This paper concerns an analysis of the stability of a
tug-rope—sailplane system from the point of view of the
sensitivity of the characteristic modes to changes of the
most important system parameters. Both longitudinal and
transversal perturbations are considered. The main results
concern a distinction between parameters which influence
the dynamics of the system and parameters which do not.
The effect of the cable characteristics on the motion of the
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whole system is also discussed.
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Nomenclature

aspect ratio

state matrix

Tope cross section

span

reference chord

center of gravity

aerodynamic coefficients of the rope
force coefficients of the rope

rope diameter

Young’s modulus

sag of the rope

inertial and body reference frames
aerodynamic force on the plane
aerodynamic force on the rope
acceleration of gravity

inertia matrix

rope length

transformation matrix from Fy to Fr
mass

unit vector tangent to the rope
parameter of the system

radius of curvature

curvilinear abscissa

reference surface

time

thrust force

velocity of Fy

velocity component of the c.g. in Fy
local velocity components of the rope
unit matrix

velocity

velocity relative to the flow

local coordinates in Fr

right eigenvector

left eigenvector
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Greek symbols

o angle of attack
~ Tope mass per unit length
Az vertical distance between the planes
€ stretching
A eigenvalue
&,n,¢ coordinates in Fy
P density
o real part of A
T tension
©,9,% Euler angles
L) Euler angle rate vector
w coefficient of the imaginary part of A
w angular velocity
Subscripts

A tow-plane

a attachment point
B sailplane

¢ cable

G center of gravity
r relative

0 unstretched

L Intreduction

In this paper we consider a very peculiar flexible system,
the one made of an aircraft which tows a glider. In spite
of being a relatively old problem, a really accurate mod-
elling of a tug-rope-sailplane combination appeared only
recently(?), The model is able to provide a realistic simula-~
tion of the dynamics and an evaluation of the stability of
the system and is based on a rigorous mathematical repre-
sentation of the dynamics of the cable. Other models which
appeared even in the recent past, in the pertinent literature,
are to different extents effective in describing the most gen~
eral aspects of the phenomenology. However some stability
related questions, which are of foremost importance from
the point of view of the flight safety, could not be satis-
factorily answered until full consideration was paid to the
rope dynamic behaviour. Purpose of this paper is to eval-
uate those elements of the sensitivity matrix which appear
of noticeable interest in applications, by taking advantage

of the most recent model.
Various more or less customary definitions can be given

of sensitivity. In this regard see, for example, the articles
in Ref. 2. Here we refer to the sensitivity matrix which is
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usually met when dealing with flexible structures, namely
the array the elements of which are the derivatives of the
eigenvalues of the state matrix with respect to the physical
parameters of the system. When we consider our specific
problem we have to recall that the greatest influence in
providing safe equilibrium configurations of the system is
associated to the cable length, to the relative position of
the two planes and to the attachment point of the rope to
the glider. This was already proved for motions in a ver-
tical plane by evaluating the first significant modes when
those quantities are changed(V). Lately, similar conclusions
could be anticipated for some motions out of the longitudi-
nal plane®.

In what follows we report the full set of basic equations
and related boundary conditions which represent the non-
linear mathematical model. Then the equilibrium state is
discussed and the linearization procedure leading to the cal-
culation of the eigenvalues of the state matrix is recalled.
After indicating the basic parameters for the sensitivity
evaluation and the related computational method, several
results are reported for the in-plane and the out-plane cases.

II. Analysis

Let us consider the partial differential equation which
governs the dynamics of a perfectly flexible cable subjected
to its own weight and to the aerodynamic forces. The
boundary conditions at the two ends of the rope are ex-
pressed by kinematic relations in terms of position and
speed of the two planes. Since these quantitites are also
unknown the equations for the dynamics of the tug and of
the glider are then to be solved as part of the differential
problem which corresponds to the mathematical model(®),

In vectorial form we write for an extensible cable of
uniform density and geometry

125 = 2 ((rjn) + F. + 8 (1
where « is the mass per unit length, 7 is the tension force,

v, = (U, V,,W,)T is the local velocity vector, F, is the

aerodynamic force, n = (8z/ds,dy/ds, 82/8s)" is the unit

: g

Fig. 1 - Sketch of the system

vector locally tangent to the rope, g is the acceleration of
gravity and s is the intrinsic coordinate along the cable
length. The aerodynamic force acting on an element of the
cable is given by®)

1 g
F,.= Epd [Ochi’c (v,cn) + CDG

v,.] (2)

where d is the cable diameter and the operator ~ is used for
the cross products (i.e. v,,An = ¥,,n)(). The local velocity
relative to the air is V., = —(U, + U., V., W.)T where U, is
the stationary velocity of the reference system Fy, centered
in the tug c.g.(!), with respect to a flat Earth fixed inertial
frame (Fig. 1).

