+yo(k,p)+v(k) (33)

where w(k) and v{k) are independent,
zero-mean, Gaussian white noise sequences
having covariances of intensity Q(k) and
R(k) respectively. The initial state x(0)
is a Gaussian random vector independent
of w(k) and v(k) and has mean x,. and

o
covariance Po' The failure model is

represented as a random vector ¥. The
failure event is represented by a step
function ¢(k,9) which is unity for k2¢,
where ¢ is the time at which the failure
ocuurs, and zero elsewhere. The dimension
of vector x{(k), vy(k) are n and m
respectivly.

A two-ellipsoid test has been applied
to the detection of specific failure

9
modes by Kerr(a’ ). Kerr’s

{(10)

Based on

results, Brumback and Srinath
proposed a chi-square test which 1is
simpler to implement than Kerr's test.
But they did not explain how to obtain
the scalar test statistics. Using
detection theory we will derive - the
scalar test statistic in the following.

The two-ellipsoid test used two
. A . . .
estimates: xl(k) which is the estimate

obtained using the measurement y(k) via a
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Kalman filter, and the estimate Qz(k)

which is computed from the appriori
information only. The two estimates are
obtained from the following sets of
equations

Ql(k+1)=[I—K(k+1)H(k+1)]¢(k)§1(k)+

K(k+1)y(k+1) (34)
9{1(0)=x0
P, (k+1/K)=0(k)P, (k/K)®" (k)+6(k)Q(K)G" (k)
(35)
P,(0)=P,
K(k+1)=P (k+1/k)H (k+1)x
[H(k+1)P (k+1/k)E (k+1)+R(k+1)17"  (36)

P, (k+1/k+1)=[I-K(k+1)H(k+1)1P, (k+1/k)(37)

and
X, (k+1)=0(k)%, (k) (38)
;cz(O)=x0
P, (k+1)=6(k)P,(k)¢" (k)+G(k)Q(k)G (k) (39)
P2(0)=P0
Define the estimation errors e, (k) and
ez(k) as
e, (k)=%, (k)-x(k) (40)
e, (k) =%, (k)-x (k) (41)
Define
Blk)=e, (k)-e, (k) (42)

Since each filter is linear, and each
estimate is unbiased, so that
E{B(k)}=E{e, (k)-e,(k)}=0 (43)
The covariance of B(k)
W(k)=E{B(k)B" (k)}
T
=P1(k)+P2(k)—P12(k)—P12(k) (44)
where
T T
P, (k)=E{e, (K)e](k)}=P_ (k) (45)

Since B(k) is Gaussian with zero mean and
convriance W(k) of (44), its distribution
is completely defined.

When in the

subsystem, the estimate Q1(k) will be

a failure occurs

biased., However, the estimate Qz(k) is

still unbiased since it is independent of
the faulty measurement y(k). Therefore,
B(k) is biased according to (42). By
detecting the difference in the mean of
B(k), we can determine if failure has
occurred.

the two

For the vector B(k),
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hypotheses to be tested are identified
as Ho’ the normal mode, and H1 the
failure mode. Under H hypothesis the

1
bias failure is assumed, with the bias
failure magnitude and sign being unknown
completely. The statistics of B(k) under
the two hypotheses are:

H_: E{B(k)}=0 E{B(k)B" (k)}=W(k)

Q
H : E{B(k)}=¢t E{[B(k)-#]1[B(k)-u1"}=W(k)

1

the mean in the failure mode,
both negative and positive

where M,
can take
values.

Since f(k) 1is a Gaussian randon
vector, the log likelihood ratio A{k) for

the two hypotheses is given by(lﬂ

ACk)={BT (k)W (K)B(k)-

[B(k)-u1"W (k) [B(k)-u1}/2  (46)
The maximum likelihood estimate ﬁ of U is

the value which maximizes the expression

(46), Clearly, it gives

A

u=p(k) (47)
Substituting this result into the

expression for A(k) yields the detection

decision function (the test statistic)
A(k)
A(k)=B (k)W (k)B(k) (48)
The test statistic *(k) is chi-square
distributed with n degrees of freedom, n
is the dimension of x. The test for
failure detection is
l(k)ZTD failure
(49)
no failure

l(k)(TD

where the threshold TD is determined from

the table of chi-square distribution and

Prir(k)>T |H 1=P

where Prais the probability of false
alarm, which can be obtained by
integrating the chi-square density
function of A (k).
. c o (2)
(44) can be simplified to
W(k):Pz(k)—P1(k) (50)

