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Abstract

Using the exact nonlinear equations of motion an
optimal guidance law for a reentry vehicle to
achieve at impact a zero miss and a predefined
flight path angle is derived. The application of
the optimal guidance law in feedback form is based
on the on-line solution of a nonlinear algebraic
equation. Numerical results are presented.

1. Introduction

Terminal guidance schemes for reentry vehicles are
in general based on either the classical approach
using proportional navigation(!’ or on modern
control theory. Kim and Grider(?’ obtained an
optimum guidance law based on linearizing the
problem about a nominal trajectory, time was
assumed fixed and a quadratic index was employed
in order to minimize a weighted combination of
final miss, final relative velocity direction with
respect to the vertical and the integral of the
squared vehicle lateral acceleration -along the
trajectory. The angle of attack of the reentry
vehicle was neglected and the autopilot response
was assumed to be either instantaneous, i.e., with
no lag time attributed to the transfer of input
commands to output reaction, or represented by a

single time constant. The optimal guidance law
was obtained in terms of time varying feedback
gains. The final time was determined using an

off-line approximation and the results showed
great sensitivity to the final time value. In
order to overcome this problem a suboptimal
guidance law was derived based on proportional
navigation plus an additional term proportional to
the reentry angle error.

York and Pastrick!3®’ gave a formulation for a
system that has a finite time delay and the
guidance law time varying coefficients were
approximated by piecewise linear functions.
Still, performance turned out to be too sensitive
to the approximation error. In this same work an
attempt was made to analyze the problem including
the angle of attack; however, no results were
presented besides derivation of the system
equations.

In Reference ‘%) an optimal guidance law in the
plane was derived using the exact nonlinear
equations of motion. The guidance law minimizes a
weighted linear combination of the time of capture
and the expended maneuvering energy. Final miss
was imposed.
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In the present work the reentry problem is
considered employing the exact nonlinear equations
of motion. Final miss and reentry angle at impact
are imposed. An optimal guidance law with free
final time is derived that minimizes the expended
maneuvering energy. A closed form solution is
obtained for the equations of motion in terms of
elliptic integrals. This enables to obtain a
nonlinear guidance law in feedback form. Since no
approximations are required, this guidance law has
no sensitivity problems of the kind appearing in
previous results. A numerical example will be
presented.

2. Problem Definition

A vehicle P flying at constant velocity Ve able to
control its normal acceleratuion U is depicted in
Figure 1. With coordinates centered at the
constant velocity target T, and axis X along its
velocity wvector Vi, the equations of motion in
terms of the nondimensional quantities, x = X/Rg,
z = Z/Ry, t'=tVp/Rg, v = V;/Vp and u = UR3/V;p,
where Ry is the initial vehicle to target range,
are

X = cosY - v (1)
z = sinY (2)
¥ =u (3)

The problem to be solved is to find a control u
such that the wvehicle P reaches the target
(x(ts)=2z(ts)=0), in a finite time t; at a
predefined impact angle 7(tf)=7¢;, while the
performance index J,

is minimized.




3. The Optimal Control

The maximum principle will be employed to solve
this problem(3), Let us write the Hamiltonian

H = p,(cos¥-v) + p,sinY + pyu - (1/2)u? (5)

where px, p,, Py the components of the adjoint
vector are defined by,

Px = 0,  Dpxr free (6)
p. = 0,  Dp,r free (7
Py = PxSinY - p,cos?, pysr free (8)
The Hamiltonian is maximized for

u* = py (9)
In order to obtain the optimal control the adjoint
system (6)-(8) is to be solved along an optimal
trajectory.

From (6) and (7) follows directly that,

Px E Pxr = PsCOS, (10)
Pz ¥ Pzr = psSind)s (11)
where ps = (p3r+p3¢)'/% and ¢ = tan™' (py¢/Pus).
Since this 1is a free -end time problem and the

Hamiltonian is not an explicit function of time,
H{u*) = 0 (12)

Substituting Egs. (9)-(11) into H as defined in
Eq. {(5), equating to zero and rearranging,

p% = 2ps[vcosps - cos(V-¢s)] (13)

This completes the integration of the adjoint
equations.

The optimal control u® is now obtained
substituting py from Eq. {(13) into Ea. (9),

u* = il 2ps [vecosp, - cos(7-9¢)] (14)
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The control u®* is a function of the flight path
angle and the unknown constants ps, ¢s. These
constants are to be determined as functions of the
given boundary conditions of the problem. For

this purpose the system differential equations
{(1)-(3) are integrated along the optimal
trajectories.

Dividing Egs. (1) and (2) by Eq. (3), with u* as

defined in Eq. (14),

dx cosY - v

-— = (15)
a

{ 2p, [vcosps - cos(V-¢s)]
dz sinY
— = % (16)
dar

{Aéps[vcos¢s - cos{7-¢s)]

Rearranging and integrating on both sides from the
initial to the final conditions it is obtained:

Ve
’Y -
~xo = #1/{ 2p, k. (17)
dvcosps - cos(T=ps)]
0
e
invy

-z = il/J 2ps = (18)

Jvc§s¢s - cos(V-ps )]
Yo

These two equations (17) and (18) are to be solved
for ps and ¢ as functions of the given boundary
conditions Xo, Zo, Yo, V¢.

Dividing Eq. {18) by Eq. (17) and rearranging

Ve

sin{(7V-¢g ) ~v

dy = 0 (19)

‘lvcosz;bs - cos{7V-ps )]
o

where ¢, = tan"!'(zg/Xo) is the angular direction
of the initial radius vector PT.

Equation (19)
for ¢s. This
and p; is then

is a nonlinear algebraic equation
equation can be numerically solved
obtained from,

T

sinY

2
dv] (20)
R/coszps - cos(7v=¢, )]

0 0




A feedback solution for the optimal control u® is
readily implemented introducting into Equations
(19) and (20), at each time step, the present
values of 7, x, z instead of the initial values
Yo, X0, Zo.

4, Numerical Results

To dillustrate the use of the nonlinear reentry
guidance law, an application example was
numerically solved.

The initial conditions and parameters of the
application example are,

T = -30°, % = 0.707, zo = 0.707, v = 1/50

and the required impact angle 7; = 90°.

Fig. 2 shows the vehicle relative trajectory and
Fig. 3 the vehicle acceleration as a function of
time. As expected, the vehicle achieves impact at
the required flight path angle with a zero miss.

5. Summary

A nonlinear optimal guidance law for a vehicle
with a constrained attitude angle at impact is
derived wusing the nonlinear equations of motion,
Numerical results are presented of a
representative case. Since the nonlinear guidance
can be implemented in feedback form, further work
will be directed to numerically analyze the
behaviour of the system under different
disturbances.
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Fig. 1 : Reentry geometry
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Fig. 2 : Reentry vehicle relative trajectory
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Fig. 3 : Normalized acceleration versus time
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