The aerodynamic coefficients in Eq. 2 are

Ve,

CyL

Il

k(1 — cos® a,) cos e,

e

(3)
Cp, =

c

Chpo, + k(1 — cos? a;)*/?

with cos a, = v,, - n/|v, | Finally the tension is |f] = EA.e
where F is the Young’s modulus, A, is the cross section of
the rope and the stretching ¢ is

()]

For the planes we have

maly, Ve, = Fa+1, +myly,g+ T (5)
mpLlyvr,ve, = Fp—1, +mply,g (8)

and
IA(.Z)A + ((:)IOJ)A = - (?aRa)A + MA (7)

Ipwg + (L:)IOJ)B = (%aRa)B + Mp (8)

where subscripts A and B indicate tow-plane and glider
respectively, Ly is the transformation matrix from the
inertial frame to the body frame, w and vg = (U,V,W)
are the angular and linear velocities of the vehicle, respec-
tively. Furthermore F and T are the aerodynamic and

thrust forces respectively, 7, = (|f{Lym), is the tension
force at the attachment point ¢ and R, = (£,0,¢)7 is the
position vector of a. M is the aerodynamic moment and I
the inertia matrix of the airplane.

Equations (5)-(8) are formulated in body axes. How-
ever, in order to relate these equations to the governing
equations of the cable, the velocity components and the co-
ordinates of the airplane are expressed in the inertial frame.
As a consequence, the aerodynamic force and moment in
Egs. (5)-(8) are written in term of the c.g. velocity relative
to the wind, namely v, = —Ly(U. + U, V,W)T.

The set of governing equations is completed by the fol-
lowing kinematic relations for the cable coordinates

opP,
e (s) = vels) ©)

where P, = (z,y,2)7, by the boundary conditions at the
rope ends
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P,

7 = Vg, + (C)LIVRa)A fors=0 (10)
dP, .
o = Vet (GLyR,) g fors=1 (11)

a.nd, finally, by the relation for the Euler angle rate vector
@

@45 =R;5wan (12)

where ® = (@,19,1,['))T. The expression of the transforma-
tion matrix R™! can be found in Ref. 5.

The fundamental equations can be put in dimensionless
form and, in so doing, the characteristic products come into
evidence. Among the others, the following numbers are of
the foremost importance

p,—8s b b o, _cp

¢ 2ut 1T e ca ca
bgp pdep cp FA
B2 ba AT T4y P70, T qu2
29 Sp
Dy =—L pp=2E
M pSp B Sa

where reference is made to the Nomenclature for the mean-
ing of the symbols.

As usual in the linear stability analysis, Eqs. (1-12) were
linearized, according to the small perturbation theory. The
initial equilibrium situation corresponded in all the cases
to trimmed steady level flight of the system. The scalar
equivalent expressions of the equilibrium equations and of
their linearized forms were then discretized following Sato-
fuka’s improved differential quadrature technique®. As a
result of this last method and at the end of this step the
equations which govern the state of the two planes have
been implemented as boundary conditions of the equations
for the cable.

More details on the discretization of these equations can
be found in Ref. 7, but a few comments are to be made here.
Essentially the adopted discretization method consists in
dividing the continuous cable into N tracts by means of
N + 1 nodes. The values of the unknowns in the nodes are
then interpolated through Lagrange-type polynomials in or-
der to have a continuous representation. After introduc-
ing the interpolating expressions into the partial differen-
tial equations, the differential problem is transformed into a
finite set of ordinary differential equations. We can then re-
mark in advance that the eigenvalues of the linearized form
of the set of ordinary differential equations include the fi-
nite number of those corresponding to the modes which are
characteristic of the cable.

In the following section and for the sake of simplicity,
we will not mention the higher order eigenvalues associated
to the elastic behaviour of the cable since their sensitivities
to the parameters of the system are practically zero.