However, direct computation of W_i(k) can
be avoided by computing +the Cholesky
decomposition,

wik)=1L" (51)




solving a triangular system of equations,
and computing A(k) as an inner product of
a vector with itself, we obtain

ME)=(L7'B) (LB

Residual Test

As the chi-square test uses two
estimates, the computation or storage
requirements on the board computer will
be increased. We will introduced a
residual test, which only ' uses the
residual of Kalman filter to detect the
possible failure, to avoid the addition
computations or storages required in the
chi-square test.

(52)

The residual of Kalman filter is

given by
r(k)=y(k)-H(k)X (k+1/k) (53)
where the prediction Q(k+1/k) is given by
X (k+1/k)=6(k)R (k) (54)

In the absence of failures, the residual
r(k) is zero-mean, white Gaussian
sequence with the following covariance

V(k)=H(k)P(k/k-1)H" (k)+R(k) (55)

In the presence of a failure, the
residual r(k) will not be zero- mean,
white noise sequence any more. It is the
difference in the means of the residual
r(k) in the absence and presence of
failure which provides a basis for
failure detection. Therefore, we have a
binary hypotheses as the following

H_ : no failure

o
E{r(k)}=0 E{r(k)r'(k)}=V(k)
H : failure occurred

1
E{r(k)}=tt E{[r(k)-u)lr(k)-p1"}=v(k)

Similarly, we can derive the scalar test
statistic A(k) as

Mk)=r (k)V  (k)r(k) (56)

The test statistic rMk) is also
chi-square distributed with m degrees of

freedom, m is the dimension of y. The
test for failure detection is
l(k)zTD failure

(57)
K(k)<TD no failure

The threshold TD can also be determined

from the table of the

distribution.

chi-square

Application

The results of the previous three
sections provide the necessary elements
from which a fault tolerant multisensor

navigation system can be developed. In
this section we apply these results to a
system composed of a SINS, a GPS receiver
and a Doppler radar. This
SINS/GPS/Doppler integrated navigation
system consists of two
subsystems:SINS/GPS and SINS/Doppler
navigation systems which are constructed
by integrating a SINS with a GPS receiver
and a Doppler radar respectively. The
SINS provides outputs of the aircraft
navigation state (position, velocity,
acceleration and attitude) coordinatized
in a local-level reference frame. The GPS
receiver provides pseudorange and delta
pseudorange measurements which are used
to provide the best estimate of the
aircraft posotion, velocity and system
time, The Doppler radar provides aircraft
velocity in an aircraft body reference
frame. The integrated system performance
objectives are to compute the MMSE
estimate of the aircraft navigation state
conditioned on all data since system
initialization. If a failure is detected,
the system must compute the most accurate
estimate of the aircraft navigation state
conditioned on data from +the unfailed
sensors, as though the failed sensor has
never been part of the system.

The error state equation of the
integrated navigation system is

X(t)=Fx(t)+I'W(t) (58)

where x€R21 is defined as x=[Ax AL Ah Avx
Av Av AT AT AT € € € VvV V 9 E
y Zz X 4 z b4 b4 A X Yy z po

T
Ehsf dk dA dtu Cli.ru]

AL — longitude error
AL — latitude error

Ah — altitude error

Avx — east velocity error
Avy — north velocity error
sz - vertical velocity error

T, — east attitude error
T -—— north sttitude error
T - azimuth error

€ gyro drift

gyro drift

gyro drift
accelerometer bias

accelerometer bias

N
N XN g A

accelerometer bias

€
€

v
Ve
v

E — altimeter bias
E

her T altimeter scale factor error
dk — doppler scale factor error

dA — doppler drift angle

dtu — GPS clock phase error
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dtru — GPS clock frequency error
W(t) is system noise, F, I are given by
(6)
Zhang .