As a final remark, before the presentation of the results
we note that for the discussion of the influence of the con-
sidered parameters on the dynamics of the system we will
follow the way which will appear more convenient from the
point of view of the physics of the problem. In this respect
use will be made either of the calculated sensitivities and/or

of the root loci themselves whichever gives more ease in the
interpretation of the results.

Turning now to the sensitivity matrix, the classical pro-
cedure for its evaluation can be summarized as follows. Let
A; and x; be the i-th eigenvalue and the associated right
eigenvector of the state equation so that

AX,' = /\;X,‘
and let y; be the associated left eigenvector, i.e.
ATy, =y

Since for ¢ # 7, (A — Aj)y:,TUx; = 0, after normalization
of the eigenvectors one has the following orthonormality

relation
yf‘ UX,‘ = 6,']'

with §;; the Kronecker’s delta.
Simple considerations lead to

yIU - A)x; =0

and when we evaluate the derivative of this equation with
respect to a parameter p upon which the state matrix de-
pends we obtain the following expression

ayT
dp

(WU — A)xi+

A% .. OA
TAWU-A)= 4+ yP 20U -—=)x =0
yI (AU — A) o T <ap ap)x

provided that the proper differentiability conditions are sat-
isfied. From the definitions and the orthonormality condi-
tion this equation finally reduces to

O\ _ rOA
ap =Y ap §

This relation above allowed the numerical calculation
of the sensitivities. Incidentally we just remark that great
care has to be paid in the computation of the derivatives
of A in correspondence with the branching points of the
eigenvalues.

IT1. Results

A first discussion of some of the main parameters which
influence the characteristic modes of a towed sailplane was
presented in Ref. 1 for the longitudinal case, and in Ref. 3
for the general three-dimensional motion. In those papers,
in particular, it was found that an important role for the
stability analysis is played by the length of the cable, the
vertical separation of the two planes, the speed at equilib-
rium, the position of the attachment point on the glider.

As in the references cited above we will proceed in the
investigation of the sensitivity matrix by taking into ac-
count the dimensional form of the parameters and — there-
fore — of the eigenvalues and their derivatives. This was
decided for the sake of practicality and immediate feeling
of the results from the physical point of view.
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Although a thoroughful exploration of the sensitivity
elements with respect to geometric and kinetic parameters
was carried out, we will show here only the most significant
results. These results were obtained after chosing for the
tug and for the glider the planes whose characteristic data
are reported in Table 1. The data were taken from Ref. 8.

In the sequel we will firstly consider the sensitivity of the
eigenvalues of the system in the vertical plane with respect
to i) the angle of attack of the sailplane, ii) the horizontal
and iii) the vertical displacement of the attachment point,
iv) the length of the rope.

Since the dynamic characteristics of the system are in
general complicated it is sometimes relatively difficult to re-
alize the physical causes influencing the various modes. If
we consider, for example, just the longitudinal case, the two
planes when singularly examined present — as is well known
— at fixed stick a phugoid mode and a short period mode.
On the other hand, the cable alone will behave in many very
different ways as a consequence of the actions and of the
constrains which are imposed at the two ends. In this last
case we will in general observe modes which depend upon
the elastic characteristics of the rope and modes which cor-
respond to the motions of an inextensible cable subjected
to mass and aerodynamic forces. When the system is con-
sidered as a whole one can intuitively say that the original
characteristic modes of each part should be distinguishable
in most circumstances. This is of course true but there are
cases where the modal interaction among the elements of
the system is such that a more or less immediate interpre-
tation of the modes is out of question. This happens in
particular in the proximity of degenerate modes(®19), For
these reason, as we shall see, it seemed proper to analyze
the sensitivity to v) the elastic modulus of the cable and to
vi) the minimum drag coefficient of the glider.

For motions out of the vertical plane, after a short dis-
cussion of the characteristics of the dynamics of the system,
we will show the sensitivity to vii) the horizontal and the
vertical displacements of the attachment point and to viii)
the length of the rope.

In all the cases which will be presented herein the initial
equilibrium conditions correspond to a uniform horizontal
speed uo = 30 m/s, to sea level altitude and to an angle
of attack of the glider equal to -0.007 rad. In the same
conditions the locations of the attachment points are &4 =
—4.9m, ¢4 = 0.27 m and & = 2 m, ¢g = 0 respectively.
As for the cable data we have v = 4 x 107% kg/m, EA, =
3.8 x 10* N, k = 1.15, Cp,, = 0.02, lo = 50 m.

The noticeable sensitivity of the system to the vertical
separation of the two plane, Azp, will be expressed in terms
of the derivative d)\/dap, since - in equilibrium - there is a
one to one correspondence between Azp and ap, as shown
in Fig. 2.

Motions in the longitudinal plane

We begin with the case of motions in the longitudinal
vertical plane and, following Ref. 1, Fig. 3 shows the real
part and the coefficient of the imaginary part of the eigen-
values versus ag. We have two damped periodic motions
and two aperiodic motions, one of which is sensibly un-
stable in all range of angles of attack. In this figure, as
in all the following ones, two short period modes are not
reported which are practically equal to the short period
modes of each of the two planes. This is because their val-
ues are unaffected by variations of a3. Mode 3 corresponds
to the phugoid of the tug whereas the phugoid of the glider
degenerates into the two aperiodic modes, Mode 1 and 2
respectively. Finally, Mode 4 has to be associated to the
dynamics of the cable and is always damped. This last
point will be discussed a little later.

After the necessary calculations we obtain the sensitiv-
ity with respect to ap versus ap which is reported in Fig. 4.
Subsequently we present Fig. 5 which provides ) /8¢p ver-
sus ap. A comparison of the two figures is meaningful in the
sense that it immediately shows the relative inportance of
the two parameters ap and £p in determining the response
of our dynamic system to changes of the same quantity op.
Although the functional dependences of Im{dA/dag) and
Im(BA/8€g) upon ap are pretty similar, the values of both
the imaginary and the real parts of the two sensitivities dif-
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Fig. 2 - Az=z¢, — 2g, vs. ap at equilibrium; £ = 2m,

¢ =10
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fer by some orders of magnitude.

It is significant to compare the sensitivities with respect
to the position (€p,¢p). Tables 2 and 3 list dA/d€p and
0X/8¢p as functions of {g and ¢p respectively.

It is immediate to realize the greater influence of the ver-
tical displacement of the attachment point on the eigenval-
ues rather than the one of the horizontal displacement. In
both cases the sensitivities relative to Mode 3 which stems
from the phugoid of the aircraft are negligible. Changes in

Table 1 - Tow-plane and glider data

m = 800kg I =1268 kgm? | I, = 1800 kgm?
Tow-plane | I, = 2630 kgm? I =0
b=11m S = 16m? A=16
m = 300kg | I, =1500 kgm? | I, = 130 kgm?
Glider I, = 200 kgm? I, =0
b=16m S = 13m? A=173
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the vertical position of the attachment determine a vari- We pass now to the sensitivity with respect to the length
ation of the damping coefficient of the elastic mode at a  of the rope. The results of the calculations are given in Ta-
constant rate and influence the damping of Mode 1. Note ble 4 and show that this last parameter influences only the
that Modes 1 and 2 correspond to a couple of conjugated frequency of the elastic mode, as one would have expected.
complex roots for negative values of ¢p, that is when the Since we are discussing the sensitivity to one of the pa-
attachment point is located above the c.g. of the glider. rameters of the cable, it is worth entering in some more
In this condition the long period mode of the sailplane is  details concerning the modes which are more directly af-
recovered.
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2m, ¢g = 0.

8\/dap of Modes 1-4 vs. ap; £p = 2m, ¢g = 0.

Table 2 - 0A/9¢p(rad/sm) vs. £p;¢p = 0.