The two measurement equations of two
subsystems SINS/GPS and SINS/Doppler are

v, =H x+v, (59)
y,=H x+v, (60)
where v, and v, are independent,
zero-mean, white Gaussian noises with

convariances R1 and R2 respectively. Yy
the measurement from SINS/GPS,

]

where pG=p+cAtu is the pseudorange vector

e

is given

PeP,

bob (61)

given by GPS receiver. is the range
vector from the GPS user to the
sattlites, ¢ is the speed of light, Atu

is the time difference between the user’s
clock and the clock of sattlites. P, is

the pseudorange vector calculated f{from
SINS. bg, pl delta

vectors, which are given by GPS and SINS
respectively.

are pseudorange

vo=lv =v,] (62)

where vy is the aircraft velocity vector
v

obtained from SINS, D is the aircraft

velocity vector measured by Doppler
radar. A detail description of the model

is given by Zhang(e).

Based on equations (58)-(62), two
local Kalman filters can be constructed
to give two local estimates x )y X, of

error

1
system state and their estimate
covariance matrices P1, Pz.

The SINS/GPS/Doppler fault tolerant
integrated navigation system is shown in
Figure 1., In this system, SINS outputs
are measurements of angular rate vector w
and specific force vector f. The
reliability of SINS can be ensured by
using fault tolerant schemes discribed in
second section. Then the SINS/GPS
navigation system failure means that GPS

has failed. Similarly, the SINS/Doppler
navigation system failure means that
Doppler radar has failed. Two local
filters each processes one of the two
sets ofmeasurements, and estimate the
states of the integrated system. The
global estimate is computed by combining
the estimates of the SINS/GPS and
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SINS/Doppler filter using the combining
algorithm presented in the third section.
Each filter implements the chi-square or
residual test and reports whether or not
it has detected a failure. Since there
are only two subsystems, the global
estimate after a sensor failure is the
estimate which is obtained from the
unfailed sensor outputs. After a GPS or
Doppler failure the reconfiguration or
repair shoud be done if it is possible,
so that the accurate global estimate can
be obtained and the much high reliability
can be achieved.

The system of Figure 1 was simulated
via Monte Carlo techniques. The mission
scenario is flight due East at 300m/s.
The integrate step is 0.025s, the filter
computation cycles are all 1ls, and the
number of Monte Carlo samples is 100. A
ldg accelerometer bias failure occurred
at t=30s, and 100m pesudorange
measurement bias failure occurred in GPS
at t=50s,

2 and Figure 3 show the
and velocity errors,

of the SINS/GPS subsystem.

are not affected by the

failure since the fault
tolerant schemes for SINS are applied.
However, after a GPS failure, the
altitude error jumped from about 16m to
about 30m, and other errors became
divergent. It is shown that a GPS failure
will result in invalid estimate of the
SINS/GPS subsystem.

Figure
position
respectively,
These errors
accelerometer

4 Figure 5 show the
velocity errors,
respectively, of the - SINS/GPS/Doppler
fault tolerant integrated navigation
system. From these figures, we know that
the errors of the integrated system are
not affected by both the accelerometer

failure and the GPS failure.

Figure and

position and

In one word, the proposed fault
tolerant system can be used to provide
reliable and accurate estimate of the

aircraft navigation state in the possible
presence of sensor failures. The obtained
estimate of error state is applied to the
compensation of the integrated system so
that the most accurate navigation
solution can be obtained.

Conclusions

In this chapter, we have presented
an approach for fault tolerant estimation
in a2 multisensor navigation system which
includes one or more SINS and one or more
navigation reference sensors such as GPS
receiver, Doppler radar, terrain aided
system, air-data system, TACAN and
VOR/DME. The performance objective is to
compute the most accurate estimate of the
aircraft navigation state, based on only
unfailed sensors. The approach is 1)




improve the reliability of SINS wusing
redundant sensor configurations with
corresponding fault tolerant schemes, 2)
compute multiple local estimates of the
aircraft navigation state, 3) determine
which estimates are valid, 4) based on
the validity pattern decide which sensor
has failed, and 5) generate the global
estimate by combining those estimates
which do not use data from the failed
sensor. In the absence of failures, this
approach can provide a MMSE estimate of

the aircraft navigation state. In the
presence of failure, it can provide a
most accurate estimate of the aircraft

navigation state. A simulated example of
an aircraft navigation system consisting
of a SINS, a GPS receiver and a Doppler
radar was presented to illustrate the
design approach and the performance of
the resulting system.
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