£p (m) | Model | Mode 2 Mode 3 Mode 4
1.6 | -2.84 (-2) | 3.45 (-2) | -4.90 (-3) -3.24(-3): | -3.94 (-3) +1.87(-2)s
1.8 | -2.84 (-2) | 3.66 (-2) | -4.89 (-3) -3.07(-3)i | -5.10 (-3) +1.93(-2)
2.0 |-2.88 (-2) | 3.92 (-2) | -4.86 (-3) -2.91(-3): | -6.46 (-3) +1.89(-2)i
2.2 |-2.99 (-2) | 4.01 (-2) | -4.83 (-3) -2.72(-3)7 | -7.52 (-3) +1.89(-2)s
24 |-3.19 (-2) | 4.56 (-2) | -4.81 (-3) -2.53(-3)i | -8.47 (-3) +1.90(-2)s
Table 3 - 9)\/8¢p(rad/sm) vs. ¢p; €p = 2m.
¢ (m) Mode 1-2 Mode 3 Mode 4
-0.4 | 2.04 (-1) -5.28 (-2)7 | 6.56(-3)-2.38(-3)7 | -1.98(-1)-4.42(-2)7
0.2 1.91(-1)-4.01; | 8.91(-3)-3.57(-3)s | -1.96(-1)-2.40(-2)s
0 | 4.05(-1) | -3.96(-2) | 1.85(-3)-3.61(-3)s | -1.94(-1)-1.37(-2)¢
0.2 | 3.61(-1) | -2.10(-2) | 3.29(-4)-2.80(-3)i | -1.91(-1)-1.28(-2)s
04 |3.35(-1) | -1.06(-2) | 5.90(-4)-2.23(-3)s | -1.91(-1)-1.28(-2)s

Table 4 - 8)/8lp(rad/sm) vs. ly: €p =2m, ¢ =0

lo (m) | Mode 1 | Mode 2

Mode 3 Mode 4

30 | 6.02(-3) | -5.73(-3) | 8.11(-5)+3.82(-6)s | 1.17(-2)-5.28(-2)

40 | 1.96(-3) | -2.37(-3) | 2.33(-5)-5.19(-5)7 | 3.88(-3)-2.90(-2):
50 | 4.07(-4) | -1.20(-3) | -3.85(-6)-7.34(-5)i | 1.80(-3)-1.75(-2)1
60 | -2.82(-4) | -6.62(-4) | -1.86(-5)-8.20(-5)7 | 1.06(-3)-1.11(-2)¢
70 | -5.76(-4) | -3.81(-4) | -2.72(-5)-8.56(-5)i | 7.27(-4)-7.39(-3)1
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fected by the characteristics of the rope.

As we anticipated it is not immediate, in some cases, to
understand what the behaviuor of the cable is. If we refer to
the investigations in Ref. 10 and try to apply those results
to the present circumstances, we already see that the re-
sponse of the connection between tow-plane and sailplane
can be extremely different in terms of frequency, and it
depends on the geometric configuration of the cable (essen-
tially on its curvature), on its physical characteristics and
on the tension to which it is subjected.

First of all we note that, when we let the mass per unit
length of the rope vanish, so that the rope itself reduces to
an elastic massless link, the elastic mode has a frequency
equal to [EA.(m4 + mp)/lmamp]'’? which is sometimes
called bounce frequency. In equilibrium the case system
which we are considering here wotr'd have a bounce fre-
cuency equal to 1.8 rad/s. For the same system, in Ref. 1,
it was already shown that the values of the parameters are
such that the frequencies which can be directly referred to
the rope are far from this value of the bounce frequency.

Since in von Flotow’s(® analysis the great role played
by the elastic modulus, the tension and the curvature are
put into evidence, we present Fig. 6 and Table 5 in or-
der to justify the distance between the values of the vi-
brational frequency of the cable and the bounce value. In
particular Fig. 6 shows the elastic eigenvalue Im(A4) versus
E, whereas Table 5 reports 7m()s) as a function of Cp,,
which is practically indicative of the tension at the glider’s
end of the cable,

Figure 6 clearly shows that, in a wide range of values of
E, our system has a values of Im(\,) which falls far from
the bounce value. In addition, the functional relation be-

o
o
S

S
o
B

Re(dM/aL;) (rad’s m)

o
[@]
(]

0.7 0.8 o, x10% (rad)

Tig. 5 - Real part and coeflicient of the imaginary part of
8X/8&p of Modes 1-4 vs. ap; ¢ = 0.

tween Im(Ay) and E does not follow the bounce frequency
law. However Table 5 shows that, all the rest being kept
constant, if we change the aerodynamic drag of the glider
and, in so doing, the tension at the end of the rope, then
a definite increase of Cp,, drives the imaginary part of A4
towards the bounce value. Table 6 shows the sensitivity to
E of the four considered modes, for two different values of
the mass per unit length of the cable and for two different
locations of the attachment point on the tug. We note that
8Ay/OF is strongly affected by «y and increases to great val-
ues as Im()y) approaches the bounce value. On the other
hand, the location of the attachment point on the aircraft
(€a,¢a) does not practically influence Modes 3 and 4 but
changes a periodic phugoid motion of the sailplane - when
the attachment is in the c.g. of the tug - into two aperiodic
motions.

A further consideration is suggested by Fig. 6. Apart
from its influence on the elastic behaviour of the cable, the
elastic modulus noticeably affects the diverging motions of
Modes 1 and 2.

Motions out of the longitudinal plane

A rather extended investigation of the out of plane dy-
namics of a tug-rope—sailplane system was presented in Ref.
3. The guidelines of that research were based on the same
full model for representing the behaviour of the cable which
is adopted in this paper. Following that analysis we will
consider here the main aspects of the lateral and directional
stability characteristics and we will discuss the sensitivity
of the system to the principal intervening parameters.

When the state equation for the lateral dynamies is con-
sidered, some of the eigenvalues of the state matrix can be
associated to already familiar modes. In fact one obtains
two couples of conjugates complex roots which correspond

0.9 { (a)
0.8} /
— Mode 4
worf
ke
06}
3
0.5
Mode 3
0.4} N
1by 1610
0.2} b Mode 1
()  Moge
~—~0.1}
3
Yoo
~0.0
° |
Mode 4 Mode 3
-0.1F \
10° E (N/m?) 10°

Fig. 6 - Real part (o) and coefficient of the imaginary
part (w) of eigenvalues of Modes 1-4 vs. E: £5 =

2m, ¢g =0.
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to the dutch roll modes of tow—plane and glider respectively.
Other two real roots can be assigned to the roll motions of
the two planes. A second aperiodic motion is in any case
present and corresponds to the spiral mode of the sailplane.

Typically, a couple of conjngate complex roots is now
found which can be interpreted as a long period oscillation
of the system as a whole. The real part of these eigenvalues
can be either positive or negative and the corresponding
motion can be either amplified or damped depending on
the locations of the attachment points. The frequency of
this oscillation is of an order of magnitude smaller than the
dutch roll frequencies. Whereas, as we said, one root can be
made to correspond to the spiral motion of the glider, a sec-
ond real root appears to characterize an aperiodic motion
of the entire system. In addition to the modes indicated
above, other roots are associated to the dynamics of the
cable. Analogously to what happens in the in—plane dy-
namics, after the cable is discretized by means of N + 1
nodes, N — 2 conjugated roots are joined to the modes of
the rope.

In this paper we will report and discuss the first vibra-
tional mode which is the only elastic mode whose frequency
may be comparable to the other frequencies of the system.
In fact, we will deal only with those modes which can be in-
fluenced by the fundamental parameters of the system like
the ones which were treated in the in—plane case. There-
fore the sensitivities of the dutch roll and of the roll mo-
tions of the two planes will not be treated anymore. Just
as an example of insensitivity we refer that, for the single
aircraft and the single sailplane, the dutch roll frequen-
cies are App, = —4.91 X 107! £ 1.68¢ rad/s and App, =
—4.84 x 1071+ 1.637 rad/s, whereas in the case of the com-
plete system we have the roots Apg, = —4.78 x 1071+ 1.73¢
rad/s and Apg, = —4.75 X 107! & 1.74¢ rad/s. For the roll
modes the differences are even more negligible.

In what follows and in Fig. 7 the considered modes
will then be: 1) the spiral mode of the sailplane, 2) the
aperiodic motion of the system, 3) the long period mode of
the system, 4) the first elastic lateral vibration.

If we begin with the sensitivity to the horizontal posi-
tion of the attachment point on the glider, the influence of
variations of this parameter on the Modes 3 and 4 is negli-
gible. Some influence is present on the spiral motion. The
value of 0 is increased from 9.04x 1072 rad/s to 1.10x 1072

for £p moving from the c.g. to the nose of the sailplane.
For the same displacement of £ the value of o3 passes from
1.81 x 107! rad/s to 1.42 x 107! rad/s. All this means that
for € moving forward, the spiral motion of the glider be-
comes a little more diverging whereas the aperiodic motion
of the system becomes less divergent.

When the vertical location ¢g is considered, the influ-
ence of this parameter does not practically affects Modes 1
and 2. The spiral mode of the glider is also not influenced
as ¢g moves from below to above the c.g., whereas oy in-
creases from 1.42 x 107! rad/s to 1.55 X 107! rad/s as ¢
goes from 0.5 m to -0.5 m, respectively.

The last sensitivities which will be considered are those
to the length of the rope. Figure 7 shows the main results.
If we begin our discussion with the first elastic lateral vi-
bration, an approximate expression of its frequency is given
by the relation for the first frequency of an elastic cable

40f
g 3.0}F
o a
= 201 (@) Mode 4
3
1or Mode 3
085 70 50 80 70
0.20f
Mode 2
0.15 \
wotol (©)
©
S
Soost Mode 1
© 000 A
wde 4 Mode 3
003 >%
30 a0 50 80 | (m) 70

Fig. 7- Real part (o) and coefficient of the imaginary
part (w) of eigenvalues of the lateral Modes 1~
4vs. lp: €g=2m, ¢g =0.

Table 5- A vs. Cp, ;6a=¢a=0: €{p=2m, ¢g=0

Cp,, Mode 1-2 Mode 3 Mode 4
0.006 | 9.24(—3) £ 1.34(—1)7 | —1.18(—2) % 3.58(—1); | —3.47(—1) = 8.88(—1);
0.008 | 4.00(—3) £ 1.51(—1) | —2.04(—2) + 3.58(—1)i | —3.31(—2) % 1.06;
0.015 | —7.44(~3) £ 1.95(~1); | —2.66(—2) + 3.58(—1); | —8.17(—2) + 1.51¢
0.030 | —1.60(—2) + 2.63(—1)i | —4.78(~2) £3.53(—1)i | —3.53(—2) £ 1.81;
0.060 | —1.06(—3) + 3.17(—1)i | —1.16(~1) £3.89(—1)i | —5.10(—2) + 1.80;
Table 6 - A/JE x 10'°(rad m*/Ns) vs. y: ¢ =2m,¢5 = 0.
v (kg/m) | Mode 1 | Mode 2 Mode 3 Mode 4
0.04 | 9.29(2) | 6.20(-2) | -1.39(-3)-2.08(-3)7 | -L.O1(-1)+5.08(-1)¢ | £x = --4.0m
0.002 | 1.82(-2) | 4.53(-3) | 1.90(-4)-5.92(-4)i -2.17+9.63¢ ¢4 = 0.27m
0.04 | 3.17(-2)-+4.06(-2)i | -2.25(-4) -2.59(-4)7 | -3.78(-2)+5.10(-1): | &4 =0
0.002 | 2.89(-3)+2.71(-2)i | -2.07(-4)-5.86(-5) | -2.88(-2)+9.02i 4 =0
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with fixed end points, i.e. wy = 7(|g|/8f)'/? where f is the
sag. This simple equation provides an immediate means for
evaluating the influence of the curvature of the cable and,
therefore, of Iy too. Apart from this initial consideration
we note from Fig. 7 also that Mode 4 is the most sensitive
to changes in ly. However what seems to be the most bene-
ficial effect of an increasing rope length is the reduction of
the amplifying coefficient o, relative to the aperiodic mo-
tion of the system. The associated sensitivity do,/8lp is
decreasing with lg. From the same figure we see that an
increasing length determines a relatively small increase of
the spiral motion amplification.

IV. Conclusi

In this work the capabilities of a rigorous representation
of the dynamics of the single elements of a tug-rope—glider
system were shown in connection with the evaluation of
the influence of the system parameters on the stability. The
whole investigation of the sensitivity matrix took advantage
by the consistency of the physico-mathematical model and
by the effectiveness of the discretization procedure which
was adopted for reducing a problem governed by partial
differential equations to a finite set of ordinary differential
equations.

The numerical calculations were carried out for motions
in and out of the vertical longitudinal plane. The main re-
sults concern a distinction between parameters which influ-
ence the dynamics of the system and parameters which do
not. Among the first ones evidence was given to the glider
angle of attack, the length of the cable and the location of
the attachment point on the sailplane.

The approach to sensitivity calculations in the peculiar
situation which was considered as case study can help fur-
ther investigations in applications connected with the dy-
namics and safety of the flight of analogous towed systems.
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